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Abstract: Papain-like cysteine proteases are widespread and can be detected in all domains of life.
They share structural and enzymatic properties with the group’s namesake member, papain. They
show a broad range of protein substrates and are involved in several biological processes. These
proteases are widely exploited for food, pharmaceutical, chemical and cosmetic biotechnological
applications. However, some of them are known to cause allergic reactions. In this context, the
objective of this review is to report an overview of some general properties of papain-like cysteine
proteases and to highlight their contributions to allergy reactions observed in humans. For instance,
the literature shows that their proteolytic activity can cause an increase in tissue permeability, which
favours the crossing of allergens through the skin, intestinal and respiratory barriers. The observation
that allergy to PLCPs is mostly detected for inhaled proteins is in line with the reports describing mite
homologs, such as Der p 1 and Der f 1, as major allergens showing a frequent correlation between
sensitisation and clinical allergic reactions. In contrast, the plant food homologs are often digested
in the gastrointestinal tract. Therefore, they only rarely can cause allergic reactions in humans.
Accordingly, they are reported mainly as a cause of occupational diseases.

Keywords: sensitisation; tissue permeabilisation; plant food; mite proteases; tight junction; gastrointestinal
digestion; inhaled allergens; allergen homologs; occupational allergy; proteolytic activity

1. Introduction

A proteolytic enzyme is a protein, which cleaves the peptide bond between two amino
acids in a peptide or protein [1]. Proteases that have arisen from a single evolutionary origin
are grouped in a clan [2]. Each clan is identified with two letters, the first representing
the catalytic type of the protein families included in it [3]. Papain-like cysteine proteases
(PLCPs) share structural and enzymatic properties with the group’s namesake member,
papain. These proteases belong to the cysteine peptidase family C1, sub-family C1A (papain
family, clan CA) [4]. Family C1 contains many endopeptidases and a few exopeptidases [3].
Papain is the best-known cysteine protease, which was isolated as early as 1879. As a
classical cysteine protease, it has been widely used in the food, pharmaceutical, chemical
and cosmetic fields [5]. For similar industrial applications other plant food components
of the same protein family have also been exploited. Figure 1 schematizes some possible
applications of actinidin from kiwifruit, papain and chymopapain from papaya fruit and
latex, bromelain from pineapple and ficin from fig fruit and latex.

This figure also highlights that the exposure to these proteases can occur not only
through the consumption of the plant food sources. In fact, PLCPs can be present, some-
times unexpectedly, in several other products, such as meat, cheese, bread, textile tissues
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and drugs. This occurrence might represent a risk for some people suffering from patholog-
ical reactions to these proteases because they are exposed to hidden molecules. However,
food PLCPs can also be inhaled, due to exposure to airborne particles. Therefore, the breath-
ing system could also be exposed to these proteases, although to a lesser extent compared
to the gastrointestinal tract, and could mainly represent an occupational occurrence.
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Figure 1. Sources of plant food PLCPs and exposure routes. The diagram shows the fruits (on the
left) known as sources of the reported PLCPs (in between), which find several industrial applications
(on the right).

Enzymes of PLCP family are involved in numerous physiological and pathological
processes in different organisms, inside and outside the cells, since they can digest a wide
range of substrates [6]. Their function includes the extracellular matrix remodelling, antigen
presentation, hormone processing, parasite invasion and processing surface proteins [7,8].
Moreover, PLCP-mediated proteolysis is modulated by various parameters, including pH,
ions and inhibitors. This flexible regulation contributes to maintain cell homeostasis and
any disturbance of this network may lead to various disorders.

Some PLCPs can also cause allergic reactions [9], and those registered as allergens
by the World Health Organisation and International Union of Immunological Societies
(WHO/IUIS) Allergen Nomenclature Sub-Committee (https://allergen.org/), accessed on

https://allergen.org/
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2 January 2024, are listed in Table 1, where the code (EC number) given by the Enzyme
Commission (EC) to the enzyme is also reported, when available.

Table 1. Characteristics of allergens belonging to the PLCP protein family found in the WHO-IUIS
database, searched on 2 January 2024. At the bottom of Table 1, two representative potentially
allergenic homologous proteins, not included in the WHO-IUIS database, are shown (the list is not
comprehensive). Details can be found at WHO-IUIS website (http://allergen.org, accessed on 2
January 2024) or in the shown bibliography.

Species Allergen
Biochemical
Name/EC
Number

Allergen
Source

MW (SDS-
PAGE)

Route of
Exposure

Gastro-
Intestinal
Stability

Substrate (from Enzyme
Nomenclature Database [10]
or from the Indicated
Bibliography) a

Examples of
Biotechnological
Applications b

ALLERGENIC PLCP FROM FOODS, POLLEN AND MITES

Actinidia deliciosa
(green kiwifruit) Act d 1 [11] Actinidin/

EC 3.4.22.14 Food 30 Food Stable
[12,13]

Specificity close to that of
papain. It disrupts the
epithelial barrier of human
intestinal T84 cells by
degrading the tight junction
protein occludin [14]. It
hydrolyses collagen and
fibrinogen [15,16].

