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Abstract: The utilization of black beans as a protein-rich ingredient presents remarkable prospects
in the protein food industry. The objective of this study was to assess the impact of germination
treatment on the physicochemical, structural, and functional characteristics of a black bean protein
isolate. The findings indicate that germination resulted in an increase in both the total and soluble
protein contents of black beans, while SDS-PAGE demonstrated an increase in the proportion of
11S and 7S globulin subunits. After germination, the particle size of the black bean protein isolate
decreased in the solution, while the absolute value of the zeta potential increased. The above results
show that the stability of the solution was improved. The contents of β-sheet and β-turn gradually
decreased, while the content of α-helix increased, and the fluorescence spectrum of the black bean
protein isolate showed a red shift phenomenon, indicating that the structure of the protein isolate
and its polypeptide chain were prolonged, and the foaming property, emulsification property and
in vitro digestibility were significantly improved after germination. Therefore, germination not only
improves functional properties, but also nutritional content.

Keywords: black bean protein isolate; germination; structural characteristics; functional properties;
in vitro digestibility

1. Introduction

With the continuous growth of the global population, in addition to changes in social
demographics and other contributing factors, there is an increasingly pervasive demand for
resources among individuals. Economic development and the advancement of urbanization
are driving a significant transformation in human dietary patterns. There is an increasing
recognition among individuals regarding the pivotal role of protein in maintaining a healthy
diet, which has led to a growing demand for protein. Traditional sources of animal protein,
such as animal husbandry and fisheries, have a significant environmental impact while
also facing limitations in terms of nutrition and price [1]. The livestock farming industry
has significant environmental implications, exerting adverse effects on soil quality, water
resources, and air pollution [2]. For instance, the supply of animal feed and the discharge of
animal manure contribute to land degradation and the contamination of groundwater [3].

At the same time, improper waste disposal can result in the contamination of nearby
water bodies and an increase in greenhouse gas emissions such as carbon dioxide and
methane into the atmosphere, contributing to global climate change and other associated
issues [4]. Taking into account nutritional recommendations, the environmental costs of
food production and consumption, and adaptations to local social and economic circum-
stances, some countries have integrated aspects of environmental sustainability into their
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food-based dietary guidelines [5,6]. Thus, protein consumption patterns will gradually shift
toward plant-derived sources that are more environmentally sustainable. Currently, the
global protein supply is dominated by plant-based sources (57%), with meat accounting for
18%, dairy products for 10%, fish and shellfish for 6%, and other animal products for 9% [7].
The utilization of plant-derived proteins offers numerous advantages, including their ability
to fulfill the protein requirements of individuals without imposing excessive strain on the
environment. This contributes to the promotion of ecological conservation and sustainable
development [8]. The incorporation of plant-derived proteins also contributes to the ame-
lioration of chronic diseases, such as obesity and cardiovascular disease, thereby promoting
overall health. Beans, such as soybeans, black beans, and vegetable beans, are a sustainable
source high-quality proteins that contain various amino acids essential for the human body,
particularly lysine and isoleucine [9,10]. Replete with protein, indispensable amino acids,
anthocyanins, isoflavones, and polyunsaturated fatty acids, black beans are extensively
cultivated and consumed worldwide. The bioactive compounds present in BS exhibit
antioxidant, anti-cancerous, anti-diabetic, anti-obesity, anti-inflammatory, and cardio- and
neuroprotective activities [11,12]. Moreover, black beans exhibit a higher protein content
compared to other soybean species and are rich in essential amino acids, making them an
exceptional source for protein extraction and modification [13]. Black bean protein isolates
exhibit excellent solubility, emulsification, emulsion stability, and antioxidant properties,
making them highly valuable for applications in the food industry [14]. However, to date,
the majority of studies pertaining to black beans have predominantly focused on analyzing
anthocyanins and phenolics present in the seed coat, while insufficient attention has been
paid to exploring its protein components [15].

The process of germination has been widely acknowledged as an environmentally sus-
tainable, cost-effective, and efficient approach for the accumulation of bioactive substances,
thereby exerting a positive influence on the nutritional profile of cereals [16]. Germination
can enhance the metabolism of seeds, leading to the decomposition and breakdown of nutri-
ents and anti-nutrients in seeds, as well as promoting the synthesis of secondary metabolites
from nutrients, thereby improving the nutritional value of germinated seeds [17]. Beginning
in the 1980s, the consumption of germinated seeds also became popular in various countries
due to consumer demand for nutrition and foreign health foods. In fact, the majority of
studies that focus on black beans primarily address the augmentation of the content and
activity of phenolic compounds, and there is a scarcity of research reporting on the impact
of germination on protein isolates derived from black beans [18,19]. Therefore, the objective
of this study was to investigate the impact of germination on a black bean protein isolate
and explore its electrophoretic characteristics and changes in its amino acid content, protein
structure, solubility, and emulsification properties. This study contributes novel research
ideas and directions for the processing and application of black bean protein isolates.

2. Materials and Methods
2.1. Materials and Main Reagents

Black beans were purchased from Beidahuang Agricultural Products Co. An elec-
trophoretic reagent was purchased from Beijing Solarbio Technology Co., Ltd. (Beijing,
China). α-Amylase (40,000 U/g), pepsin (250 U/mg), trypsin (250 U/mg), and sodium
taurocholate were purchased from Solarbio Technology Co., Ltd. Ultrapure water was used
for all experiments.

