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Abstract: Artificial scent screening systems, inspired by the mammalian olfactory system, hold
promise for fruit ripeness detection, but their commercialization is limited by low sensitivity or
pattern recognition inaccuracy. This study presents a portable fruit ripeness prediction system based
on colorimetric sensing combinatorics and deep convolutional neural networks (DCNN) to accurately
identify fruit ripeness. Using the gas chromatography–mass spectrometry (GC-MS) method, the study
discerned the distinctive gases emitted by mango, peach, and banana across various ripening stages.
The colorimetric sensing combinatorics utilized 25 dyes sensitive to fruit volatile gases, generating a
distinct scent fingerprint through cross-reactivity to diverse concentrations and varieties of gases.
The unique scent fingerprints can be identified using DCNN. After capturing colorimetric sensor
image data, the densely connected convolutional network (DenseNet) was employed, achieving
an impressive accuracy rate of 97.39% on the validation set and 82.20% on the test set in assessing
fruit ripeness. This fruit ripeness prediction system, coupled with a DCNN, successfully addresses
the issues of complex pattern recognition and low identification accuracy. Overall, this innovative
tool exhibits high accuracy, non-destructiveness, practical applicability, convenience, and low cost,
making it worth considering and developing for fruit ripeness detection.

Keywords: volatile organic compounds; fruit ripeness detection; artificial olfactory sensor; colorimet-
ric sensing combinatorics; deep convolutional neural networks

1. Introduction

Fruits, essential in diets, are rich in vitamins, dietary fibers, polyphenols, and essential
minerals, and are widely recognized for their health benefits [1]. However, it is crucial
to consider that the quality of fruit is dictated by the ripening process which may take
place during long transportation periods [2]. Fruit ripening results in changes in the color,
texture, aroma, and nutritional quality of fresh fruit. It is also accompanied by the release of
other volatile organic compounds (VOCs), which comprise diverse classes of chemicals [3],
including water, esters, alcohols, aldehydes, ketones, lactones, and terpenoids. This diverse
range of compounds can usually act together to reinforce or interfere with the sensor
signal. Therefore, in such cases, it is more convenient to develop global selectivity devices,
i.e., non-selective sensors, which are capable of detecting the differences in the breathing
patterns of each class of fruit [4]. The ripening of a unique fruit may affect the others and,
by extension, impact the overall product quality to final consumers. Therefore, effective
fruit ripening monitoring is an attractive approach to ensure standard quality control and
predict shelf life.

Sensor devices, such as artificial olfactory systems, are becoming increasingly popular
for the detection of environmental pollutants [5], explosive compounds [6], food safety [7],
and disease [8] due to their wide detection range, cost-effectiveness, portability, and non-
destructiveness. Consequently, these systems offer a new method for monitoring fruit
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quality as a replacement for human specialists who take advantage of visual features in
the grading process. The various gases emitted by fruit can interact with the dyes present
on the colorimetric sensor array, resulting in the formation of a distinctive fingerprint
pattern [9] that can be analyzed using pattern recognition techniques to predict the degree
of fruit ripeness based on the observed changes in color. The development of naked-eye-
detected artificial olfactory systems in smart food packaging has garnered considerable
attention due to their ability to provide on-packaging indicators of fruit maturity and
ripeness to consumers. However, the commercialization of artificial olfactory systems is
currently hindered by the challenge of accurately distinguishing complex patterns. While
colorimetric sensors (or opto-noses) are highly cross-reactive, they produce nonlinear and
multidimensional datasets [10–12]. In addition, variable lighting conditions can signifi-
cantly impair pattern discernment in image-based recognition systems, thereby reducing
identification accuracy. Traditional statistical techniques such as principal component
analysis (PCA) [13–15], hierarchical clustering analysis (HCA) [16–19], and discriminant
analysis (LDA) [20–22], are unable to meet the needs for the accurate extraction and analysis
of complex image datasets.