Meat tenderisation
[17]. Isolation of
cells following
collagenolytic
digestion [15].

Ananas comosus
(pineapple) Ana c 2 [18] Bromelain/

EC 3.4.22.32 Food 22.8
Food,
inhalation
[18]

Unstable
[19]

Hydrolysis of proteins with
broad specificity for peptide
bonds. Details can be found
at www.enzyme-database.
org/query.php?ec=3.4.22.32,
accessed on 2 January 2024

Therapeutic and
cosmetic use
[17,20–22]. Meat
tenderisation [17].

Carica papaya
(papaya) Cari p 2 [23] Chymopapain/

EC 3.4.22.6 Food 28
Food,
inhalation
[23]

ND Specificity similar to that of
papain

Allergenicity
limits its
application [24].

Ambrosia
artemisiifolia
(short ragweed)

Amb a 11 [25] Cysteine
protease Pollen

37 kDa
(mature
protein),
52 kDa
(zymogen)

Airway ND Not found

Blomia tropicalis
(storage mite) Blo t 1 [26] Cysteine

protease Mite 39 Airway ND Not found

Dermatophagoides
farinae (american
house dust mite)

Der f 1 [27]
Cysteine
protease/EC
3.4.22.65

Mite 27
Airway,
ingestion
[28]

ND Not found

Dermatophagoides
microceras (house
dust mite)

Der m 1 [29] Cysteine
protease Mite 25 Airway ND Refers to Der p 1

Dermatophagoides
pteronyssinus
(european house
dust mite)

Der p 1 [30]
Cysteine
protease/EC
3.4.22.65

Mite 24
Airway,
ingestion
[28]

ND

Details are available at
www.enzyme-database.org/
query.php?ec=3.4.22.65,
accessed on 2 January 2024

Euroglyphus
maynei (house
dust mite)

Eur m 1 [31]
Cysteine
protease/EC
3.4.22.65

Mite Airway ND Not found

Tyrophagus
putrescentiae
(storage mite)

Tyr p 1 [32] Cysteine
protease Mite 25 Airway ND Not found

POTENTIALLY ALLERGENIC PLCP FROM FOODS, NOT (YET) REGISTERED BY WHO-IUIS

Ficus carica (fig) Fic c Ficin [9] Ficin/EC
3.4.22.3 Food 24 [33] Food, occu-

pational

Unstable
[33] need
encapsu-
lation

Specificity similar to that of
papain

Meat tenderisation
[17]. Cheese and
milk protein
hydrolysates for
special foods
production [34].

Carica papaya
(papaya)

Cari p papain
[9]

Papain/EC
3.4. 22.2 Food 24 [33]

Food,
inhalation,
skin
contact
[35,36]

Unstable
[37] need
encapsu-
lation

Hydrolysis of proteins with
broad specificity for peptide
bonds, but preference for an
amino acid bearing a large
hydrophobic side chain at
the P2 position. Does not
accept Val in P1′ .

Meat
tenderization
[17,38].
Exfoliantig agent
[38].

a Some details on substrates specificity are from Enzyme nomenclature database (https://enzyme.expasy.org,
accessed on 2 January 2024). b These are examples only, the list is not comprehensive.

http://allergen.org
www.enzyme-database.org/query.php?ec=3.4.22.32
www.enzyme-database.org/query.php?ec=3.4.22.32
www.enzyme-database.org/query.php?ec=3.4.22.65
www.enzyme-database.org/query.php?ec=3.4.22.65
https://enzyme.expasy.org


Foods 2024, 13, 790 4 of 20

In addition, Table 1 includes two representative proteases of the same family (ficin
and papain), which have been described as sensitisers [9] because they are recognised and
bound by specific IgE (http://www.allergome.org, accessed on 2 January 2024), but they
are not (yet) registered by WHO/IUIS. It can be noted that the allergenic PLCPs officially
recognized are three from plant foods (Act d 1, Ana c 2 and Cari p 2), one from pollen
(Amb a 11) and six from mites (Blo t 1, Der f 1, Der m 1, Der p 1, Eur m 1 and Tyr p 1).
Figure 2 shows that the exposure to PLCPs of mites and pollens mainly occurs by inhalation,
thus meeting the respiratory system. Nevertheless, their ingestion can also occur, at least
for a small number of molecules. For instance, we cannot exclude the ingestion of foods
contaminated with dust containing mites or the ingestion of pollens, especially in periods
of intense pollination.
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Studies have pointed out that proteolytic activity associated with PLCPs may con-
tribute to their allergenicity (Figure 3A), or to the allergenicity of other proteins, working
like adjuvants [39]. This observation, together with the knowledge that plant and/or
animal PLCPs can be found not only in natural sources but can be present in additional
products, including foods, cosmetics, drugs and supplements, highlights the high relevance
of these enzymes for industry and for health.