2.2. Instruments

The following instruments were used: a Fluoromax-4 fluorescence spectrometer (HI-
TACHI, Tokyo, Japan); a SevenEasy pH meter and an EL 204 electronic balance (Mettler-
Toldo Instruments Co., Ltd., Shanghai, China); a frozen centrifuge (Sigma-Aldrich Com-
pany, St. Louis, MO, USA); a UV 5300PC UV-Visible Spectrophotometer (Shanghai Analysis
Instrument Co., Ltd., Shanghai, China); and a TENSOR II Fourier transform infrared
spectrometer (Bruker (Beijing) Scientific Technology Co., Ltd., Beijing, China).
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2.3. Germination Treatment and Preparation of Black Bean Protein Isolate

Black beans (Glycine max (L.) merr.) without any moth damage or epidermal damage
were selected. They were cleaned and soaked in a 10% sodium hypochlorite solution for
5 min, and they were then rinsed with distilled water to remove any residual sodium
hypochlorite on the surface. The cleaned black beans were soaked in distilled water at a
ratio of 1:5 (w/v) for 9 h at room temperature (25 ◦C), with the water changed 1 to 2 times
during this period. The germination process was carried out in an automatized germination
chamber (CB-A360B, Foshan, China) in the dark at 25 ◦C with 10 s of irrigation every 1 h.
The germinated seeds were harvested after 0, 24, 48, 72, and 96 h, referred to as R, G0, G24
G72, G76. The samples were dried at 45 ◦C in an air-blast drying oven, finely ground into
powder, and sieved through an 80-mesh sieve. The black bean protein isolate was extracted
from the germinated black bean powder according to the method described by Zheng
et al. [20]. Briefly, germinated black bean powder was mixed with petroleum ether at a ratio
of 1:5 and stirred at room temperature for 3 h. The petroleum ether was discarded and the
precipitate was dried to obtain germinated black bean defatted powder. The germinated
black bean defatted powder was mixed with distilled water at a ratio of 1:10, the pH of
the solution was adjusted to 8.0 with 1 M NaOH, and after stirring for l.5 h at 50 ◦C, it
was centrifuged for 20 min at 4 ◦C and 6000× g. The supernatant was adjusted to pH 4.0
with 1 M HCl. The supernatant was centrifuged at 4 ◦C for 20 min under the condition
of 6000× g. The precipitate obtained from the centrifugation was washed twice, and then
freeze-dried to obtain the germinated black bean isolate protein, which was stored in the
refrigerator at −80 ◦C.

2.4. Determination of Total Protein Content, Soluble Protein Content, and Protein Solubility in
Germinated Black Bean Powder

The protein content of the germinated black bean powder was determined using the
Kjeldahl nitrogen determination method with modifications based on Ma’s protocol [21].
The soluble protein content of the germinated black bean powder and the solubility of
the protein isolated from germinated black beans were determined following the method
described by Ma et al. [21], with slight modifications. Bovine serum albumin was used
as a standard, and a standard curve equation was established as y = 2.604x + 0.0103
(R2 = 0.9989).

2.5. Amino Acid Composition Analysis of the Germinated Black Soya Bean Isolated Protein

The amino acid composition of the isolated protein was determined according to the
method reported by Mokni et al. [22]. Protein isolate samples were subjected to hydrolysis
using 6 mol/L hydrochloric acid at a temperature of 110 ± 1 ◦C for a duration of 22 h.
Subsequently, the resulting hydrolysate was evaporated to dryness and reconstituted using
1–2 mL of citrate buffer (pH 2.2). The reconstituted samples were then filtered through a
0.22 µm filter membrane to obtain the test solution. Amino acid fractions were subsequently
analyzed using ion exchange chromatography, and the results were expressed with units of
g/100 g.

2.6. Protein Structure Determination
2.6.1. Polyacrylamide Gel Electrophoresis (SDS-PAGE)

The protein sample was dissolved in a 0.1 mol/L NaOH solution, resulting in a protein
concentration of 0.5 mg/mL. Subsequently, an equal volume of loading buffer was added to
the solution, followed by the thermal denaturation of the protein in a boiling water bath for
5–8 min. Electrophoresis was conducted using a 5% concentrated gel, a 12% separated gel,
and 15 µL of sample loading buffer. Electrophoresis was terminated when the bromophenol
blue indicator band reached a distance of 5 mm from the bottom edge of the separation
glue. After 2 h of dyeing, the samples were eluted with a decolorizing solution for 2 h.
Subsequently, an electrophoresis analysis using Image J (win-64) software enabled the
determination of the relative content for each subunit [23].
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2.6.2. Fourier Infrared Spectrum Analysis

The infrared spectrum of the germinated black bean protein was recorded at 25 ◦C
using a TENSOR II Fourier transform infrared spectrometer (Bruker, Billerica, MA, USA).
The sample was homogenized and pulverized with potassium bromide at a ratio of 1:100;
it was then compressed into thin slices using a hydraulic press. Full band scanning was
conducted between 4000 and 400 cm−1. The average spectral scan was 32, with a resolution
of 4 cm−1. Peak-Fit v4.12 software was employed to fit the protein amide I region data
(1600–1700 cm−1), enabling the determination of relative content pertaining to the protein’s
secondary structure [24].

2.6.3. Fluorescence Spectrometry

Fluorescence dynamics were recorded using a FluoroMax-4CP fluorescence spec-
trometer. The protein concentration was set at 0.5 mg/mL. The conditions for fluores-
cence spectral determination were as follows: quartz cuvette light path = 1 cm; excitation
wavelength = 280 nm; emission wavelength = 300–500 nm; excitation and emission slit
width = 5 nm; electric tension = 700 mV; and scan speed = 200 nm/min [25].

2.6.4. Ultraviolet Spectrometric Measurements

A 1 mg/mL solution of germinated black bean protein isolate was prepared using a
phosphoric acid buffer (0.01 mol/L, pH 7.0). After centrifugation at 4000 r/min for 10 min,
the supernatant was collected for UV spectrum scanning within the range of 200–350 nm.