To tackle these challenges, the deep convolutional neural network (DCNN) offers a
powerful method compared with traditional statistical techniques. PCA and HCA primarily
focus on descriptive analysis, limiting their predictive capabilities, whereas DCNNs are
more flexible and tailored for classification, making them more suitable for these predictive
tasks. Traditional classification methods like LDA are fundamentally linear and often fall
short when applied to nonlinear data like images. In contrast, DCNNs excel by extracting
complex features and learning intricate patterns, thereby effectively processing multidi-
mensional image data and reducing environmental variability [23,24]. Guo et al. utilized
ResNet101 for the colorimetric detection of meat freshness [25], achieving an impressive
accuracy of 98.5%. They used 20 unique types of porous nanocomposites made of chitosan,
dye, and cellulose acetate and integrated a DCNN into a smartphone application to rapidly
identify food freshness. Huang et al. combined DCNN, PAN-NSS, and an app to develop a
rapid, long-lasting nitrite sensor system in food products [26]. They extended sensor life
from 7 to over 30 days and enhanced the accuracy of food classification to 91.33–100.00%.
Ma et al. developed a colorimetric sensor array using six chromogenic indicators loaded
with UiO-66-OH to assess chicken freshness [27]. They used the WISeR-50 algorithm and
achieved a 98.95% accuracy rate. With the advancement of deep learning, the densely
connected convolutional network (DenseNet) [28] has emerged as a novel algorithm with
distinct advantages in complex image processing. The efficient use of dense connections
not only enhances feature extraction and reuse but also minimizes overfitting. Thus, this
study integrated DenseNet with colorimetric sensor arrays to evaluate fruit ripeness.

Therefore, the original objectives of the present work were to simulate the human
olfactory system (Figure S1a), and establish a low-cost, non-destructive, high accuracy
fruit ripeness prediction system, employing colorimetric sensor techniques integrated with
DenseNet (Figure S1b). The GC−MS method was first used to determine the characteristic
VOCs of mango, peach, and banana at different ripening stages. Then, colorimetric sensing
combinatorics with multiple dyes were used to enable the sensitive detection of various
characteristic VOCs and formed scent fingerprints. Finally, the DenseNet model was used
to extract fingerprint information and categorize fruit ripeness.

2. Materials and Methods

The overview of the methodological framework is presented in Figure 1. Initially, a
fruit firmness test and sensory evaluation were employed to determine the stage of fruit
ripeness. Subsequently, gas chromatography–mass spectrometry (GC-MS) analysis was
utilized to determine the characteristic VOCs emitted by the fruits at different stages of
ripening. Thereafter, the prepared characteristic VOCs with different concentrations were
analyzed using the colorimetric sensor arrays and classified using the HCA method. The
images of the colorimetric sensor arrays before and after their reactions with the VOCs
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released from fruits were captured using a camera (Canon EOS 70D, Canon Inc., Tokyo,
Japan) and coupled with the DenseNet model to predict the fruit’s ripeness.
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Figure 1. Flowchart of the methodological framework.

2.1. Chemicals and Materials

All the dyes (Table S1) were purchased from Sigma-Aldrich (Merck KGaA, St. Louis,
MI, USA). Anhydrous ethanol (≥99.5%) and ethyl acetate were purchased from Sinopharm.
Trans-2-hexenal and benzaldehyde were purchased from Sigma-Aldrich. Hexyl acetate,
(+)-limonene, β-myrcene, 3-carene, and isoamyl acetate were purchased from Aladdin
Biochemistry Technology Co., Ltd (Shanghai, China).

2.2. Fabrication of the Colorimetric Sensor Arrays

For the fabrication of the colorimetric sensor arrays, initially, 5 mg of each dye was
dissolved in 5 mL of anhydrous ethanol using ultrasonication for 10 min to obtain a clear
solution. Subsequently, a 3 cm × 3 cm Polyvinylidene fluoride (PVDF) membrane with
pore diameters of 0.22 µm was used as a substrate. Then, a volume of 2.5 µL of each
dye solution in 25 species were successively deposited onto the membrane’s surface in
a 5 × 5 grid pattern, ensuring a 6 mm distance between adjacent dye spots. Following
this, the prepared colorimetric arrays were heated at 75 ◦C on a heating plate for 30 min
to guarantee the complete evaporation of ethanol, then cooled to room temperature for
30 min, and finally stored in a brown vacuum container filled with N2 for at least three
days before measurements.

2.3. Fruit Firmness Test

A texture analyzer (TA−XT2i, Stable Micro Systems, Godalming, UK) equipped with
a P/2 cylindrical probe was used to conduct puncture tests on the fruit with a testing speed
of 1 mm s–1 and a penetration depth of 8 mm. Firmness was measured at three equidistant
locations around the equator of the fruit. The mean firmness value of the fruit for each day
was calculated from three replicates.