In this context, we have here analysed certain structural and functional details, substrate
specificity, the regulation and inhibition of proteolytic activity, resistance to gastrointestinal
digestion and allergenic evidence concerning PLCPs. A mention of specific arthropod and
plant food proteases involved in allergic reactions and their sources is also reported. The
contribution of their proteolytic activity to allergic reactions has been investigated.

http://www.allergome.org
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Figure 3. Schematic representation of some properties of PLCPs. Panel (A): summary of PLCP
activities. Panel (B): 3D model of papain performed on the Expasy Swiss Bioinformatics Resource
Portal (www.expasy.org/resources/swiss-model, accessed on 2 January 2024) by submitting the
papain sequence with Uniprot code P00784.

2. PLCP Structural Features

Clan CA of PLCPs includes proteins with a papain-like fold [40–42]. These proteases
are usually sensitive to the small molecule inhibitor E64 [43], which is ineffective against
peptidases from other clans of cysteine peptidases. There are over thirty families in this
clan, and tertiary structures have been solved for many members of it (as found in the PDB
data bank, www.rcsb.org/, accessed on 2 January 2024) such as Act d 1 (2ACT, 1AEC),
Cari p 2 (1YAL), Amb a 11 (5EGW, 5EF4), Der f 1 (5VPK), Der p 1 (1XKG, 2AS8, 3F5V) and
papain (1KHP).

The PLCPs fold (Figure 3B) consists of two domains connected by a flexible linker with
the active site between them [42]. One domain has a bundle of helices, with the catalytic
Cys at the end of one of them, and the other subdomain is a β-barrel with the active site
histidine (His) and asparagine (Asn). Asn is sometimes substituted by aspartate (Asp).
In fact, the family of PLCPs is a classic example of enzymes requiring a cysteine residue
as the catalytic nucleophile, and therefore, they are inhibited by thiol chelators such as
iodoacetate, iodoacetic acid and N-ethylmaleimide orp-chloromercuribenzoate. In addition
to the catalytic cysteine, the mechanism of action involves also a His and a Asn residue.
All together, they constitute a generally conserved catalytic Cys–His–Asn triad lying at the
surface of the cleft between the two domains of the molecule [8,41].

Although all known allergenic PLCPs are reported to show a similar fold, namely
the papain-like fold [41], a comparative analysis of the primary structure of plant food
enzymes and a comparison between plants and arthropods homologs highlights a low
conservation of the protein sequence [9]. Conversely, a fairly high level of identity between
the two mite allergens belonging to the Dermatophagoides genus, Der p 1 and Der f 1, is
reported. In fact, the sequence identity observed between the analysed isoforms of Der p 1
and Der f 1 was about 82%, whereas the values obtained for the homologs from pineapple,
papaya, kiwifruit and fig ranged from 29 to 59% [9]. In line with these structural features,
the allergy reaction caused by the two mite PLCPs is almost overlapping, whereas the
plant homologous proteins show individual immunological behaviours. All together, these

www.expasy.org/resources/swiss-model
www.rcsb.org/
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features likely suggest a cross-reaction between Der p 1 and Der f 1 and the absence of
cross-reactions between the mite PLCPs and plant food homologs. All these observations
are in line with Chan et al. [44], reporting the WHO/IUIS observations suggesting that
IgE cross-reactivity is possible at sequence identity values as low as 67%, whereas the
probability decreases at lower values.

3. PLCP Substrates

PLCPs show proteolytic activity against a broad range of protein substrates (Table 1).
The specificity of each protease towards its substrates is mostly defined by the structure
of the active site. The papain active site has been widely studied for many years [45] and
different features and models have been reported [46,47]. Figure 4 shows a drawing of one
of the first models, proposed by Schechter and Berger [48] in 1970.
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The scheme proposed in Figure 4 shows that the PLCP binding cleft can be divided
into seven subsites, S1–S4 and S1′–S3′, each accommodating one amino acid residue of
the peptidic substrate. The subsites are located on both sides of the catalytic site, four
on the N-terminal side and three on the C-terminal side. Some years later, this model
was revised, suggesting that the substrate residue binding regions beyond S2 and S2′

should not be called sites, but areas [49]. Despite this, after so many years, is still difficult
to identify a general rule describing the active site and the substrate specificity of these
proteases. What leaves no doubts is that different patterns of amino acid motif in this
area affect the interaction between the protease and the ligands [6]. Unlike proteases such
as the chymotrypsin-like class of serine proteases, which have a substrate specificity at
the P1 position, PLCPs have been shown to have a primary substrate specificity at the P2
position [3,50]. Harris and colleagues [51] show that PLCPs usually show a preference
for hydrophobic amino acids in the P2 position. Indeed, they observe that papain has a
preference for P2 Val > Phe > Tyr, while it shows a preference for Pro in P3. The P4 position
is reported to be very broad, but there is a lack of activity for large aliphatic and aromatic
amino acids. It was also found [52] that the profile for the fastest substrates reveals that
short aliphatic (Val, Ile, Leu, Ala) and that hydroxylic (Ser, Thr) amino acids are preferred
by papain in the P2 position, whereas Gly, Asn and charged amino acids such as Asp, Glu,
Arg, Lys and His are not well tolerated. In the P1 position, Lys, Gly and norleucine are
favoured whereas Pro, His, Asp, Ile and Val are disfavoured. In the P3 position, papain
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has preference for Pro, Leu, Lys and Ile. Chruszcz and colleagues [42] show that two mite
PLCPs, Der p 1 and Der f 1, prefer to bind small aliphatic residues in position P2, charged
residues in position P1, and small hydrophobic or hydrophilic residues in position P1′. A
summary of substrate specificity, as reported in [10], the enzyme nomenclature database
(https://enzyme.expasy.org, accessed on 2 January 2024), is shown in Table 1.