2.6.5. Particle Size Distribution and ζ Potential

The particle size of the black bean was observed using a transmission electron micro-
scope. The germinated black bean protein solution was adsorbed onto a carbon-coated
grid, followed by two washes with double-distilled water. Subsequently, the sample was
negatively stained using 2% uranyl acetate and imaged using an JEM-2100Plus transmis-
sion electron microscope (JEOL (Beijing) Co., Ltd., Beijing, China) [26]. The zeta potential
measurement was obtained utilizing a PALS-Zeta potentiometer. A sample solution with a
concentration of 0.5 mg/mL was meticulously prepared in a PBS buffer (50 mmol/L, pH
7.0), comprising a total volume of 1 mL, and subjected to analysis at an ambient temperature
of 25 ◦C.

2.7. Turbidity

The turbidity of each germinated black bean protein isolate sample was measured us-
ing a spectrophotometer (Lambda 1050 UV/VIS/NIR Spectrometer, PerkinElmer, Waltham,
MA, USA). The protein concentration was 1 mg/mL, and DI water was used as the blank.
The absorbance at 600 nm of each sample represented the turbidity [27].

2.8. Foaming Ability Measurements

Foaming capacity (FC) and foam stability (FS) were assessed in accordance with the
methodology outlined in [28]. Foam was obtained by homogenizing 15 mL of protein solu-
tion (5 mg/mL) for 1 min at 10,000 rpm using a T18BS25 homogenizer (IKA (Guangzhou)
Instrument Co., Ltd., Guangzhou, China). The foam volume (V0) was immediately mea-
sured, and the foam volume (V30) was measured after 30 min. The FC and FS were
subsequently calculated based on Equations (1) and (2).

FC(%) =
V0

V
× 100% (1)

FS(%) =
V30

V0
× 100% (2)
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2.9. Emulsifying Ability Measurements

Emulsification (EAI) and emulsification stability (ESI) were determined according to
the method reported in Wang et al.’s study [29]. First, 4 mL of soybean oil was incorporated
into 16 mL of protein solution (5 mg/mL), followed by homogenization at 10,000 rpm for
1 min to form an emulsion. When the emulsion was allowed to stand for 0 and 10 min, 50 µL
of the emulsion was extracted from the lowermost 0.5 cm and introduced into a solution of
SDS with a mass fraction of 0.1% in an amount of 5 mL. Following vigorous shaking and
thorough mixing, absorbance at a wavelength of 500 nm was measured. The absorbance
value of the mixture at 100 min was A0, and the absorbance value of the emulsion at
10 min was Aφ. A 0.1% SDS solution was used as a blank control. Emulsification (EAI)
and emulsification stability (ESI) were calculated as follows (φ is the volume fraction of the
oil phase in the emulsion, and N is the dilution ratio):

EAI
(

m2
/

g
)
=

2 × 2.303
c × (1 −φ)× 104 × A0 × N, (3)

ESI(%) =
Aφ

A0
× 100% (4)

2.10. Polarized Microscope Observations

The germinated black bean protein isolate solution was homogenized as described
above, and the resulting homogenate sample was then transferred onto slides using a glass
rod. The foaming microstructure was observed using a 10× eyepiece and a 40× objective
lens using an XP-213 polarized biological microscope (NOVEL, Nanjing, China) [30].

2.11. In Vitro Digestibility Determination

The germinated black bean protein isolate was simulated using INFOGEST 2.0 and
the method described in Jiang et al. [31], with slight modifications, for continuous in vitro
gastrointestinal digestion. The proteins of the germinated black beans were extracted and
prepared as a protein solution in deionized water with a concentration of 4% (w/v) for
subsequent digestion. The protein sample (5 mL) was added to a solution of simulated
saliva (5 mL, containing 150 U/mL α-salivary amylase) and 0.3 M CaCl2 (25 µL), followed
by incubation for 2 min. The above digestion solution was supplemented with 10 mL of
simulated gastric juice containing 4000 U/mL pepsin, followed by the addition of 5 µL
of 0.3 M CaCl2 and a solution of HCl (5 mol/L) to adjust the pH to 2.5. The mixture was
then subjected to digestion for a duration of 120 min. The mixed digestive solution then
was supplemented with 20 mL of simulated intestinal fluid containing 10 mmol/L bovine
bile salt and 200 U/mL trypsin, along with the addition of 40 µL of 0.3 M CaCl2. The pH
value was adjusted to 7.0 using a solution of 5 mol/L NaOH, followed by digestion for a
duration of 120 min. After digestion, enzymatic hydrolysis was terminated by immersing
the samples in a boiling water bath for 10 min. Subsequently, the resulting solution was
subjected to centrifugation at a speed of 8000× g per minute for 10 min. The supernatant
was carefully collected and subsequently subjected to lyophilization prior to analysis.

The in vitro digestibility of the proteins was determined according to the method
described in Wang et al. [32,33].

The concentration of L-leucine as a standard substance is linear (y = 0.0153x + 0.0778,
R2 = 0.9997). The degree of digestion hydrolysis was calculated based on a standard curve
of L-leucine.

2.12. Statistical Analysis

All tests were performed in triplicate and are expressed as mean ± SD deviation
values. The data were analyzed using SPSS 27.0 (SPSS, Inc., Chicago, IL, USA). Analysis
of variance (ANOVA) and Duncan’s test were used to compare data for the two groups.
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Three parallel experiments were conducted (p < 0.05). The figures were prepared using
Origin 2022 (Northampton, MA, USA).

