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Abstract: The North China type cucumber, characterized by its dense spines and top flowers, is
susceptible to damage during the grading process, affecting its market value. Moreover, traditional
manual grading methods are time-consuming and labor-intensive. To address these issues, this
paper proposes a cucumber quality grader based on machine vision and deep learning. In the
electromechanical aspect, a novel fixed tray type grading mechanism is designed to prevent damage
to the vulnerable North China type cucumbers during the grading process. In the vision grading
algorithm, a new convolutional neural network is introduced named MassNet, capable of predicting
cucumber mass using only a top-view image. After obtaining the cucumber mass prediction, mass
grading is achieved. Experimental validation includes assessing the electromechanical performance
of the grader, comparing MassNet with different models in predicting cucumber mass, and evaluating
the online grading performance of the integrated algorithm. Experimental results indicate that the
designed cucumber quality grader achieves a maximum capacity of 2.3 t/hr. In comparison with
AlexNet, MobileNet, and ResNet, MassNet demonstrates superior cucumber mass prediction, with a
MAPE of 3.9% and RMSE of 6.7 g. In online mass grading experiments, the grading efficiency of the
cucumber quality grader reaches 93%.

Keywords: quality grader; cucumber grading; deep learning; mass prediction

1. Introduction

The cucumber (Cucumis sativus L.) is a popular and extensively cultivated vegetable
with a high content of vitamins, fiber, and mineral elements [1]. China is the world’s largest
producer of cucumbers [2], primarily cultivating the North China type, as shown in Figure 1.
Unlike cucumbers produced in other regions [3], the main characteristics of North China
type cucumbers include dense spines and vibrant flowers. Grading cucumbers can enhance
their commercial value and farmers’ profits [4,5]. However, in China, cucumber grading
is mainly reliant on manual labor due to the vulnerability of spines and flowers on North
China type cucumbers to damage. Damage to the dense spines and flowers accelerates
moisture loss, which is perceived by consumers as a lack of freshness. Therefore, there is
an urgent need to develop an automatic, non-destructive cucumber grading technology
and corresponding equipment. With the widespread application of machine vision and
mechatronics technology in agricultural production [6–9], an effective approach is provided
for the design of a cucumber grading machine.