An important example of PLCP substrates, the proteolysis of which affects the aller-
gic response, are represented by the proteins of the tight junction complex (14), which
have a regulatory function in the passage of ions and molecules through the paracellular
pathway. In fact, the disruption of these molecules causes the transit of proteins, includ-
ing the allergenic ones (Figure 5), through the tissue barriers, such as the lung and the
gastrointestinal epithelia.
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4. Inhibition of Enzyme Activity

Protein inhibitors, such as cystatins, can inhibit the enzyme activity of PLCPs. This
inhibition is reported [53] to be competitive, noncovalent and reversible. Plant cystatines
are also known as phytocystatins. These inhibitors are ubiquitous, and they are implicated
in the regulation of both endogenous and exogenous proteases. In this way, they are
involved in physiological and pathological processes, including defence from external
agents. Cystatins can, therefore, also have an effect on the allergic reactions by regulating
the activity of PLCPs.

E-64 is instead a non-protein inhibitor, which can irreversibly inhibit many PLCPs [54].
It is an epoxide, which was first isolated from Aspergillus japonicus in 1978 [55]. Since
then, it has been widely used for experimental purposes, one of which is to investigate the
function of PLCPs [56].

It is worth noting that the inhibition mechanism of PLCPs is still attracting researchers,
and more recently, the allosteric regulation of activity, such as that of viral [57] and proto-
zoan [58] proteases, was described. It would also be of interest to investigate the possible
allosteric regulation of PLCPs from origins different from those already observed.

https://enzyme.expasy.org
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5. Resistance to Gastrointestinal Digestion

The effect of PLCPs on the gastrointestinal tissue depends on the resistance of the
protease to gastrointestinal digestion. Actinidin has shown only a partial degradation after
simulated gastrointestinal digestion [12,13], thus suggesting that it can exert the proteolytic
activity on the met tissues of the gut. In contrast, other PLCPs, such as bromelain [19],
ficin [33] and papain [37], are reported to be unstable to gastrointestinal digestion (Table 1).
However, some PLCPs, such as bromelain, show very attracting therapeutic potentials,
including analgesic, anti-inflammatory and anti-cancer activities [19]. To exploit these
biological actions and overcome the difficulty of denaturation in the gastrointestinal envi-
ronment, the pharmaceutical industry resorts to the oral delivery via encapsulation, which
protects protein molecules, such as bromelain, avoiding its denaturation [48].

Data about the gastrointestinal resistance of the pollen and mite PLCPs are not avail-
able. In reality, in addition to food proteins, every protein known as inhaled allergen can
also be ingested (Figure 2) and vice versa—some food allergenic proteins (Figure 1) can be
inhaled [35,59,60]. For instance, it is possible for pollen allergens to be ingested in foods
such as honey or in periods of pollination [61–65]. However, mite proteins, including the
PLCP Der p 1 and its homologs, can be also ingested [28,66]. Therefore, the possibility that
these PLCPs can be ingested makes the investigation of their stability on digestion highly
relevant because their enzymatic activity could be involved in an adjuvant function with
respect to allergenicity.

6. PLCP Allergenicity

PLCPs have been defined as initiator allergens promoting the development of allergic
diseases by first impairing the epithelium, then recruiting immune cells and promoting
the release of pro-inflammatory cytokines [67]. Their clinical relevance depends on the
interface with protease inhibitors, the redox environment, their tendency to autolysis,
the glycosylation pattern [68], their environmental distribution, human exposure and
the levels and changes in the state of these allergens when in contact with the human
immune system [67]. A different combination of these factors could explain why some
food PLCPs, like Act d 1, which is partially resistant to gastrointestinal digestion, might be
powerful allergens.

It is worth noting that the frequency of sensitisation to Der p 1 and to Der f 1, reported
by Giangrieco et al. [9], was higher than that detected for plant food homologs in an
Italian population, and that the sensitisation to food PLCPs was very rarely associated
with clinical symptoms. Conversely, these two arthropod allergens, to which the exposure
route is generally inhalation [69], provided an important contribution to the prevalence of
symptoms common to mite allergy, such as rhinitis, bronchial asthma and conjunctivitis.

Some PLCPs may induce clinical reactions only in the presence of high levels of
exposure to them, as occurs in some geographical areas [23] or in occupational diseases [70]
or taking drugs with a high concentration of chymopapain [71] or bromelain [72]. In all
other cases, it seems that some food PLCPs may induce the production of specific IgE
in the absence of symptoms. In fact, IgE sensitisation and/or structural co-recognition
between allergenic proteins and IgE antibodies is not necessarily associated with allergy
reactions [73,74], as recently confirmed to also be the case in PLCPs [9]. A possible cross-
reactivity between mite Der p 1 and F. carica ficin has been hypothesised [75], but no test
has been performed to demonstrate the presence of specific IgE towards fig PLCP nor has
any immunoinhibition test been carried out to demonstrate any possible cross-reactivity.