2.4. Sensory Evaluation of the Fruits

In this study, five experienced fruit farmers were invited to assess and score the
ripeness of three fruits (mango, banana, and peach) using sensory analysis. Participants
ranged in age from 40 to 50 years, and gender distribution was balanced (3 men and
2 women).

Following the ISO 8587 (2007) [29] standard, the assessment criteria were based on
sensory characteristics such as smell, vision, taste, and touch. The assessment comprehen-
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sively considered the color change, firmness, texture, and smell of the fruit during ripening.
Mangoes transition from a green, hard state with a weak aroma to a yellow, soft, and juicy
one with a strong aroma and eventually become dark with spots or mold. Peaches shift
from green with a mild aroma to pink, soft, and juicy with a sweeter aroma and end up
dark, possibly with mold or bruises. Bananas change from green with a subdued scent
to yellow, soft, and creamy with a distinct aroma and later turn brown with potential
black spots.

A scale of 1–10 was used for scoring, with higher scores indicating higher fruit ripeness.
A score below 4 indicates that the fruit is unripe, a score of 4 to 7 indicates that the fruit
is in the ripening stage, while a score above 7 means that the fruit is overripe. All scoring
was performed in a sensory laboratory equipped with separate compartments according to
ISO 8589 (2007) [30], and it was ensured that the evaluation process was carried out under
standardized white light conditions to minimize interference from environmental factors.

2.5. GC-MS Analysis of the Characteristic VOCs Emitted by the Fruits during Different
Ripening Stages

The characteristic VOCs were extracted using a solid-phase microextraction (SPME)
method [31–34]. For each sample, 5 g of fruit was ground and added to a headspace vial.
The non-polar divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibers
then penetrated the septa to extract the volatiles for 40 min at 45 ◦C. GC-MS analysis was
carried out on a 7890B GC System with a 7000C GC-MS Triple Quad mass detector (Agilent
Technologies, Santa Clara, USA). The SPME fiber was quickly inserted into the GC-MS
system and thermally desorbed at 250 ◦C for 3 min. Helium of high purity (99.999%) was
used as the carrier gas, and the flow rate was maintained at 1.0 mL min–1. The column
temperature was increased following a heating program, with an initial temperature of
50 ◦C maintained for 3 min, followed by a 10 ◦C min–1 ramp to 250 ◦C and a 5 min holding
period. The mass spectra were analyzed using the NIST17.L library.

2.6. Preparation of the Characteristic VOCs

Gas mixtures were prepared according to previous methods [35], with the setup
illustrated in Figure S2. Three mass flow controllers (CSC200-C, Sevenstar, Beijing, China)
were employed to control the flow rate of mixture gas, including VOCs, dry N2, and wet
N2, achieving different concentrations of the characteristic volatiles (Figure S2). The VOCs
stream was maintained for 30 min in the pipelines to stabilize the analyte concentration.
Subsequently, the colorimetric sensor arrays were placed within a gas chamber under
exposure to the VOCs vapor.

2.7. Raw Data Acquisition and Process for the Characteristic VOCs

The sensor arrays were placed in the reaction chamber and reacted to the characteristic
volatiles for 30 min, and the images of the sensor arrays before and after exposure were
captured by a standard flatbed scanner (Epson Perfection V600, Seiko Epson Corporation,
Suwa, Nagano, Japan). The RGB differential values (∆R, ∆G, ∆B) of each spot in pre-
exposure and post-exposure images were extracted and calculated using Python. The
color differential maps were then generated by expanding the RGB range of 3–10 to 0–255.
Euclidean Distance (ED = Euclidean Distance) was utilized as a quantitative measure
to describe the detection response, obtained by subtracting the ∆R, ∆G, and ∆B values
(ED =

√
∆R2 + ∆G2 + ∆B2) [36–38]. HCA based on ED coupled with Ward’s minimum

variance method was processed using the Origin software (OriginPro 2021, OriginLab
Corporation, Northampton, MA, USA). All experimental data are the average of a minimum
of three replicates.