Machine vision is a technology that mimics the human visual system, having its
origins dating back to the 1960s [10]. With the rapid advancement of semiconductor and
computer technologies in the 1990s, machine vision experienced significant progress in
various fields. The working principle of machine vision involves using various imaging
methods to acquire optical images of the object under detection. These images are pro-
cessed and analyzed by a computer to extract the required information [11]. In the food
industry, the main applications of machine vision include quality detection, sorting, and
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grading [12,13]. The quality detection and grading of agricultural products are important
stages in the pre-processing of the food industry. Utilizing machine vision for quality
analysis of agricultural products enables rapid and accurate assessment and grading. This
not only reduces the manual labor intensity but also ensures consistency in product quality.
Haiyan Cen et al. [14] utilized hyperspectral images and PCA methods to detect cucumbers
with internal hollow defects in the food processing line, achieving an accuracy of 95.1%.
This method addresses the issue of cucumber bloating and rupture during food processing
due to internal hollowness. I. R. Doni-González et al. [15] utilized machine vision and a
fourfold cross-validation Neural Network Classifier to achieve detection and grading of the
internal fibrous tissue of carrots, with an accuracy of 86.4%. This method was applied in the
processing of diced carrots for infant consumption, effectively preventing the risk of chok-
ing for infants caused by carrots with undesirable fibrous tissue. Chengqian Jin et al. [16]
processed 32-bit RGB (Red, Green, Blue) cucumber images, applied an approximate cir-
cular method to fit the cucumber’s central axis, established a curve equation, obtained
the cucumber’s curvature, and utilized curvature for grading, achieving an accuracy of
99.3%. These studies have achieved good results in quality detection and grading of food
using a combination of machine vision and traditional machine learning. But there are
drawbacks, such as sensitivity to environmental lighting and complex scenes, as well as a
lack of generalization. The emergence of deep learning methods effectively addresses these
shortcomings. The integration of machine vision and deep learning technologies enables
better handling of the demands for food quality detection and grading in diverse and
complex scenarios. Deep learning can fully leverage image data, extract implicit features,
and enable end-to-end processing. In recent years, it has gained popularity in grading
various rod-shaped fruits and vegetables. Jingjun Cao et al. [17] used deep learning to
achieve defect grading of zizania with an accuracy of 95.6% Furthermore, this method
also performs well in apple grading, demonstrating excellent generalization. Hongfei Zhu
et al. [18] established a carrot shape grading model based on transfer learning technology,
achieving classification of normal/abnormal shapes with an accuracy of 98%. Ahmad Ja-
hanbakhshi et al. [19] improved the pooling function in the CNN model, and the enhanced
deep learning model can classify regular and irregular carrot shapes with an accuracy
of 99.43%. These studies used deep learning and machine vision in the process of food
quality detection and grading, which fully utilizes the information from images, enhances
generalization, and maintains stable accuracy when facing complex scenarios. This ensures
the quality and safety of food entering the market or food processing stages. However, in
the research on cucumber quality detection and grading, few researchers have adopted
machine vision and deep learning methods.
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In the research on grading systems and equipment for rod-shaped fruits and veg-
etables, Yee-Siang Gan et al. [20] combined deep learning to design an online cucumber
grading system. After visual detection, cucumbers were graded by blocking the rolling
cucumbers with a baffle. Limiao Deng et al. [21] designed an online carrot grading system,
which used pneumatic components to blow visually detected carrots into the correspond-
ing grading boxes. The V. K. Chong et al. [22] eggplant sorting machine employed trays
carrying eggplants that, through flipping, caused the eggplants to fall into the corre-
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sponding grading chutes. In the study of grading systems and equipment for spherical
fruits and vegetables, the majority also utilized lateral and vertical falling mechanisms for
grading [23–26]. The grading mechanisms adopted by these grading systems and equip-
ment achieved fruit and vegetable grading by creating a height difference. For cucumbers
with vulnerable skin, a grading structure with height difference could increase mechanical
damage, posing challenges to cucumber storage and sales. Therefore, there is an urgent
need to develop equipment that provides protection for cucumbers with vulnerable skin
during the grading process and enables quality grading.

In this context, the overall aim of the present research was the design and validation
of a fresh cucumber quality grader based on machine vision and deep learning. To the best
of our knowledge, the current study offers two signification new insights. Firstly, we have
designed a novel height difference-free grading mechanism—fixed tray type, which aims to
protect the North China type cucumber during the grading process. Meanwhile, we have
provided a corresponding electrical control strategy to ensure grader capacity. Secondly, we
have developed a new network architecture model—MassNet, which can accurately predict
the mass of a cucumber solely based on its RGB top-view image. Finally, experiments
have been conducted on the designed grader and algorithm: (1) Key electromechanical
performance parameter of the grader capacity, (2) Comparison of the performance of
AlexNet, MobileNet, ResNet, and MassNet in predicting cucumber mass, and (3) Online
grading validation after integrating the algorithm into the grader.

2. Materials and Methods
2.1. Overview of the Cucumber Quality Grader Design and Experiments

The cucumber quality grader design and experiments flow schematic is shown in
Figure 2. Starting from the goal of reducing damage to the skin of North China type
cucumbers during grading and alleviating the burden of manual grading, we designed
a cucumber quality grader based on machine vision. The overall design of the grader
includes a mechatronic design and algorithm design. In the mechatronic design, a fixed
tray grading mechanism and an electrical control strategy for grading information and tray
positions were developed, achieving real-time cucumber grading and protection. In the
algorithm design, cucumber mass prediction was accomplished through the collection of
image datasets, the design of a cucumber mass prediction network (MassNet), and training.
In experiments, mechatronic performance was validated through capacity experiments at
different conveying speeds. Algorithm performance was verified by comparing different
network models and MassNet. The efficiency of the cucumber quality grader was confirmed
through online experiments.
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2.2. Cucumber Quality Grader Mechatronic Design and Grade Principle