Literature reports have also indicated that proteolytic activity associated with PLCPs
may contribute to their allergenicity (Figure 3A) or to the allergenicity of other proteins
(Figure 5). In fact, this enzyme activity may work like an adjuvant, as reported for instance
for Der p 1 [39]. This means that these proteases can act by enhancing the body’s immune
response to an antigen. For instance, some PLCPs, although not evoking a specific IgE-
mediated response, favour the penetration of allergens by increasing epithelial permeability
initiating or exacerbating the allergic responses [76,77].
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7. Sources of PLCPs Known for Allergenicity and/or IgE Binding

The list reported below of sources of PLCPs known for allergenicity and/or IgE
binding is not comprehensive. Some possible sources, including soybean [78], kidney
bean [79] and the mite Psoroptes ovis [80], are not described because the immunological
characterisation of their PLCPs is not yet extensive. In addition, whether the soybean Gly
m Bd 30K/P34 belongs to the family of PLCPs does not seem certain, since it is reported as
“probable” cysteine protease of the papain family [78].

7.1. House Dust Mites (HDM)

HDM include several species of arthropods feeding on dead human skin cells and
thrive in warm, humid environments. They belong to the order Astigmata with around
60 families. The most important are: Pyroglyphidae, Acaridae and Glycyphagidae. The
Pyroglyphidae family dominates the domestic fauna with four species: Dermatophagoides
farinae (American house dust mite), Dermatophagoides pteronyssinus (European house dust
mite), Euroglyphus maynei (Mayne’s house dust mite) and Dermatophagoides microceras. HDM
allergen exposure is a major risk factor for the development of persistent allergic respiratory
diseases (Figure 2), such as asthma and allergic rhinoconjunctivitis, as well as symptoms
such as atopic dermatitis [81].

Two related PLCPs, registered by the WHO/IUIS Allergen Nomenclature Sub-Committee
as Der p 1 and Der f 1, were isolated from the mites Dermatophagoides pteronyssinus and
Dermatophagoides farinae. They have been reported as major allergens present in the faeces of
HDM [82]. Their allergenic properties are the most extensively studied and the correlation
between sensitisation to Der p 1 and Der f 1 and clinical allergy to mites is often very
frequent [9]. In addition to the best-known Der p 1 and Der f 1, four homologs from
other mites have been registered by WHO/IUIS, namely Blo t 1, Der m 1, Eur m 1 and
Tyr p 1, identified in Blomia tropicalis, Dermatophagoides microceras, Euroglyphus maynei and
Tyrophagus putrescentiae, respectively (Table 1). It is also worth noting that Takai et al. [83]
reported that the interaction of recombinant major mite group 1 allergens (Der f 1 and
Der p 1) with an endogenous inhibitor, cystatin A ligand, may affect their allergenicity. In
perspective, this observation appears very promising since it offers a possible therapeutic
exploitation of PLCP inhibitors. In particular, these proteases are activated in an acidic
environment, and they disrupt the tight junctions of human lung epithelium cells, causing
increased transepithelial permeability [84] (Figure 5). In this context, a possible use of PLCP
inhibitors could be set to prevent the tissue damage, which contributes to allergy reactions.

Animal models have shown an increase in eosinophil counts in the oesophagus after
a nasal challenge with dust mites [85] and the sensitisation to Der p 1 and Der f 1 was
associated with human eosinophilic oesophagitis [86]. Likewise eosinophilic oesophagitis
has been described after desensitisation to dust mites with sublingual immunotherapy [87].
Moreover, dust mites can cause allergic symptoms if ingested raw [88]. Anyway, the mite
group 1 allergens were suggested to be thermolabile [89], and therefore, they should not be
held responsible of the allergic reaction that might occur through the ingestion of cooked
foods contaminated by mites, as occurs in the pancake syndrome [89,90]. Further future
studies are desirable in order to shed more light on this point.

Der p 1 triggers a proteolytic cascade in the digestive tract of the mite, activating the
serine protease allergens Der p 3, Der p 6 and Der p 9. At the level of the airway epithelium,
lung microbiome and secretome, it promotes the release of proinflammatory cytokines
(IL-6, IL-8, GM-CSF, thymic stromal lymphopoietin and IL-25), alarmins (IL-1a and IL-33)
and chemoattractants (CCL2 and CCL20), which activate dendritic cells (DC), basophils
and ILC2s to promote the TH2 allergic response [91,92]. A similar effect was observed in
the skin, where Der p 1 percutaneously led to inflammation [93], and in the human gut,
where it directly affects gut function through its proteolytic activity [66].