2.8. Images Collection for Real Samples

In this study, each unripe fruit was placed in a transparent box with colorimetric
sensor arrays attached to the interior surface of a transparent container (Figure S3). They
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were placed in a climatic chamber at a constant temperature of 25 ◦C and a humidity
level of 95% which are common fruit storage conditions. Every 12 h, one image of each
colorimetric sensor array was taken with a camera under arbitrarily transformed light
and angles which can enhance the robustness of deep learning models by providing a
comprehensive dataset. Finally, a dataset of 14,778 colorimetric sensor array images, to
be used as a train and validation set, was collected to classify ripeness into ten classes:
mango_unripe, mango_ripe, mango_overripe, peach_unripe, peach_ripe, peach_overripe,
banana_unripe, banana_ripe, banana_overripe, and blank. The train and validation set was
randomly selected from the dataset in a ratio of 17:3.

Separate test data, derived from different batches of fruits, was used to verify the
robustness of the model. One image of each colorimetric sensor array was captured using
a camera under arbitrarily transformed light and angles every 12 h. Finally, a dataset of
1370 colorimetric sensor images documenting the progression of fruits from their unripe to
overripe stages was collected as the test set.

2.9. DenseNet Model Architecture

The DenseNet model (Figure S4) consists of an input layer, multiple convolutional
layers, a spatial pyramid pooling (SPP) structure, a fully connected layer, and an out-
put layer. This model utilizes five identical dense blocks, each of which contain three
3 × 3 convolutional layers, batch normalization, and a ReLU activation function, with a
growth rate of 32. A transition module is used between every two dense blocks for down-
sampling transformation, consisting of a batch normalization layer, 1 × 1 convolutional
layer, and 2 × 2 avgpooling.

2.10. Data Process for Deep Learning

For image processing, all the images were resized to 255 × 255 pixels as input.
Four DCNN models, google inception net (GoogleNet) [39], inception version 3 (Incep-
tion_v3) [40], residual network 18 (ResNet18) [41], and DenseNet models were implemented
in Pytorch (1.8.1 + cu111). All model hyperparameters were set equally. The models imple-
mented cross-entropy loss as the loss function, stochastic gradient descent (SGD) as the
optimizer, momentum as 0.9, and weight decay as 0.0001. The training process consisted
of 500 epochs with a learning rate scheduler for stable performance. The learning rate
was initially set to 0.01 and was gradually reduced to 0.005 between the 300th and 450th
epochs, and then to 0.001 for the remaining epochs. A batch size of 256 was used for the
train set. DCNN models were implemented using Python on a computer equipped with
RTX 3090 GPUs.

3. Results and Discussion
3.1. GC-MS Analysis of Fruit Characteristic Volatiles at Different Ripening Stages

The degree of banana ripeness was determined by the integration of firmness test and
sensory evaluation. It was observed that banana firmness (Figure S5c) decreased progres-
sively with increased storage time, with the rate showing significant changes at 2 days and
6 days. The color transformation of bananas was documented (Figure S6), transitioning
from light green (unripe) to yellow (ripe), and ultimately to brown (overripe). Average
sensory evaluations indicated that bananas were generally unripe between 0 ≤ days < 2,
ripe between 2 ≤ days < 6, and overripe between 6 ≤ days ≤ 8 according to sensory score
ratings, as detailed in Table S2. These sensory stages correspond closely with the observed
changes in banana firmness. Likewise, mangoes were classified into three ripeness stages
based on the firmness test (Figure S5a), and sensory evaluation (Table S3, Figure S7), with
0 ≤ days < 3 for unripe, 3 ≤ days < 8 for ripe, and 8 ≤ days ≤ 10 for overripe. Peaches were
classified into three ripeness stages based on the firmness test (Figure S5b), and sensory
evaluation (Table S4, Figure S8), with 0 ≤ days < 2 for unripe, 2 ≤ days < 7 for ripe, and
7 ≤ days ≤ 10 for overripe.
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The VOCs released from the fruit (mango, peach, and banana) during different ripen-
ing stages were monitored using the GC-MS method. According to the relative abundances
and variation patterns at various ripening stages, the representative characteristic VOCs
were identified (Table S5) [42–49]. (+)-limonene, β-myrcene, and 3-carene were identified
as the characteristic VOCs for mango. Benzaldehyde, ethyl acetate, and hexyl acetate were
identified as the characteristic VOCs for peach. Ethanol, trans-2-hexenal, and isoamyl
acetate were identified as the characteristic VOCs for banana.