The overall design of the cucumber quality grader includes both mechanical and
electrical components. The main structure, as shown in Figure 3, comprises a vision
detection box (for detecting and grading), a grading track with an actuation mechanism,
vegetable trays (carriers for vegetable grading), and a power unit (providing power to the
entire grading conveyor system). During the grading process, cucumbers with a grade
level mix are placed on the tray at the feeding point and, driven by the chain wheels, move
along the grading track, passing through the vision detection box to determine their grade
information. After detection, the tray carrying the cucumbers continues along the grading
track. Based on the quality grade information, with the assistance of the track-turnout
actuation mechanism, it slides onto the corresponding grading track to achieve the grading
process. Throughout the grading process, cucumbers remain on the tray without height
difference, providing effective protection for the cucumbers.
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2.2.1. Mechanical Design

1. Transmission Mechanism

The transmission mechanism provides power for the entire grading and conveying
system, using sprockets as illustrated in Figure 4. Both driving and driven sprockets have
27 teeth, with a transmission ratio of 1:1 and a sprocket center distance of 3500 mm. The
overall operating condition involves low- to medium-speed operation under a light load.
The roller chain is of type 16A, with a pitch of 25.4 mm. A stainless steel pipe with a
diameter of 16 mm is installed on each chain link. Each vegetable tray is mounted on two
adjacent stainless steel pipes, arranged in a single row. The entire power system utilizes
a 750 W three-phase asynchronous AC motor, a 1:30 reducer, and a matching frequency
converter to drive the sprockets’ rotation, with adjustable speeds ranging from 0.1 m/s to
0.5 m/s. During operation, the motor provides power, and the chain links engage with the
driving sprocket, causing the vegetable trays mounted on the stainless steel pipes to move
forward in the direction of the gear rotation.
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2. Vegetable Tray

As a conveyor for susceptible cucumbers, the vegetable tray provides protection
during the grading process. The dimensions of the tray are 400 mm × 97 mm × 55 mm,
comprising lifting and limiting structure, supporting and assembly structure, and guiding
structure, as shown in Figure 5. The lifting and limiting structure, in direct contact with
cucumbers, incorporates a U-shaped structure in the middle, limiting the movement of
cucumbers in the conveying direction. This prevents them from rolling or falling out of
the tray due to sudden stops, speed changes, and other conditions, ensuring the quality of
image acquisition by the camera and preventing damage to the outer skin of cucumbers.
The supporting and assembly structure utilizes a multi-ribbed support structure to enhance
the overall tray strength, with a design featuring 19 mm through-holes for assembly. The
bottom guiding structure consists of a cylinder with a diameter of 10 mm and a height
of 16 mm. To reduce inertia and weight, the upper and middle sections of the entire tray
are designed with a hollow structure with a wall thickness of 2 mm, while the bottom
guiding structure is solid. The material for the entire tray is chosen to be high-performance
fiber-reinforced nylon, considering the wear and significant impact that the bottom guiding
structure may experience during the grading process.
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3. Grading Track and Actuation Mechanism Design

In order to protect cucumbers during the grading process and ensure there is no
significant height difference or rolling throughout the entire grading process, we designed
a novel grading mechanism called the fixed tray type grading mechanism. The trays,
designed as mentioned earlier, are mounted on stainless steel pipes of the conveying
mechanism, with a single degree of freedom (only allowing Y-directional sliding). Guided
by the grading track, the trays undergo grading through the actuation mechanism.