3. Results
3.1. Total Protein and Soluble Protein Contents of Germinated Black Beans

During germination, we monitored the germination rate of black beans, which reached
over 90%, and the yield of isolated proteins extracted from ungerminated and germinated
black beans was about 35% to 38.6%. Subsequently, we performed the determination of the
total protein content and the soluble protein content of the germinated black beans. The
total and soluble protein contents of the germinated black beans are shown in Figure 1.
As the germination time increased, the germinating group showed higher concentrations
of total protein and soluble protein compared to the non-germinating group. The total
protein content of the germinated black beans reached its highest level at 24 h, with no
further significant change up to G96. However, there were no statistically significant
differences observed among the different time points (p > 0.05). The soluble protein content
in germinated black beans exhibited a pattern of initially increasing and then decreasing.
It reached its peak value at 72 h after sprouting, which aligns with the findings reported
by Paucar-Menacho [34], De Souza-Rocha [35], and Concha [36]. The increase in protein
content during seed germination may be attributed to the utilization of carbohydrates
and fats for respiration, resulting in a reduction in dry mass while enhancing metabolic
processes, thereby augmenting the relative protein content. Simultaneously, during the
growth process, the synthesis of novel proteins also engenders an augmentation in protein
content, thereby altering the protein profile of the seed [37–40]. The protein content is
expected to decrease during germination, possibly because proteins are utilized to facilitate
material metabolism through decomposition [41]. During seed germination, grain seeds
undergo an enzymatic breakdown of their insoluble endosperm starch and non-soluble
storage protein into soluble forms. This enzymatic breakdown facilitates the transport of
nutrients to the embryo, meeting the nutritional demands for plant growth. Consequently,
this process promotes seed germination and enhances seed resistance [42,43].
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3.2. Amino Acid Composition and Content of the Germinated Black Bean Protein Isolate

Amino acids serve as the fundamental building blocks for protein synthesis in animal
cells and actively participate in various physiological processes. These processes include
nutrient metabolism, glucose and lipid metabolism, hormone regulation, and signal trans-
duction. Additionally, amino acids play crucial roles in obesity, diabetes, cardiovascular
diseases, and cerebrovascular diseases [44–46]. The amino acid composition of the germi-
nated black bean protein isolate exhibited significant alterations following the sprouting
treatment, as evidenced by the data presented in Table 1. The total amino acid content of
the germinated black bean protein isolate significantly increased (p < 0.05) compared to the
ungerminated black bean protein isolate. It reached a maximum value of 98.072 g/100 g af-
ter 96 h of sprouting, which was 1.16 times higher than that of its ungerminated counterpart.
The nutritional value of protein can be evaluated based on the content and composition of
essential amino acids. In the case of the germinated black bean protein isolate, an increase
in the germination time resulted in a significant increase (p < 0.05) in the total content
of essential amino acids. A maximum value of 31.893 g/100 g was observed after 96 h
of germination, which was 1.14 times higher than the content of the ungerminated black
bean protein isolate. There are some relationships between protein changes and the total
amino acid. Endogenous enzymatic hydrolysis might present dominant effects on protein
release (Figure 1). In turn, part of their hydrolysates, such as peptides or amino acids, will
be present in black beans during their metabolism or synthesis of other products. The
significant increment of total amino acids (p < 0.05) (Table 1) and protein release (Figure 1)
will be a worthy topic of discussion in future. These findings align with Zhang’s previous
research [47]. As shown in the table, the black bean protein isolate contains significant
amounts of hydrophobic and acidic amino acids, including Ala, Val, Ile, Leu, Pro, Phe,
and Met. Previous studies indicated that these hydrophobic amino acids possess high
numbers of hydrogen atoms which can efficiently scavenge free radicals and protect against
oxidative damage [48,49].

Table 1. Amino acid composition and content of proteins isolated from germinated black beans.

Amino Acid Species
Amino Acid Content (g/100 g)

R G0 G24 G48 G72 G96

Hydrophobic
Amino Acid

Ala 3.793 ± 0.015 e 3.775 ± 0.011 e 3.898 ± 0.014 d 4.072 ± 0.015 c 4.267 ± 0.009 a 4.105 ± 0.014 b

* Val 4.421 ± 0.008 e 4.369 ± 0.010 f 4.586 ± 0.022 d 4.703 ± 0.012 b 4.908 ± 0.017 a 4.663 ± 0.025 c

* Ile 1.152 ± 0.019 de 1.138 ± 0.013 e 1.370 ± 0.021 a 1.312 ± 0.005 b 1.246 ± 0.007 c 1.174 ± 0.016 d

* Leu 4.024 ± 0.016 f 4.078 ± 0.023 e 4.189 ± 0.010 d 4.287 ± 0.009 c 4.534 ± 0.016 a 4.334 ± 0.021 b

Pro 7.284 ± 0.024 f 7.325 ± 0.006 e 7.541 ± 0.011 d 7.738 ± 0.017 c 8.211 ± 0.007 a 7.874 ± 0.011 b

* Phe 4.091 ± 0.014 f 4.127 ± 0.012 e 4.294 ± 0.013 d 4.441 ± 0.022 c 4.659 ± 0.018 a 4.571 ± 0.008 b

* Met 3.836 ± 0.021 e 4.361 ± 0.010 d 4.393 ± 0.018 c 4.431 ± 0.010 b 4.400 ± 0.005 c 4.659 ± 0.020 a

Total
Hydrophobic
Amino Acids

28.601 ± 0.012 f 29.173 ± 0.025 e 30.271 ± 0.014 d 30.984 ± 0.015 c 32.225 ± 0.016 a 31.380 ± 0.020 b

Polar Amino
Acid

* Thr 3.511 ± 0.007 f 3.584 ± 0.011 e 3.663 ± 0.014 d 3.800 ± 0.015 c 3.943 ± 0.006 a 3.871 ± 0.011 b

Ser 4.767 ± 0.016 f 5.160 ± 0.012 e 5.213 ± 0.018 d 5.367 ± 0.019 c 5.498 ± 0.005 b 5.536 ± 0.008 a

Gly 3.547 ± 0.012 f 3.856 ± 0.013 e 3.909 ± 0.009 d 3.987 ± 0.012 c 4.072 ± 0.009 b 4.118 ± 0.007 a

Tyr 3.504 ± 0.009 e 3.440 ± 0.012 f 3.550 ± 0.011 d 3.653 ± 0.011 c 3.908 ± 0.002 a 3.709 ± 0.010 b