3.2. Sensor Response to the Individual Gas Analyte

The gas-sensitive dyes for fabricating the colorimetric sensor arrays were selected
according to the characteristic VOCs released from the fruit. The identified characteristic
VOCs are classified as hydrocarbons, esters, alcohols, and aldehydes. Thus, a diverse
range of dye types was selected, including two aldehyde/ketone-sensitive dyes, three
solvatochromic dyes, three redox dyes, three Lewis acidic dyes, and fourteen pH indicators,
which are sensitive to the aforementioned characteristic VOCs.

The fabricated colorimetric sensor arrays were employed to detect the various concen-
trations of fruit characteristic VOCs. Under exposure to trans-2-hexenal with concentrations
ranging from 3–1000 ppm (Figure S9), the images of the colorimetric sensor arrays exhib-
ited color change. The RGB differential maps of trans-2-hexenal at concentrations of
20 ppm, 100 ppm, 250 ppm, 500 ppm, 1000 ppm, and 1500 ppm were obtained by subtract-
ing the pre-exposure image from each post-exposure image (Figure 2a). As the trans-2-
hexenal concentrations increased, the RGB differential map showed deeper color, implying
concentration-dependent response characteristics of the colorimetric sensor arrays.
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Figure 2. Colorimetric sensor array response to trans-2-hexenal. (a) Color differential maps were
obtained by extracting R, G, and B values from the images at concentrations of 20 ppm, 100 ppm,
250 ppm, 500 ppm, 1000 ppm, and 1500 ppm of trans-2-hexenal, the RGB range is expanded from
3–10 to 0–255. (b) ED heatmaps of different concentrations of trans-2-hexenal. (c) The ED values of
sensitive dyes in response to trans-2-hexenal, similar to the total ED of the colorimetric sensor array,
show an increase with increasing concentrations of trans-2-hexenal.
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An ED heatmap analysis was performed to show the intensity variation (Figure 2b).
ED was utilized as a quantitative measure to describe the signal intensity obtained by
extracting the ∆R, ∆G, and ∆B values (ED =

√
∆R2 + ∆G2 + ∆B2). Based on the heatmap

analysis, dyes of pararosaniline, merocyanine 540, o-tolidine, o-dianisidine, bromophenol
blue, cresol red, 3,3,5,5-tetraiodophenolsulfonphthalein, and leuco malachite green were
identified as the most sensitive dyes to trans-2-hexenal. The ED values of these sensitive
dyes to trans-2-hexenal followed a similar trend to the total ED values of the colorimetric
sensing combinatorics, both exhibiting a noticeable increase with the concentration of
trans-2-hexenal (Figure 2c). The limit of detection (LOD) was the minimum concentration
whose corresponding ED value is above the mean of the blank control (EDblank = 47.75)
plus three times its standard deviation (3σ = 6). The LOD for trans-2-hexenal was found to
be 10 ppm (Figure 2c).

3.3. Classification Performance for the Multiple VOCs

To evaluate the capacity of the sensor arrays to distinguish multiple VOCs, another
eight characteristic VOCs including isoamyl acetate, benzaldehyde, hexyl acetate, ethanol,
ethyl acetate, 3-carene, β-myrcene, and (+)-limonene were also tested. As shown in ED
heatmaps, the ED value increased with the enhanced VOC concentrations and all of the
VOCs showed different intensity variations (Figure S10).

As the concentration of the characteristic VOCs increases, the total ED value of the
colorimetric sensing combinatorics rises, with the LOD established using ED for isoamyl
acetate (50 ppm), benzaldehyde (20 ppm), hexyl acetate (25 ppm), ethanol (50 ppm), ethyl
acetate (250 ppm), 3-carene (25 ppm), β-myrcene (100 ppm), and (+)-limonene (25 ppm)
(Figure 3a). Distinguishable patterns for all nine characteristic VOCs at 500 ppm were
observed (Figure 3b), demonstrating the capacity of the colorimetric sensor arrays to
distinguish between multiple VOCs.