The grading track and the actuation mechanism are crucial components for diverting
the vegetable trays according to the intended path. The grading track is divided into the
top track and the bottom track, as shown in Figure 6. The top track includes the feeding
and detection track, turnout tracks, and grading tracks. The bottom track consists of the
tray return tracks and the merging track. All tracks are mounted on the supporting pipes
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inside the sprocket conveyor, and except for the turnout, other tracks are implemented
using U-shaped aluminum profiles.
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The movement process of the vegetable tray on the track is as follows: when the
vegetable tray is on the top track, it moves along the feeding track under the guidance
of the guiding structure, completes visual judgment through the visual detection box,
and approaches the turnout track. According to the visual grading result, the turnout
performs the corresponding action, allowing the vegetable tray to slide onto the grading
track, achieving the grading. After unloading the carried vegetables from the grading track,
the vegetable tray continues to rotate to the bottom track, moving along the return track
of each level until it reaches the merging track to reset the position of the vegetable tray.
It then moves to the top track to load vegetables, repeating the above process to achieve
continuous grading.

The turnout track plays a role in diverting and grading the vegetable tray in the
entire grading process, requiring coordination with the turnout actuating mechanism
to achieve tray diversion. The turnout actuating mechanism includes a finger and a
driving component. The finger is used for the transition between the feeding and detection
track and the turnout track, mounted on the driving component, with dimensions of
50 mm × 20 mm × 3 mm, made of aluminum alloy. The driving component can use
pneumatic, hydraulic, mechanical, or electromagnetic driving. Considering the high-
frequency and low-load characteristics of the grading machine, hydraulic and mechanical
driving methods are excluded. Given the possibility of interference between the guiding
rod of the vegetable tray and the turnout track during fast movement, the working time of
the turnout actuating mechanism should not exceed 100 ms. Therefore, an electromagnet
with high responsiveness and a rotation angle of 30◦ is chosen as the driving component
for the turnout actuating mechanism.

4. Visual Detection Box

The visual detection box is designed to provide a stable and consistent environment
for capturing fruit and vegetable images, reducing image noise and preprocessing, and
facilitating subsequent visual grading analysis. The entire visual detection box includes a
visual box, a camera, a light source, and a photoelectric sensor. The visual box is a stainless
steel, sealed container providing installation positions for the camera, light source, and
photoelectric sensor. Four sets of LED light strips are placed on the top of the box, and the
interior is lined with black flexible paper to reduce specular reflection of light. The camera
is positioned in the middle of the box, 40 cm away from the vegetable tray, allowing clear
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and complete capture of vegetables on the tray. The photoelectric sensor is placed on one
side of the box, close to the side of the vegetable tray, at a distance of 2 cm from the tray.

2.2.2. Electrical Design

1. Hardware

The electrical hardware comprises components such as cameras, photoelectric sensors,
electromagnets with drivers, a computer, the PLC (Programmable Logic Controller), and
the power supply. The hardware schematic is illustrated in Figure 7. The signal lines
from the photoelectric sensor and the driver of the electromagnet are connected to the
corresponding interfaces on the PLC. Communication between the PLC and the computer
is established using the RS232, while the camera is connected to the PC via USB. A 220 V
to 24 VDC power supply is employed to provide power to the electromagnets and other
electronic components.
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2. Electrical control process