Total Polar
Amino Acid 15.329 ± 0.101 f 16.040 ± 0.020 e 16.335 ± 0.017 d 16.807 ± 0.012 c 17.421 ± 0.011 a 17.234 ± 0.011 b

Acidic Amino
Acid

Asp 11.760 ± 0.008 d 11.449 ± 0.018 f 11.620 ± 0.013 e 12.009 ± 0.014 c 12.684 ± 0.011 a 12.258 ± 0.020 b

Glu 15.925 ± 0.013 e 19.816 ± 0.007 c 19.896 ± 0.015 b 19.821 ± 0.005 c 19.323 ± 0.007 d 21.136 ± 0.015 a

Total Acidic
Amino Acid 27.685 ± 0.009 f 31.265 ± 0.014 e 31.516 ± 0.012 d 31.830 ± 0.009 c 32.007 ± 0.009 b 33.394 ± 0.019 a

Basic Amino
Acid

* Lys 4.956 ± 0.011 e 5.712 ± 0.011 d 5.739 ± 0.012 c 5.760 ± 0.002 b 5.743 ± 0.011 bc 6.123 ± 0.009 a

* His 2.063 ± 0.011 d 2.336 ± 0.008 b 2.277 ± 0.012 c 2.355 ± 0.009 b 2.286 ± 0.013 c 2.498 ± 0.012 a

Arg 5.604 ± 0.010 e 7.030 ± 0.009 b 6.937 ± 0.015 c 6.950 ± 0.009 c 6.604 ± 0.006 d 7.398 ± 0.011 a

Total Basic
Amino Acid 12.623 ± 0.012 e 15.078 ± 0.011 b 14.953 ± 0.012 c 15.065 ± 0.021 b 14.633 ± 0.018 d 16.019 ± 0.015 a

EAA 28.054 ± 0.011 f 29.705 ± 0.008 e 30.511 ± 0.010 d 31.089 ± 0.017 c 31.719 ± 0.011 b 31.893 ± 0.014 a

TAA 84.238 ± 0.019 f 91.556 ± 0.015 e 93.075 ± 0.011 d 94.686 ± 0.012 c 96.25 ± 0.009 b 98.027 ± 0.012 a

Note: Total essential amino acids, EAA; total amino acids, TAA; essential amino acids are marked with “*”.
Different letters (a–f) indicate significant differences between the mean values of different samples (p < 0.05).
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The amino acid Met, which contains sulfur and exhibits a resonance structure, demon-
strates the ability to eliminate free radicals through single-electron transfer and maintain
oxidative stability [50]. Acidic amino acids, such as Asp and Glu, play a significant role in
maintaining metabolic homeostasis. Glu has the ability to enhance liver glycogen synthesis
and promote skeletal muscle protein homeostasis. On the other hand, Asp is involved in
regulating hormone levels, thus influencing the functioning of the nervous system [51,52].
In addition, acidic amino acids have the ability to eliminate free radicals by transferring
hydrogen atoms, thereby disrupting the oxidation chain reaction. They also have the
ability to chelate metal ions and weaken the oxidation of these ions, thereby preventing
the production of peroxide [53,54]. With an increase in the germination time, the levels
of hydrophobic and acidic amino acids in the germinated black bean protein isolate were
found to increase significantly compared to those in the ungerminated black bean protein
isolate (p < 0.05). This suggests that the germinated black bean protein isolate may possess
enhanced antioxidant and metabolic regulatory functions compared to its ungerminated
counterpart. To enhance the nutritional value of amino acids and proteins, it is recom-
mended to consume a germinated black bean protein isolate along with other animal foods.
This combination can help increase the overall nutritional value of the diet [55].

3.3. Effect of Different Germination Times on Isolated Protein Structure
3.3.1. SDS-PAGE Analysis

The molecular weight of the germinated black bean protein isolate was determined
using SDS-PAGE. The molecular weight of the germinated black bean protein isolate
samples ranged from 18.4 kDa to 116 kDa and primarily consisted of globulin, specifically
7S globulin and 11S globulin. Based on Teraishi’s findings and considering the relative
molecular weight, the black bean protein isolate’s 7S globulin group was classified into
α′, α, and β subunits. Additionally, the 11S globulin component was further categorized
into acidic and basic subunits [56]. It can be seen from our results in Figure 2 that the
electrophoretic band density of the germinated black bean protein isolate samples changes
such that the number of protein bands with a larger molecular weight decreases or density
decreases while that of protein bands with a smaller molecular weight appear or density
increases. An electrophoretic map reveals that the strip densities of the α′, α, β, and acid
subunits noticeably decrease after germination. This change becomes more pronounced as
the germination time increases.
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The content ratio of 11S to 7S components directly affects the quality and nutritional
value of black bean protein due to their different amino acid compositions. An optical
density analysis of the germinated black bean protein isolate samples was conducted using
Image J software and an SDS-PAGE electrophoretic map. The results in Table 2 reveal that
as the germination time increased, the relative content of 7S globulin decreased gradually.
Additionally, the ratio of the 11S (acid + basic) component to the 7S (α′ + α + β) component
showed a gradual increase. According to previous studies, 11S globulin has been found
to be rich in sulfur-containing amino acids, with a content that is five to six times higher
than that of 7S globulin. This indicates that 11S globulin has higher protein quality and can
provide greater nutritional value [57].

Table 2. The contents of 7S and 11S globulin of different soybean.