HCA, as a statistical method for grouping data points into clusters based on their
similarity, was used to evaluate the distinguishing performance of the colorimetric sen-
sor arrays for the nine characteristic VOCs with different concentrations. Ward’s min-
imum variance method was used to determine gas-induced variations of the 27 × 25
(9 VOCs × 3 concentrations × 25 ED values) dimensional matrix. The resulting cluster-
tree showed that the nine VOCs with different concentrations formed clearly separate
clusters with a 100% success rate (Figure 3c). Together, these findings suggest that it is
possible to use colorimetric sensor arrays to monitor fruit ripeness.
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by fruit. (a) ED value of the colorimetric sensing combinatorics increases with the rising concentration
of the characteristic gases. (b) Color differential maps were obtained by extracting R, G, and B
values from the images at concentrations of 500 ppm of nine characteristic gases, the RGB range is
expanded from 3–10 to 0–255. (c) HCA produced a cluster tree that showed the nine gases could be
distinguished at different concentrations, with a 100% success rate.

3.4. Deep Learning-Enabled Fruit Ripeness Recognition

As a proof of concept, the colorimetric sensor arrays were employed to monitor the
fruit ripeness of real samples. The colorimetric sensor arrays were attached to a transparent
container containing fruit (Figure S3), maintained at a steady temperature of 25 ◦C and a
humidity level of 95%. Images of the sensor arrays were captured at 12 h intervals using a
camera. However, in a real fruit ripening detection environment, variations in light and
shooting angles present challenges for accurately classifying fruit ripeness levels.

The traditional classified method (ED) cannot solve the problem. To establish a refer-
ence range, this work measured the firmness values and sensory evaluations, and calculated
the ED values of ten samples for each fruit variety stored at different ripeness levels [25].
Before calculating the ED values, all images were calibrated for color balancing to ensure
accurate color extraction under arbitrary lighting conditions according to the marked
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white and black labels [50] using Photoshop software (Adobe Photoshop Version 22.4.3,
Adobe Inc., San Jose, CA, USA). A comparative analysis of pre- and post-image calibration
is presented in Figure S11. After color calibration, the dye’s RGB values exhibit closer
similarity under varied lighting conditions, showing the effectiveness of color calibration.
Based on sensory evaluation and firmness data, fruits were categorized into ten distinct
classes for classification tasks: mango_unripe, mango_ripe, mango_overripe, peach_unripe,
peach_ripe, peach_overripe, banana_unripe, banana_ripe, banana_overripe, and blank.
The ED values’ reference range (Table S6) for each category of fruit ripeness was established
accordingly, which was utilized to forecast the ripeness of unknown fruit samples. For each
category, twenty colorimetric sensor images were randomly selected to evaluate the predic-
tion accuracy of the ED method based on the ED values’ reference range. However, ED
analysis showed an overall accuracy rate of 74.50% (Figure S12), indicating great challenges
in distinguishing fruit ripeness. The low accuracy can be attributed to the fact that the
values of ED can be affected by photographic conditions such as lighting, zoom, and angle.

Therefore, DCNN models, as a powerful method, were used to identify multidimen-
sional image data and reduce the impact of varied environmental conditions. The dataset
consists of 12,484 images for training, 2294 images for validation, and 1370 images for
testing (Figure 4a). A ten-category image classification network was designed with various
DCNN backbones, each consisting of an input layer, multiple convolution (conv.) layers,
fully connected layers (FC), and an output layer. The trained DCNNs efficiently extracted
features from colorimetric sensor images. After training, the accuracy of the models’ classi-
fication of the array images was evaluated using the validation and test set. When an image
was input into the classification network, the system provided the most likely ripeness
category for the fruit (blue circles in Figure 4a).

Four models, including DenseNet, GoogleNet, Inception_v3, and ResNet18, were
implemented. The GoogleNet model uses “Inception” modules for efficient image feature
processing. Inception_v3, an evolution of GoogleNet, utilizes more layers and diverse ker-
nel sizes to enhance feature extraction and efficiency. ResNet18 utilizes residual blocks with
cross-layer connections to improve information flow. DenseNet, detailed in our methodol-
ogy, utilizes dense connections to promote feature reuse and address the vanishing-gradient
problem, thereby improving efficiency and performance significantly. With all model hy-
perparameters set equally, the performance of the four models is compared in terms of
training and validation accuracy, F1_score, and test accuracy (Table 1).