The electrical control process of the entire system is depicted in Figure 8. Prior to
initiation, project parameters, such as agricultural product type, grading criteria, and
conveyor chain speed, are configured in the program. Upon startup, various sensors
(camera, photoelectric sensors, electromagnetic coils) and a computerized system are
initialized. Once the chain speed reaches the predetermined velocity, the system awaits the
arrival of the vegetable tray. When the laser emitted by the photoelectric sensor illuminates
the edge of the vegetable tray, the PLC notifies the upper computer, and the camera captures
the current image of the vegetables on the tray for image processing. The output includes
grade information 1, 2, and 3. When the laser emitted by the photoelectric sensor reaches
the end of the edge of the vegetable tray, the corresponding grade information is stored
in register D0, associating the grade information with the respective tray. The time from
the first laser detection at the edge of the tray to the end of the tray represents the image
processing time. The tray interval time is the response time triggered by the photoelectric
sensor, as illustrated in Figure 9. Subsequently, for each trigger of the photoelectric sensor,
the grading information stored in the register is copied to the tray position register group
D10 and shifted left by one bit. The width of D10 is 14 bits. The photoelectric sensor detects
each vegetable tray, causing all grading information in the D10 position register array to
shift by one bit. This approach ensures real-time synchronization and tracking of grading
information and tray positions.
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The PLC consistently reads the X-th and X + 4-th bits of the D10 position register
group, controlling the switches of electromagnets 1 and 2. If the grading information is 1,
both electromagnets 1 and 2 are turned off, achieving the grading of the level 1 fruit and
vegetable. For grading information 2, electromagnet 1 is activated, and electromagnet 2
is turned off, causing the vegetable tray to move along turnout track 1, achieving the
level 2 grading. In the case of grading information 3, electromagnet 1 is turned off, and
electromagnet 2 is activated, causing the vegetable tray to move along turnout track 2,
achieving the level 3 grading.

2.3. Vision-Based Quality Grading Algorithm

Mass is one of the important indicators for cucumber quality grading. Most researchers
use image procession or machine learning methods for mass prediction of agricultural
products [27–30]. We have developed a Convolutional Neural Network (CNN)-based
model for predicting the mass of North China type cucumbers, named MassNet. Unlike
traditional machine learning approaches, MassNet eliminates the need for extracting
complex explicit features, estimating the mass of cucumbers solely based on a top-view
image. The cucumber mass predicted by this model is compared with the standard values
outlined in the grading document, forming the basis for cucumber classification. Table 1
presents the mass grading requirements from the cucumber mass grading document
(DB37/T564-2005) in Shandong Province [31].
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Table 1. Mass grading requirements.

Grade Indicator Grade 1 Grade 2 Grade 3

Single cucumber
mass (g)

≥150
≤170

>170
≤250

<150
>250

2.3.1. Collection Image Datasets

The collection of image data for North China type cucumbers was conducted at
Hongji Agriculture Company (Zibo City, Shandong Province, China). The cucumbers
gathered were freshly picked on the same day and retained the characteristics of top
flowers with spines. The Logitech C920 webcam used for capturing images was identical
to the camera model mounted on the intelligent grading machine. Cucumbers were placed
on the designed vegetable tray for shooting, ensuring a disturbance-free background and
minimizing image preprocessing. The cucumber dataset comprises three grades based on
quality: Grade 1, Grade 2, and Grade 3. The dataset includes a total of 409 cucumbers,
with 103, 159, and 147 cucumbers for Grade 1, Grade 2, and Grade 3, respectively. The
cucumber weights range from 95 g to 248 g. Each cucumber was labeled and weighed
using a calibrated electronic scale with a maximum capacity of 500 g and an accuracy
of ± 1 g.

2.3.2. Architecture of the Cucumber Mass Prediction Network

MassNet adopts a structure alternating between convolutional and CSPC (Cross-Stage
Partial Connections), which processes input images layer by layer, extracts crucial features,
and ultimately achieves accurate prediction of cucumber quality. All convolutional opera-
tions undergo batch normalization and SILU. In the initial two convolutional operations,
the network gradually reduces the spatial size of feature maps while retaining image
details. The use of Bottleneck, while maintaining the channel number, employs stacked
convolutional layers to learn complex feature representations, and residual connections
ensure gradient persistence. The alternating use of Conv and BottleneckCSPC, based on
residual connections, further introduces Cross-Stage Partial Connections [32] to progres-
sively reduce the spatial dimension of feature maps, increase the channel number, extract
higher-level abstract feature modules, enhance the network’s feature learning capability,
and improve the model’s ability to extract image features of different scales and complex-
ities. Feature maps are reduced to a fixed-size vector through adaptive average pooling.
This design ensures that the model has robustness for variations in the scale of input images,
allowing it to better adapt to cucumbers of different sizes. Finally, the dimension-reduced
features are input into fully connected layers for quality prediction. The architecture of
MassNet is shown in Figure 10.