Protein Subunit
Relative Content of Isolated Protein Subunits at Different Germination Times/%

R G0 G24 G48 G72 G96

7S Globulin

a′ 3.69 4.00 2.93 2.71 2.24 2.11
a 3.75 3.92 3.68 3.41 2.66 2.44
β 3.37 3.46 3.64 3.79 3.50 3.43
a′ + a + β 10.80 11.37 10.24 9.90 8.40 7.98

11S Globulin
Acid 19.83 20.63 20.04 19.39 17.48 16.50
Basic 10.69 11.21 10.87 11.19 12.77 12.83
Acid + Basic 30.52 31.84 30.91 30.58 30.25 29.33

7S + 11S 41.32 43.22 41.15 40.48 38.65 37.31

11S/7S 2.82 2.80 3.02 3.09 3.60 3.67

3.3.2. Spectral Analysis

The FTIR results for the germinated black bean protein isolate are presented in
Figure 3a. The absorption peak wave number of the germinated black bean protein isolate
in the infrared spectrum did not exhibit a noticeable blue or red shift, and no new absorp-
tion peak was observed. This suggests that the chemical bond composition of the black
bean protein molecules remained unchanged after the sprouting treatment, and no new
chemical substances were generated. Therefore, this can be attributed to physical denat-
uration. However, the absorption peak intensity of the isolated protein from germinated
black beans was observed to be different. In comparison to the non-germinated group, the
absorption peak intensity of the germinated black bean group was found to be stronger.
This figure also shows characteristic peaks in the amide I band (1655 cm−1) and amide III
band (1234 cm−1) of the black bean protein isolate. These peaks are generated by a N-H
stretching vibration, a C-N stretching vibration, and a N-H bending vibration [58,59]. The
protein’s secondary structure is supported by hydrogen bonds between peptide bonds. The
two most common secondary structures are the α-helix and β-fold [60,61]. Table 3 shows
the results obtained using a Fourier deconvolution spectral fitting analysis of the amide
I band. The region associated with the secondary structure of the amide I band includes
the α-helix (1646~1664 cm−1), random coil (1637~1645 cm−1), β-sheet (1615~1637 cm−1,
1682~1700 cm−1), and β-turn (1664~1681 cm−1) [62]. According to Table 3, the primary
secondary structure of the black bean protein isolate is β-sheets (35.91%). Over time, there
was a gradual decrease in the levels of β-sheet and β-turn in the amide I band of the
germinated black bean protein isolate, while the α-helix content increased. This suggests
that the structure of the germinated black bean protein underwent changes, possibly due
to the disruption of hydrogen bonds between protein peptide chains and the alteration of
the protein isolate’s secondary structure.
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Table 3. Secondary structure content of isolated proteins from germinated black bean.

β-Sheet (%) Random Coil (%) α-Helix (%) β-Turn (%)

R 35.91 ± 0.27 a 17.22 ± 0.13 a 15.81 ± 0.62 c 24.87 ± 0.18 ab

G0 36.21 ± 0.79 a 15.98 ± 2.03 a 15.67 ± 0.86 c 26.12 ± 2.35 a

G24 33.05 ± 2.69 b 15.66 ± 1.80 a 23.45 ± 1.43 b 25.53 ± 2.48 ab

G48 30.87 ± 1.72 bc 15.42 ± 1.54 a 27.01 ± 2.08 a 22.47 ± 1.48 bc

G72 29.79 ± 0.68 c 16.59 ± 0.28 a 29.05 ± 0.63 a 19.94 ± 0.51 c

G96 28.99 ± 0.69 c 17.33 ± 2.32 a 28.94 ± 1.08 a 20.17 ± 1.85 c

Note: Different letters (a–c) indicate significant difference between the mean values of different samples (p < 0.05).

Proteins exhibit a distinct absorption spectrum in the ultraviolet region, with the
absorption peak (260–280 nm) corresponding to the absorption of aromatic amino acid
residues [63]. As depicted in Figure 3b, UV spectrum scanning of the germinated black bean
protein isolate revealed an absorption peak at 260–280 nm. Moreover, the UV absorption
intensity of the germinated black bean protein isolate exhibited a continuous increase,
suggesting that the protein structure was stretched.

Fluorescence spectra can indicate changes in protein conformation, which is primarily
influenced by the environmental polarity of aromatic amino acids, particularly tryptophan.
According to Figure 3c, after 72 h of germination, the maximum emission wavelength
of the germinated black bean protein isolate shifted in the red direction (from 235 nm to
330 nm). This shift suggests that the tryptophan residues in the sample were in a polar
environment. The reason for this change may be that germination changes the spatial
conformation of the black bean protein isolate, increases the polar environment of aromatic
amino acid residues, and extends the structure of the peptide chain so that the tertiary
structure of the germinated black bean protein isolate stretches more. During germination,
the tertiary structure of the germinated black bean protein isolates unfolds, causing the
peptide chain structure to stretch. As a result, residues that were initially buried within
the hydrophobic environment inside the molecule are gradually exposed to the external
hydrophilic environment. This exposure leads to changes in fluorescence intensity and
shifts in the maximum excitation wavelength. The decrease in the fluorescence intensity
of the germinated black bean protein isolate can be attributed to alterations in the spatial
conformation of the protein structure and the microenvironment surrounding the aromatic
amino acids, leading to fluorescence quenching [64].

3.3.3. Particle Size and ζ-Potential

According to Figure 4, the germinated black bean protein isolate exhibits a smaller
particle size compared to its non-germinated counterpart. Moreover, the germinated black
bean protein isolate solution demonstrates a more uniform dispersion of protein particles.
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A possible explanation for this lies in the fact that as the germination time increases, a
fraction of the germinated black bean protein isolate undergoes hydrolysis by endogenous
enzymes, resulting in the formation of smaller components. Consequently, this enzymatic
hydrolysis weakens the interaction between protein and water molecules, leading to a more
homogeneous dispersion in the solution [65]. The electrical properties and potential values
of proteins are intricately linked to the amino acid composition and the stability of protein
solution micelles.
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The side chains of the protein molecules consist of both polar and non-polar groups.
The hydrophilic polar groups are exposed on the surface of the protein molecules, resulting
in the protein surface being charged. The charge carried by amino acids on the protein
surface, as well as their positive and negative properties, influences the surface potential of
the protein solution. A positive potential value of a protein solution is observed when the
surface of the protein molecules contains a higher proportion of positively charged amino
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acids compared to negatively charged ones; conversely, when there are more negatively
charged amino acids on the surface of protein molecules, the protein solution shows
electronegativity [66]. In general, the majority of protein molecules exhibit electronegativity
in a neutral environment [67].