Table 1. Comparison results among the four DCNN models.

Models Validation Accuracy (%) F1_Score Test Accuracy (%)

DenseNet 97.39 0.9712 82.20
GoogleNet 97.17 0.9683 78.85

Inception_v3 96.03 0.9560 78.63
ResNet18 95.29 0.9498 76.73

The accuracy of the training and validation set was first compared. Examination
of the accuracy-loss graphs revealed that, with an increasing number of training epochs,
training accuracy improved, and training loss decreased, approaching zero as illustrated in
(Figures 4b and S13). All models converged within 200 epochs, achieving peak ripeness
prediction accuracy, and indicating effective training. The confusion matrices for the four
DCNN models were compared, whose diagonals show the correctly classified sample ratios
(Figures 4c and S14–S16). The DenseNet model outperformed others on the validation set
with a 97.39% accuracy, followed by GoogleNet, Inception_v3, and ResNet18 with 97.17%,
96.03%, and 95.29% (Figure 4d and Table 1), respectively.

F1_score as an indicator of accuracy was also used to evaluate and compare the perfor-
mance of the DCNN models, using the following equation:F1_score = 2pr/(p + r), where
“p” and “r” denote precision and recall, respectively. F1_score is an ideal comprehensive
metric that considers both precision and recall simultaneously, making it a better choice
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when seeking a balance between precision and recall. The DenseNet model exhibited
the highest F1_score with 0.9712 among the compared models followed by GoogleNet,
Inception_v3, and ResNet18 with 0.9683, 0.9560, and 0.9498, respectively, (Figure 4d and
Table 1).
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Figure 4. Colorimetric sensor detection combined with DCNN to detect fruit ripeness. (a) Schematic
diagram of fruit ripeness label classification and deep learning for fruit ripeness recognition. (b) The
training loss and the training accuracy of the DenseNet model. The training loss measures the
dissimilarity between the predicted and actual results. The training accuracy increases with the
number of epochs. (c) Confusion matrix of DenseNet for the validation set. (d) Comparison of
the validation accuracy and F1_score on the validation set between four DCNN models (DenseNet,
GoogleNet, Inception_v3, and ResNet18).

The accuracy of the separate test set for the four models was then compared. Test
data derived from different batches of fruit evaluates the robustness of the model. The
DenseNet model outperformed others on the test set in predicting fruit ripeness with an
82.20% accuracy, followed by GoogleNet, Inception_v3, and ResNet18 with 78.85%, 78.63%,
and 76.73% (Table 1), respectively, demonstrating the superior robustness of the DenseNet
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model. Compared to previous studies, the test accuracy in our work is better or comparable
with that of the previous literature (Table S7) [51–56].

Due to the DenseNet model’s outstanding performance, Gradient-weighted Class
Activation Mapping (Grad-CAM) was applied to provide a more intuitive understanding
of this model’s decision-making process. The visual class heatmap, acquired based on the
attention mechanism [57], can indicate the features that have a more important impact on
the results through darker colors. Heatmaps of the ripeness stages of mangoes (unripe,
ripe, and overripe) were analyzed and obtained using Grad-CAM (Figure S17). These maps
showed the prominent features affecting the model. The dyes including nile red, disperse
orange #3, o-tolidine, m-cresol purple, indigo carmine, basic yellow1, and leuco malachite
green are the most influential and sensitive dyes in classifying mango ripeness, and they
contribute the most to the final decision. The above results demonstrate the interpretability
of the DenseNet model.

All of these results show that DenseNet has superior performance when classifying
the olfactory visualized ripeness of fruit. This exceptional ability is mainly attributed to the
efficient use of the dense connections in the DenseNet model. These connections not only
improve feature extraction and reuse but also significantly reduce the risk of overfitting,
which is effective in addressing complex classification tasks.

Overall, our system combines colorimetric sensing arrays with the DenseNet model to
successfully identify fruit ripeness with a validation set accuracy of 97.39%. This approach
offers numerous advantages when compared to other well-known methods. As seen in
Table 2, our method not only classified the ripeness of various kinds of fruits but also had
higher accuracy than other well-known methods.

Table 2. Comparison with other well-known methods of fruit ripeness classification.

Method Fruit Classification
Method

Accuracy/Correlation
Coefficient Ref.