Other homologous allergens belonging to the PLCP family which are present in house
dust and foodstuffs have been registered by the WHO/IUIS (Table 1). Cross-reactivity and
co-sensitisation between the allergens of Pyroglypidae mite species can be observed [94,95].
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In tropical climates, the storage mite Blomia tropicalis is an important source of sensitising
allergens. The storage mite Tyrophagus putrescentiae is a related mycophagous cheese
mite associated with economic losses and/or health problems. It may be responsible
for anaphylaxis through the ingestion of mite-contaminated foods and induces allergic
respiratory symptoms after exposure [96–98]. On the other hand, some storage mites
provide specific and desirable characteristics to certain traditional cheeses, such as the
French Mimolette and the German Milbenkäse [99], but no allergic reactions have been
assigned to them so far.

7.2. Green Kiwifruit

Green kiwifruit (Actinidia deliciosa) is the most common species of this fruit, which is
consumed throughout the year in Italy, followed by Actinidia chinensis, the gold kiwifruit,
available on the market for a few months. The gold kiwifruit shows some important
differences when compared to the green species, such as a much lower expression level of
the allergen actinidin [100,101]. Kiwifruit is most often consumed fresh, although it can be
transformed into juice, purées and preserves, and is used as an ingredient in cooking.

An example of the several functions that can involve a PLCP is represented precisely
by the kiwifruit actinidin enzyme. This is a PLCP found in very high amounts in ki-
wifruit, comprising up to 50% of soluble protein at harvest [102]. It was registered by the
WHO/IUIS with the allergen name Act d 1 [103], (formerly named Act c 1, at the time
when Actinidia deliciosa was named Actinidia chinensis). Act d 1 is a major kiwifruit allergen
in monosensitised allergic patients [103], containing allergenic epitopes not only on its
surface, since some of them are accessible to IgE just after thermal treatment [104]. In
natural sources, the enzyme activity of actinidin modifies the concentration of the allergenic
protein kiwellin, which can undergo proteolytic processing producing the polypeptide
KiTH and the nutraceutical peptide kissper [101,105].

The permeabilisation action of a plant PLCP, namely actinidin, on intestinal cells and
tissues has also been reported. The effect of this enzyme on intestinal cell monolayer
integrity was investigated by Cavic et al. [14], who demonstrated that this protease exerts
direct proteolytic cleavage on occludine (Table 1). The degradation of this structural protein
increases the monolayer permeability and induces the passage of allergens. This obser-
vation was confirmed by Grozdanovic et al. [106] in experiments performed on a mouse
model by measuring transepithelial resistance and in vivo intestinal permeability. The
authors showed that the disruption of tight junctions by kiwifruit actinidin may increase
intestinal permeability and contribute to the process of sensitisation in food allergies.

The proteolytic activity of this kiwifruit enzyme is exploited by the food industry
(Figure 1), for instance as a meat tenderiser [107,108]. A further biotechnological application
was described by Mostafaie et al. [15], who exploited the collagenolytic activity of actinidin
to isolate different cell populations from various solid tissues, such as liver and thymus.

IgE-binding activity to actinidin was associated with severe (anaphylactic) reactions
in some patient populations [109], while in other countries, actinidin was not reported
as a major allergenic protein [110]. These variations might depend on the patterns of
consumption [110], on different cultivars of kiwifruit containing different amounts of
actinidin [100,102,111] and on the time of harvest influencing the level of expression [112].
Palacin and collaborators sustained a link between the amount of specific IgE to Act d 1 and
anaphylaxis [109]. Some patients with kiwi allergy showed serum IgE reactivity to papain
and bromelain [11,113]. A possible association between papain-induced occupational
asthma and kiwifruit and fig allergy has been reported [114].

7.3. Papaya

Papaya (Carica papaya L., Caricaceae family) is a tropical plant, native of Central
America. Its fruit can be eaten in both forms, unripe (as vegetable) and ripe (as fruit).
Papaya pollen, latex and fruit are all sources of allergens.
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The first cysteine protease isolated and characterised from Carica papaya was pa-
pain [115,116]. Three more major PLCPs (chymopapain, glycyl endopeptidase and caricain)
have been identified and purified in papaya latex [117]. Chymopapain only has been
registered by the WHO/IUIS as the allergen Cari p 2 [118], whereas papain (Cari p papain
in Allergome database), caricain (Cari p caricain in Allergome database) and glycyl en-
dopeptidase [119] are reported as IgE-binding proteins, suggesting that they are potential
allergens. Nevertheless, the structure of chymopapain is extremely similar to those of the
three other papaya proteinases. Differences in backbone conformation were found only for
two loops at the surface of the chymopapain protein, far away from the active site cleft. At
the same time, chymopapain is reported to be unique among the members of the papain
family because it exists as a mixture of two forms, named A and B [120]. Reported jointly as
EC 3.4.22.6, the two chymopapain forms are immunologically indistinguishable and have
identical amino acid sequences, but they differ in their reactivity. Attempts to determine
the structural basis for these observations were unsuccessful [120]. Chymopapain-based
drugs, administered by intradiscal injection, were used in the past for the treatment of
patients with herniated intervertebral discs (chemonucleolysis). However, this treatment is
no longer used, as nearly 1% of the treated patients experienced anaphylaxis [71,119,121].