The ζ-potentials of the germinated black bean protein, as presented in Table 4, exhibit
a negative charge, thereby indicating an abundance of negatively charged sites on the
surface of the black bean protein isolate. With the prolonged germination time, there was
an increase in the absolute value of the ζ-potential. A significant difference in ζ-potential
between the germinated black bean protein isolate and the ungerminated black bean protein
isolate was observed at 72 h (p < 0.05). The findings reveal that an extended germination
period led to an augmented exposure of charged amino acid residues on the protein
structure’s surface, consequently resulting in an amplified distribution of charge across the
surface [68]. A small absolute value of the ζ-potential in the protein solution indicates a
lower number of homogeneous charges on the surface of the protein molecules, resulting in
reduced solution stability due to decreased electrostatic repulsion forces and an increased
tendency for protein aggregation [69]. Conversely, an increase in the absolute value of the
ζ-potential of a protein molecular solution signifies an augmentation in the same charges on
the surface of the protein molecules, leading to enhanced mutual repulsion forces between
these charges and consequently reducing the intermolecular aggregation forces among
proteins. The ζ-potential of the germinated black bean protein isolate exhibited an increase,
suggesting enhanced stability in the properties of the solution.

Table 4. The ζ-potentials of the germinated black bean protein.

Groups R G0 G24 G48 G72 G96

Particle size (nm) 17.12 ± 2.89 14.96 ± 2.91 15.63 ± 2.94 16.47 ± 2.82 15.03 ± 2.00 11.62 ± 1.75
ζ-potential (mV) −22.33 ± 0.57 b −23.23 ± 1.39 ab −22.97 ± 0.90 ab −23.17 ± 0.40 ab −24.47 ± 0.65 a −24.13 ± 0.75 a

Note: Different letters (a, b indicate significant differences between the mean values of different samples (p < 0.05).

3.4. Solubility and Turbidity of the Germinated Black Bean Protein Isolate

The solubility of proteins is a crucial manifestation of their hydration and serves as an
excellent indicator for assessing their application properties, thereby influencing various
functional characteristics. The solubility of the germinated black bean protein isolate
samples increased to varying degrees with an increase in the germination time at a pH of
7, as depicted in Figure 5a. At 72 h of germination, the solubility of the germinated black
bean protein isolate reached its peak, exhibiting a significant difference compared to other
groups (p < 0.05). The increased solubility of the germinated black bean protein isolate may
be attributed to several factors: the enzymatic hydrolysis of proteins during sprouting, the
partial unfolding of protein molecules, and enhanced ionic interactions, all contributing
to improved protein solubility [37]. The solubility characteristics of proteins isolated from
germinated black beans vary under different pH conditions, with the lowest solubility
observed at pH values of 4–5. This is attributed to the predominant presence of 7S and 11S
globulins in the separation protein of black soybean. In proximity to their isoelectric point,
the protein molecules exhibit a near-zero net charge, resulting in diminished electrostatic
repulsion between them. Consequently, this leads to protein aggregation and precipitation
with minimal solubility, following a U-shaped curve. Relevant research findings were also
documented by Yang et al. [70].

Turbidity serves as an indicator of the extent to which particles in a solution obstruct
the passage of light while also providing insights into the dispersion and aggregation states
of these particles. Turbidity is quantified by absorbance values, with higher absorbance
values indicating greater turbidity [71]. Research findings indicated that the solubility of
smaller protein molecules was enhanced due to the increased surface area available for
interaction with water molecules [72]. In addition, a decrease in the molecular weight
of proteins also increases the adsorption rate of proteins to oil–water interfaces [73]. Ac-
cording to Figure 5b, the turbidity of the isolated proteins from germinated black beans



Foods 2024, 13, 488 13 of 19

gradually decreased with an increasing germination time. The protein isolated after 72 h
of germination forms smaller aggregates in the aqueous phase and represents a more
transparent solution.
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3.5. Emulsification and Foamability

Emulsification refers to the ability of hydrophobic parts to orient toward lipids and
the ability of polar parts to orient toward the aqueous phase in an oil–water mixture. Good
emulsification and emulsion stability can extend the shelf life of food. The emulsifying
property and emulsion stability of the germinated black bean protein exhibited an increas-
ing trend with prolonged germination time, as illustrated in Figure 6a. The emulsifying
property of the germinated black bean protein reaches its maximum value at 24 h of ger-
mination, exhibiting no significant variation during the subsequent stages of germination
(p < 0.05). During the germination process, degradation of the storage proteins in black
beans occurs, leading to the unfolding of the protein structure and the exposure of internal
hydrophobic groups. This phenomenon significantly enhances diffusion and adsorption
capabilities at oil–water interfaces, thereby resulting in heightened emulsifying properties
and improved emulsion stability [74].

The foaming ability and foam stability, in addition to the aforementioned factors,
are also related to an increase in the solubility of the protein. These properties have the
potential to improve the softness and texture of foods [75]. Figure 6b shows that the
germination treatment had a significant effect on the foaming ability and foam stability of
the black bean isolated proteins. As the germination time increased, the foaming ability of
the isolated proteins increased and reached a maximum (52.44%) at 96 h after germination
(p < 0.05). This may have occurred for the following reasons: during the black beans’
germination period, some protein molecules in the black beans were hydrolyzed to form a
low-molecular-weight subunit structure, the solubility of the protein isolate was increased,
and the adsorption capacity of the air–water interface was strengthened, thereby improving
the foaming properties of the germinated black bean protein isolate.