2.3.3. Training Settings

During the training process, we randomly split the dataset into a training set and a
validation set with an 8:2 ratio. Since predicting the mass of cucumbers is a regression
problem, we chose the Mean Squared Error loss function as the model’s loss function. In
the realm of deep learning, the Adam optimizer is widely used due to its advantages, such
as adaptive learning rates and momentum optimization, eliminating the need for manual
adjustment of the learning rate. Therefore, in the training of MassNet, we opted for the
Adam optimizer. Research indicates that Adam performs better in the application of quality
grading for rod-shaped fruits and vegetables compared to SGD and Adadelta. Within the
specified number of epochs, we save the model of the current epoch when the MSE value
on the validation set is minimized, designating it as the quality prediction model. Table 2 is
the detailed hyperparameter settings.
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Table 2. Hyperparameter settings.

Parameter Value

Optimization algorithm Adam
Initial learning rate 0.0001

Epoch 100
Batch size 4

3. Results and Discussion
3.1. Effect of Different Conveying Speeds on the Capacity of Grader
3.1.1. Experiment Setup

Capacity is the maximum measure that a machine can generate by executing the
intended actions, serving as a crucial parameter reflecting the mechanical characteristics of
the grader. The machine’s capacity is the ratio of the sample mass (t) to the time required
for grading (hr) [33], as in Equation (1).

capacity =
WF
T

(1)

where WF represents the mass of fruits taken in t, and T represents the time taken for
sorting and grading in hr.

In the experiment, a digital tachometer was utilized to calibrate the speed of the chain
conveyor. The conveyor speed was set to different values, and the quality grade information
of cucumbers, denoted as 1, 2, or 3, was directly transmitted to the PLC in the system. This
process enabled the determination of the capacity of the grader at different speeds.

3.1.2. Analysis of Experimental Results

Figure 11 illustrates the capacity of the grader at chain speeds ranging from 0.1 m/s
to 0.5 m/s, achieving a capacity range of 0.6 t/h to 2.3 t/h. Under chain speeds from 0
to 0.3 m/s, the capacity shows a linear increase with speed. The entire system operates
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stably, with long tray intervals and accurate readings from the photoelectric sensor for each
tray. The grading actuating mechanism can make correct grading actions based on tray
positions and bound quality information. Under chain speeds from 0.3 to 0.5 m/s, the
capacity increase slows down. This is attributed to increased vibrations of the grader at
higher chain speeds. Meanwhile, the short tray intervals lead to the photoelectric sensor
mounted on the grader being influenced by equipment vibrations and interval times. This
impact may result in missed readings or consecutive readings of vegetable trays, causing
mismatches between tray position and quality information. Ultimately, this leads to the
grading actuating mechanism failing to make the expected grading actions, reducing the
overall capacity.
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3.2. Comparison Experiments between Different Models
3.2.1. Experiment Setup

We compared the performance of MassNet with AlexNet [34], MobileNet [35], and
ResNet18 [36] on our collected cucumber mass dataset, with the hardware environment as
shown in the Table 3.

Table 3. Experimental environment hardware.

Computer Configuration Specific Parameters

CPU Inter E5
GPU NVIDIA GTX4090

Operating System Windows 10-x64
Random Access Memory DDR4 64G

CUDA 11.8

AlexNet, MobileNet, VGG11, and ResNet18 are popular deep learning models in recent
years, primarily used for tasks such as image recognition, classification, segmentation, etc.
Few researchers have applied them to regression prediction tasks. In our experiments, we
adjusted the output layers of these models to tailor them for regression tasks. These models,
along with our designed MassNet, were individually trained on our collected cucumber
mass dataset. Finally, the performance of each model was evaluated on the same test set
comprising 100 samples.