Among papaya PLCPs, papain is probably the one which has the most biotechno-
logical applications and is more widely exploited at the industrial level, especially in the
tenderising of meat products, in cheese-making and in the clarifying of beer (Figure 1).
Moreover, it is an important reagent in the biochemical, immunochemical and pharmaceuti-
cal laboratory, as it has a wide range of bioactivities including the antioxidant, antibacterial
and antiviral ones. In the textile industry, papain can be used for processing wool, boiling
off cocoons and refining silks [122]. Therefore, similarly to other PLCPs, humans can be
exposed to papain in numerous ways, not only directly eating papaya fruit but also eating
foods treated with this protease or ingesting pharmaceuticals or through exposure to other
sources. Papain is described to activate human mast cells to release proinflammatory
mediators [123], and to activate the Transient Receptor Potential Vanilloid-type 1 (TRPV1+)
sensory neurons directly, leading to Substance P release and to a feeling of itchiness [124].
Skin exposure to the cysteine protease papain promotes dendritic cell activation, mediating
the degranulation of human eosinophils and the production of superoxide anion [125]. In
geographical areas where papaya is intensively cultivated, its pollen, containing cysteine
proteases, can cause respiratory symptoms followed by generalised reactions after the
ingestion of papaya fruit [23]. Outside those geographical areas sensitisation to papaya
does not usually occur from eating papaya fruit. In fact, rhinitis and asthma are reported to
affect only workers of industries where papaya is handled [35,126–128]. A single case was
reported many years ago [129] of a patient experiencing severe systemic allergic reaction
after the ingestion of meat tenderiser.

7.4. Pineapple

Pineapple (Ananas comosus) is a tropical plant of the family Bromeliaceae, a native of
South America, with an edible fruit. Its fruit is consumed fresh, cooked or extracted for
its juice. Bromelain is a PLCP present in all parts of the pineapple plant, mainly extracted
for the commercial use from the stem after the fruit has been harvested [130]. This protein
has been registered by the WHO/IUIS with the allergen name Ana c 2 [18,131,132]. Some
isoforms of Ana c 2 are glycosylated [9], and they are exploited to isolate MUXF3 [133],
which is a protein fragment bearing the glycan moiety used as a marker for the detection
of the IgEs specific for cross-reactive carbohydrate determinants (CCD). Anyway, only
a fraction of the isoforms of this protease has an N-glycosylation site, which can bear a
carbohydrate. The isoform officially recognised as an allergen by WHO/IUIS is Ana c
2.0101 (UniProt accession number O23791). It is noteworthy that the mature form of this
isoform does not have the N-glycosylation site found in other isoforms [9].

Similar to other plant PLCPs, bromelain is exploited in many applications (Figure 1),
such as in food, beverage, tenderisation, cosmetic, pharmaceutical and textile indus-
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tries [130]. For example, this enzyme can be used in the baking industry because dough
may be prepared more quickly if the gluten it contains has been partially hydrolysed [134].
In medicine, bromelain-based enzymatic debridement is an alternative to surgical eschar
removal, and it is also employed as an anti-inflammatory drug. This enzyme is used for
meat tenderising, but it is heat-labile and denatured in the cooking process. Bromelain
has been implicated in allergic reactions after occupational exposure [70,135], and allergic
sensitisation usually follows inhalation [131] and not ingestion [18]. Nevertheless, an ana-
phylactic reaction following the intake of an anti-inflammatory drug containing bromelain
has been described [72].

7.5. Fig

The fig tree (Ficus carica) is native of the Mediterranean region, together with western
and southern Asia. It belongs to the family of Moraceae and produces edible fruits, which
are actually false fruits, also known as infructescence. Haesaerts et al. [136] reported that
the fig latex contains a mixture of at least five cysteine proteases commonly known as ficins.
They are present in different proportions that may change, depending on the health of the
tree, the ambient conditions and watering. Moreover, it was reported that the content of
ficins decreased during fruit ripening [137].

The fig infructescence is rarely reported as a cause of allergic reaction [138]. The
“ficus-fruit syndrome” [139] was set up on the basis of the fact that some patients first
appeared sensitised by the inhalation of airborne Ficus benjamina latex allergens and
subsequently reacted to the fig fruit pulp and skin cross-reactive allergens [140]. PLCPs
have been suggested as major allergens in this syndrome, as IgE against papain were found
in some of these patients [60,139].

Fic c Ficin is a protein recognised by specific IgE. It is able to sensitise atopic subjects,
but allergic reactions are attributable to a few case reports [9,60,114,138]. The cross-reactivity
between papain and fig fruit has been documented by CAP inhibition [60].

Some authors have described ficins as non-glycosylated proteins [141]. However, as
research progresses, new identified isoforms have been found glycosylated [142]. Moreover,
PLCPs are multigene protein families, and therefore it is not surprising that many different
isoforms are described by new studies.

Ficin is used (Figure 1) for the production of certain traditional cheeses [34,143].
In cheesemaking, the earliest references date back to the Iliad, written by Homer, who
described fig-juice curdling milk in the seventh or the eighth century BCE. Moreover, it is
also employed for the proteolysis of selected proteins, the production of bioactive peptides,
milk clotting, meat tenderisation and the production of active antibody fragments [34,144].