Foods 2024, 13, 488 14 of 19
Foods 2024, 13, x FOR PEER REVIEW 15 of 21 
 

 

  
(a) (b) 

Figure 6. Emulsification (a) and foamability (b) of the germinated black bean protein isolate. Note: 
Different letters indicate significant differences between the mean values of different samples (p < 
0.05). 

3.6. Polarized Microscope Observations 
The microstructure of the emulsion droplets formed by the germinated black bean 

protein is shown in Figure 7A. There are significant differences between the microstruc-
ture of the emulsion formed by the germinated black bean protein and that of the non-
germinated black bean protein. The emulsion droplets formed by the separation of sepa-
ration from the non-germinated black beans are irregular and exhibit significant floccula-
tion and stratification. As the germination time increases, the size of the emulsion droplets 
decreases, and they become evenly distributed and have a regular spherical shape. After 
allowing the emulsion to stand for 30 min, the coagulation and stratification phenomena 
of the protein produced from non-germinated black beans increased. However, the emul-
sion formed from the germinated black bean protein maintained a stable and uniform 
droplet distribution. 

The microstructure of the homogenized germinated black bean protein solution is 
shown in Figure 7B. As the germination time increases, the foam of the homogenized so-
lution becomes relatively uniform, with a thicker liquid film which partially increases the 
stability of the foam. After standing for 30 min, the separated protein foam structure of 
the germinated black beans remains in good condition. The possible reason for this was 
that the structure of the separated protein from the germinated black beans changed, in-
creasing its adsorption ability at the interface and suppressing the speed of bubble dis-
charge, resulting in a more stable foam structure [76]. 

  

Figure 6. Emulsification (a) and foamability (b) of the germinated black bean protein isolate. Note:
Different letters indicate significant differences between the mean values of different samples (p < 0.05).

3.6. Polarized Microscope Observations

The microstructure of the emulsion droplets formed by the germinated black bean pro-
tein is shown in Figure 7A. There are significant differences between the microstructure of
the emulsion formed by the germinated black bean protein and that of the non-germinated
black bean protein. The emulsion droplets formed by the separation of separation from
the non-germinated black beans are irregular and exhibit significant flocculation and strat-
ification. As the germination time increases, the size of the emulsion droplets decreases,
and they become evenly distributed and have a regular spherical shape. After allowing
the emulsion to stand for 30 min, the coagulation and stratification phenomena of the
protein produced from non-germinated black beans increased. However, the emulsion
formed from the germinated black bean protein maintained a stable and uniform droplet
distribution.
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The microstructure of the homogenized germinated black bean protein solution is
shown in Figure 7B. As the germination time increases, the foam of the homogenized
solution becomes relatively uniform, with a thicker liquid film which partially increases the
stability of the foam. After standing for 30 min, the separated protein foam structure of the
germinated black beans remains in good condition. The possible reason for this was that the
structure of the separated protein from the germinated black beans changed, increasing its
adsorption ability at the interface and suppressing the speed of bubble discharge, resulting
in a more stable foam structure [76].

3.7. In Vitro Digestibility

The OPA method is often used to determine the concentration of free amino acids in
proteins to characterize the extent of protein hydrolysis during digestion. A higher concen-
tration of free amino acids indicates a higher degree of protein digestion and hydrolysis [32].
From Figure 8, it can be seen that the gastric digestion rate of the proteins isolated from
germinated black beans shows a decreasing trend, followed by an increasing trend with
an increasing germination time. At 72 h after germination, the gastric digestion rate of the
proteins isolated from germinated black beans reached its maximum value (12.85 ± 0.44%).
During the intestinal digestion phase, the in vitro digestibility of the germinated black bean
protein increased with an increasing germination time. It reached its maximum digestion
rate after 72 h (41.50 ± 0.97%), a rate 1.35 times higher than that of the non-germinated black
bean protein (30.74 ± 1.93%). The increased in vitro digestibility of black bean isolated
protein after germination may be due to the fact that germination can activate endogenous
protease activity and also lead to increased protein solubility [77]. The in vitro digestibility
of proteins was an important feature to characterize the protein quality, and proteins with
higher in vitro digestibility are considered of high quality, because proteolysis helps the
release of amino acids from the protein backbone, meaning that the protein can be better
digested and absorbed by the body [78]. This fully proves that the protein isolated from ger-
minated black beans is hydrolyzed more thoroughly than the protein from non-germinated
black beans, making it more suitable for absorption and utilization by the body. This result
is consistent with the findings of Bautista-Exposito et al. [79] and Devi et al. [80].
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4. Conclusions

This study investigates the effects of germination on the structure, amino acid com-
position, and functional properties of proteins isolated from black soybean. The findings
indicate that germination resulted in an increase in both the total and soluble protein
contents of black beans, while SDS-PAGE demonstrated an increase in the proportion of 11S
and 7S globulin subunits. After germination, the particle size of black bean protein isolate
decreased in solution, while the absolute value of zeta potential increased. The above
results show that the stability of the solution was improved. The contents of β-sheet and
β-turn gradually decreased, while the content of α-helix increased, and the fluorescence
spectrum of black bean protein isolate showed a red shift phenomenon, indicating that the
structure of the protein isolate and its polypeptide chain were prolonged, and the foaming
property, emulsification property and in vitro digestibility were significantly improved
after germination. Therefore, germination not only improves functional properties, but
also nutritional content. The above results fully demonstrate the positive improvement
effect of germination on the separation of protein from black beans, making them more
suitable for processing and consumption. Based on the above results, this area represents a
good research direction for the separation and purification of bioactive peptides from the
products of germinated black bean protein isolate after digestion in vitro. This can serve as
a reference for the future processing and utilization of separated black bean protein.
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