To compare the performance between the actual mass and the prediction produced
by regression based on different deep learning methods, the estimation metrics of root-
mean-square error (RMSE) and mean absolute percentage error (MAPE) were calculated
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by Equations (2) and (3), respectively. The inference time is used to evaluate the real-time
performance and response speed of different models.

RMSE =

√
∑
(

Mpredict
i − Mactual

i )2

N
(2)

MAPE =∑
∣∣∣∣∣Mpredict

i − Mactual
i

Mactual
i

∣∣∣∣∣× 100%
N

(3)

3.2.2. Analysis of Experimental Results

Table 4 shows the results of cucumber mass prediction for different models. According
to the table, our designed MassNet achieves the best performance in predicting cucumber
mass compared to other models: RMSE is 6.65 g, MAPE is 3.9%. AlexNet and MobileNet
are primarily employed in large-scale image recognition and classification. During the
feature extraction process, they utilize techniques like local normalization and depthwise
separable convolutions. While these methods focus more on shallow and local features,
they limit the ability to learn complex features, resulting in poorer predictions for cucumber
mass. ResNet introduces residual connections, addressing issues like gradient vanishing
and exploding during training. This helps stabilize gradient propagation, enabling the
training of very deep neural networks. In predicting cucumber mass, ResNet outperforms
AlexNet and MobileNet, but it comes with significantly longer inference times.

Table 4. The results of cucumber mass prediction for different models.

Network RMSE MAPE Inference Time

AlexNet 25.2 g 16.2% 20 ms
VGG11 23.9 g 15.3% 30 ms

MobileNet 12.3 g 7.1% 70 ms
ResNet18 10.0 g 5.8% 900 ms
MassNet 6.7 g 3.9% 280 ms

Our designed MassNet, built upon residual connections, further incorporates cross-
stage partial connections. This is achieved by alternating convolutional layers and CSPC
layers, extracting higher-level abstract features while reducing the number of layers and
consequently decreasing inference time. MassNet achieves a well-balanced performance in
both prediction accuracy and inference efficiency.

3.3. Online Grading Experiment
3.3.1. Experiment Setup

A total of 100 fresh cucumbers of the same variety were selected, and their masses
were recorded using an electronic scale. The quantities for each grade (1, 2, 3) were 34, 15,
and 51, respectively. The weighed cucumbers were placed sequentially on the vegetable
trays of the grading machine running at 0.1 m/s. The predicted mass for each cucumber
and the overall grading efficiency of the machine were obtained. Formula (4) for grading
efficiency was determined by P. Rajkumar [23].

η0 =
TN − TM

TN
(4)

where ηo is the overall grading efficiency in %, TN is the total number of cucumbers obtained
from all grades, and TM is the total number of misgraded cucumbers obtained from
all grades.
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3.3.2. Analysis of Experimental Results

Figure 12 illustrates the relationship between the actual measured values and predicted
values of the mass for 100 cucumbers obtained through the vision algorithm in the online
grading experiment. The graph shows a strong linear correlation between the actual and
predicted cucumber mass values, with an R2 of 0.95, MAPE of 3.6%, RMSE of 6.5 g, and
grading speed of 60 pcs/min.
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Table 5 presents the grading efficiency of the cucumber quality grader. In the online
grading experiment with 100 cucumbers, a total of 7 cucumbers were misclassified (e.g.,
grade 1 misclassified as grade 3, or grade 2 misclassified as grade 1), resulting in a grading
efficiency of 93%. At a chain speed of 0.1 m/s, the grading speed of the quality grader is
60 pcs/min, which is six times faster than manual grading. Importantly, no cucumbers
suffered damage throughout the entire grading process.

Table 5. Cucumber quality grader efficiency.