7.6. Short Ragweed

Short ragweed (Ambrosia artemisiifolia) causes severe respiratory allergies in North
America and Europe. The PLCP Amb a 11 is one of its major allergens, expressed as a com-
bination of isoforms and glycoforms and recorded in the WHO/IUIS allergen database [25].
A new cysteine protease allergen from giant ragweed pollen (Ambrosia trifida), named as
Amb t CP has been recently reported [145]. It has been associated with respiratory allergy
in late summer and autumn.

8. Contribution to Allergenicity of Enzyme Activity and Tissue Damage

It has been shown that when PLCPs come into contact with a human organism,
from whatever source they derive, they are able to degrade the tight junctions of the
airway, intestine or skin tissues and thus allow allergens to enter (Figure 5), leading
to sensitisation or, in already sensitised individuals, to an allergic response [76,146,147].
Therefore, the proteolytic activity of some PLCPs results substantial to cause sensitisation
and allergic symptoms towards inhaled allergens [148] or towards food allergens stable to
the gastrointestinal digestion [106]. Figure 6 shows a scheme of three possible events that
might affect the contribution to allergenicity of PLCP enzyme activity and tissue damage.
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Figure 6. Schematic representation of three possible events (I, II and III) that can affect the contribution
of PLCPs to allergenicity.

The first event occurs when a working PLCP molecule reaches the epithelial tight junc-
tions and disrupt them [14,59,84]. Then, following tissue permeabilisation, the proteases
reach the mast cell, bind the exposed specific IgE and induce the release of inflammatory
mediators, which activate the allergic reaction. This event can be triggered by inhaled
PLCPs, which derive either from mites [66,148] or from plant foods [9,106], in the case
of occupational exposures. However, the first event can also be induced by food PLCPs
when they are resistant to gastrointestinal inactivation. In the second possible event, the
allergic reaction is not triggered because PLCP enzyme activity is neutralized by a spe-
cific inhibitor [53,149]. In the third case, PLCP is denatured and/or fragmented in the
gastrointestinal environment [19,33,37]. In both the second and third event, the protease
is inactivated, thus preventing the tissue damage and the transit of molecules capable of
inducing an allergic reaction.

9. Conclusions

The observation that allergic reactions to PLCPs are mostly detected for inhaled
proteins suggest that gastrointestinal digestion could often neutralise these proteases, thus
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counteracting tissue damages. In contrast, the respiratory system does not have a similar
protection and undergoes epithelial damage, which promotes permeabilisation and protein
crossing through the tissue barrier. This mechanism might be involved in the sensitisation
and allergic reactions towards mite and pollen PLCPs, and also in the occupational reactions
towards plant food homologs, which can pass through the air and be inhaled. Clearly,
on the basis of this mechanism, the allergic sensitisation and clinical reactions should be
favoured by the tissue damage/permeabilisation. Therefore, the function of the enzyme
protein, namely the proteolytic activity, could represent a factor that can favour the allergic
reaction. In this case, the presence of a protease inhibitor could prevent this effect.

Due to the high sequence identity, it is understandable that there is co-recognition, as-
sociated with cross-reaction, between mite PLCPs. In contrast, the sequence identity among
plant food homologs is low (see Table 2 reported by Giangrieco et al. [9]). However, despite
the low sequence identity of their primary structure, the possibility of co-recognition among
food PLCPs seems to exist based on the literature data reported in this review [11,113,114].
Nevertheless, although the positive results of IgE binding shown by in vitro tests [9] demon-
strate the patients’ sensitisation, their association with clinical allergic reactions towards
the PLCP sources is observed only rarely and generally occurs as occupational disease.
Therefore, all these observations suggest that the food industry can exploit the function
of plant PLCPs for products handling because, usually, these proteins do not represent
a healthy risk, especially for consumers. Nevertheless, a certain level of attention will
need to be paid to workers exposed to some sources who may suffer from occupational
allergic reactions.

The available literature suggests that several factors can affect the sensitisation and
clinical allergic reaction to PLCPs, including the level of exposure to these proteases, the
exposed organs (skin, respiratory and gastrointestinal systems), enzyme sensitivity to
gastrointestinal digestion, tissue damage and permeabilisation due to proteolytic activ-
ity, the simultaneous presence of other potential allergens and the presence of enzyme
inhibitors. Therefore, what we observe as sensitisation and allergic reaction is derived
from a complex combination of multiple factors. Further future studies will better clarify
the contribution of each factor, including proteolytic activity, to sensitisation and allergic
reactions to these proteases.

Thus, a better knowledge of PLCP function and regulation will be especially useful to
manage patients suffering from reactions towards these allergenic molecules, especially
the inhaled allergens. In fact, the detection and avoidance of airborne allergens is hardly
feasible compared to ingested allergens. However, understanding the mechanisms and
molecules involved will allow a better management and, hopefully, the neutralization of all
PLCPs (both contained in foods and airborne) compromising our safety.
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