RGB Mango Fuzzy logic 87% [58]
VIS/NIR Watermelon ANN 80% [59]

Acoustic method Mango - 0.957 [60]

Electronic Nose Peaches and
pears - 92% [61]

RGB Blueberry KNN, etc. 85–98% [62]
HSV Mango Neural Network 95% [63]

Electrical
method Banana - 0.94 [64]

RGB Mango
Gaussian Mixture
model and Fuzzy

logic

Less than 90% in all
varieties [65]

Bioimpedance
data Strawberry MLP network 0.72 [66]

Colorimetric
sensor arrays

Banana, Peach,
Mango DenseNet 97.39% This study

4. Conclusions

In summary, this study presents a new method for the non-destructive monitoring
of fruit ripeness by integrating cross-reactive colorimetric sensing combinatorics with the
DenseNet model. The colorimetric sensing combinatorics consisted of 25 dyes that were
sensitive to volatile gases emitted by fruits, showing cross-reactivity to various types and
concentrations of gases. The formation of a unique scent fingerprint can be identified using
DCNN. By training on 12,484 images under varying lighting conditions, the DenseNet
could learn autonomously and mitigate the impact of illumination on the experimental
results, achieving an impressive accuracy rate of 97.39% on the validation test and 82.20%
on the test set.
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With its attractive features of portability, low cost, and high accuracy, this system has
great potential for integration into existing smart packaging or monitoring systems. It
provides a simple and non-destructive pfigureattern for ordinary consumers to evaluate
the fruit ripeness and benefits the supply chain, especially for costly fruits from farmers
and producers. However, there are still challenges for its commercial application. Current
testing devices are not portable enough for on-site testing. Furthermore, various fruit vari-
eties emit different complex VOCs. For a new fruit variety, a large number of data samples
are required for training using deep learning models to achieve a commercial application.

Looking forward, we anticipate significant advancements in sensor technologies
and analytical methods to mitigate these challenges. Enhanced sensor sensitivity and
anti-interference capability, coupled with more advanced data analysis techniques, could
significantly improve the system’s adaptability, and reduce the need for large datasets.
In perspective, such technological and collaborative advancements not only promise to
refine the system’s current capabilities but also to broaden its utility across various fields,
including food safety and quality assurance.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/foods13050793/s1, Figure S1. Working mechanism of
the (a) human olfactory and (b) olfactory visualization system utilizing color sensing combinateries
with DCNN. Figure S2. Gas distribution device. Figure S3. (a) Schematic diagram and (b) photograph
of the fruit packaged transparent container with colorimetric sensor arrays. Figure S4. Overview of
DenseNet model architecture. Figure S5. Firmness variation of (a) mango, (b) peach, and (c) banana
during the storage time. Figure S6. Appearance of banana changes with the storage time. Figure S7.
Appearance of mango changes with the storage time. Figure S8. Appearance of peach changes with
the storage time. Figure S9. Images of the colorimetric sensor array’s response to the trans-2-hexenal
with different concentrations range from 3 to 1000 ppm. Figure S10. ED heatmaps of the characteristic
VOCs with different concentrations. Figure S11. (a–c) Color balancing performed by internal cali-
bration makers under various light conditions. Changes in the RGB values of pararosaniline dye as
represented by images (d) before color calibration and (e) after color calibration. Figure S12. Detection
accuracy rate for fruit ripeness based on ED calculations after color calibration. Figure S13. Training
loss and training accuracy of the (a) GoogleNet, (b) Inception_v3, and (c) ResNet18 model. Figure S14.
Confusion matrix of GoogleNet for validation set. Figure S15. Confusion matrix of Inception_v3 for
validation set. Figure S16. Confusion matrix of ResNet18 for validation set. Figure S17. Attention
mechanism maps of (a) unripe, (b) ripe, and (c) overripe mangoes. Table S1: Types, serial numbers,
corresponding names, and abbreviations of dyes in literature. Table S2. Average sensory score of
the banana during storage for each group. Table S3. Average sensory score of the mango during
storage for each group. Table S4. Average sensory score of the peach during storage for each group.
Table S5. Identification of VOCs and their relative abundances released from fruit during storage
time by GC–MS. Table S6. ED values’ reference range to three ripeness levels. Table S7. Comparsion
of test accuracy among this study with previous studies.
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