Grade Level Test Number Miss Grade Number Grader Efficiency

1 34 1
93%2 15 3

3 51 3

The designed MassNet model, trained on a relatively small dataset of cucumber mass,
demonstrated excellent performance in practical online grading tests for the following
reasons. Firstly, in terms of cucumber characteristics, under the same agricultural man-
agement and growth environment, cucumbers exhibit similar appearance traits (length,
diameter, curvature) within a certain range. Therefore, collecting a small-scale dataset in the
same cultivation area may cover most cucumbers with different appearance characteristics.
Secondly, on the algorithmic side, when establishing the dataset, cucumbers were placed
on trays to ensure consistency between the image background and the cucumber quality
grader. The simple background allows the neural network to focus more on the cucumbers.
Furthermore, the designed MassNet network alternates between convolutional layers and
CSPC layers, extracting more high-level feature information in concentrated cucumber
image views to improve mass prediction accuracy. Thirdly, in terms of electromechanics,
setting the conveying speed to 0.1 m/s ensures the relative stability of the tray carrying
cucumbers during movement, guaranteeing clear capture of cucumber images. The low
conveying speed provides ample image processing time and sufficient sensor response
time; the output cucumber grading information can be accurately executed in coordination
with the electromechanical system.
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Compared to TriHuynh’s [28] use of traditional image processing methods to estimate
cucumber quality based on the symmetry of cylindrical vegetables, MassNet shows better
compatibility with asymmetric cylindrical vegetables. Weijun Xie [37], in their study on
1000 carrot images, extracted six dominant features of carrots and predicted their quality
using a combination of four machine learning methods. In comparison to their approach,
MassNet performance in cucumber quality prediction is slightly inferior, partly due to the
differences in characteristics between carrots and cucumbers, as our collected cucumbers
include flowers. Additionally, the smaller scale of the cucumber dataset contributes to
this difference. However, MassNet effectively utilizes pixel information to extract im-
plicit features, achieving satisfactory results even with a small dataset. Furthermore, we
applied the obtained mass prediction results directly to the grader, demonstrating the
feasibility of online grading. The cucumber grading process benefits from the protection of
vegetable trays, unlike Yee-Siang Gan’s [15] roll-based cucumber grading system. In the
designed quality grader, the grading mechanism operates on vegetable trays, ensuring that
cucumbers remain undamaged during the grading process.

4. Conclusions and Future Work

The cucumber quality grader designed in this paper incorporates a novel grading
mechanism—the fixed tray type—ensuring that cucumbers are not damaged during the
grading process in the mechanical design. In the electrical design, a real-time synchro-
nization and tracking strategy for vegetable quality information and position is employed,
enabling trays carrying cucumbers to achieve grading during motion and ensuring the
equipment’s capacity. Experimental results indicate that, at speeds ranging from 0.1 to
0.5 m/s, the designed cucumber quality grader achieves a capacity between 0.6 and 2.3 t/h.
In the visual algorithm, a MassNet network based on CNN is designed, which eliminates
the need for extracting complex explicit features from cucumbers. Mass prediction for
cucumbers is achieved solely through an RGB top view. Compared to AlexNet, MobileNet,
and ResNet, MassNet performs the best in predicting cucumber mass: RMSE is 6.65 g,
MAPE is 3.9%. In online grading experiments, 100 cucumbers were successfully graded for
mass, achieving a grading efficiency of 93% and a grading speed of 60 pcs/min.

In future work, on the algorithmic side, we will employ deep learning to explore the
grading of other indicators for cucumbers, such as length, curvature, and surface damage,
aiming to enhance the applicability of the cucumber quality grader. For mass prediction,
accuracy can be improved by incorporating multiple perspectives and modalities, providing
additional information for feature extraction. We plan to expand the cucumber dataset
to increase the robustness and accuracy of the MassNet model for mass prediction. This
expansion will involve introducing more variables related to rod-shaped vegetables (e.g.,
carrots, sweet potatoes) to augment the model’s generality.

In terms of grader optimization, efforts will focus on mitigating grader vibrations,
optimizing sensors, and addressing issues related to the misalignment of tray positions and
quality information under high speeds. These optimizations aim to improve the machine’s
capacity. We also aim to design a loading and unloading device that seamlessly integrates
with the quality grader, achieving full automation throughout the grading process.
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