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Abstract: Guavas are typical tropical fruit with high nutritional and commercial value. Because of
their thin skin and high metabolic rate, guavas are highly susceptible to water loss, physical damage,
and spoilage, severely limiting their shelf-life. Guavas can typically only be stored for approximately
one week at room temperature, making transportation, storage, and handling difficult, resulting in
low profit margins in the industry. This review focuses on the physiological and biochemical changes
and their molecular mechanisms which occur in postharvest guavas, and summarizes the various
management strategies for extending the shelf-life of these sensitive fruits by means of physical
and chemical preservation and their combinations. This review also suggests future directions and
reference ideas for the development of safe and efficient shelf-life extension techniques.

Keywords: shelf-life extension; physical preservation; CA storage; packaging; chemical treatment

1. Introduction

Guava (Psidium guajava L.; Myrtaceae) is an economically important fruit produced
in tropical and subtropical regions, including South China, India, Pakistan, Mexico, and
Brazil. In most African countries, guava is regarded as a minor crop, except for in South
Africa, Egypt, and Sudan, which have invested in the further study of guava in areas such
as genetic breeding and disease management [1]. In recent years, Kenya has produced more
than 11,000 tonnes of guava annually, worth USD 1.1 million, and production is increasing
according to the Kenya Horticultural Crops Agency [2]. Guavas possess considerable
nutritional and medicinal value, being rich in soluble sugars, proteins, dietary fibers, and
vitamins. In addition, guavas contain diverse bioactive compounds, including tannins,
flavonoids, pentacyclic triterpenoids, carotenoids, and polyphenols. These bioactive con-
stituents have been found to provide anticancer and anti-inflammatory benefits, protect the
heart and eyes, and regulate blood sugar [3–5].

Guavas are plagued by a number of postharvest quality issues owing to their thin
skins, including pathogen invasion, water loss, and rapid textural decline. Moreover,
guavas are climacteric fruit which often reach peak respiration shortly following harvest,
resulting in a short storage life: approximately one week at room temperature or two
weeks at 6–8 ◦C in strict atmosphere conditions [6,7]. In addition, as tropical fruit, guavas
are sensitive to chilling injury during transport or storage. A short shelf-life, mechanical
damage, and postharvest loss are considered the major factors limiting the modern guava
industry [7].

Guavas are alive or metabolically active after harvest and during storage, consuming
nutrients through respiration and transpiration. Respiration, ethylene production, transpi-
ration, chilling injury, and infection with spoilage organisms all negatively impact shelf-life,
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storage quality (i.e., weight loss), pathogen susceptibility, and texture (e.g., browning,
softening, and decay). In addition, guavas lose sugars, phenols, free amino acids, soluble
proteins, flavonoids, and ascorbic acids during storage [8].

1.1. Respiration

Respiration involves the decomposition of complex organic matter (e.g., carbohy-
drates, proteins, and fats) into smaller molecular substances and ultimately into CO2
and H2O, accompanied by energy production and heat release. Due to biochemical and
structural factors, most guava varieties exhibit a climacteric respiratory peak during the
ripening or aging period. Biochemically, CO2 produced through the decarboxylation
of malic acids couples with phosphorylation and rapidly increases the respiratory rate.
Structurally, the disintegration and aging of chloroplasts following harvest increases en-
zymatic activity and accelerates ethylene synthesis, again increasing the respiratory rate
and shortening shelf-life [9]. Climacteric guavas are typified in the ‘Li-Tzy Bar’ (‘LTB’)
variety, while non-climacteric guavas, which exhibit ethylene auto-catalysis and short
shelf-life, are typified in the ‘Jen-Ju Bar’ (‘JJB’) variety. The non-climacteric cultivar showed
good stability at low rates of respiration (19.8–7 mg CO2 kg−1 h−1), while the climac-
teric one indicated high respiratory rates (171 mg CO2 kg−1 h−1 at climacteric peak) [10].
The respiratory rate of guava is significantly lower than other varieties such as papaya
and banana (20–30 mg CO2 kg−1 h−1), but significantly higher than that of many varieties
(60–80 mg CO2 kg−1 h−1 and 120–150 mg CO2 kg−1 h−1, respectively) when the respira-
tory peak comes.

1.2. Ethylene Biosynthesis

The phytohormone ethylene regulates fruit ripening and senescence by accelerating
respiration, ripening, and chlorophyll decomposition. Ethylene is synthesized through
the methionine (Met) cycle, in which ACC synthetase (ACS) catalyzes the formation of
1-aminocyclopropyl-1-carboxylic acid (ACC) from S-adenosylmethionine (SAM) and ACC
oxidase [ACO, also known as ethylene synthetase (EFE)] catalyzes the formation of ethylene
from ACC [11]. The ethylene biosynthesis system can be divided into system-1 and system-
2. System-1 is responsible for the production of low and basal concentrations of ethylene
in climacteric and non-climacteric fruits, and is regulated by negative feedback and/or
self-inhibition. System-2 is responsible for the production of large amounts of ethylene
during the ripening of climacteric fruits, and is regulated by positive feedback and/or
self-catalysis [12].

Recent research suggests that system-2 defects in non-climacteric guava cultivars are
mainly the result of the silencing of the ethylene biosynthesis gene PgACS1, which governs
the ripening period, and PgACS2, which controls fruit set. In addition, the functioning of
system-2 is also affected by the downregulation of PgACO1 and PgACO2 [10].

Because ethylene is a gaseous molecule, ripening and senescence can be regulated
through atmospheric control during storage. Specifically, ethylene production can be
inhibited by the application of CO2, silver thiosulfate (STS), and 1-methylcyclopropene
(1-MCP).

1.3. Transpiration

Because guavas continue to transpire following harvest, they lose both nutrients and
water during storage. In addition, as the intracellular fluid becomes more concentrated,
the resulting relative increase in ionic content can result in cellular poisoning. Postharvest
water loss can cause loss of turgor pressure, stomata closure, and metabolic disturbance,
all of which result in tissue degradation, wilting, shrinking, and softening. These textural
changes indicate declining fruit quality and can lead to commercial devaluation.

In guavas, transpiration occurs through channels in the cuticle. Because guavas have
thin cuticles with little wax, postharvest transpiration can be reduced by controlling storage
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conditions. This includes maintaining high relative humidity (RH) and air pressure, as well
as low temperature, air flow rate, and light [13].

1.4. Chilling Injury

Guavas are prone to chilling injury when stored at temperatures below 6 ◦C for a
certain duration [14]. The symptoms of chilling injury in guava fruit include wrinkling,
pitting, lignification, browning and/or softening of the fruit surface or flesh, flooded
patches, failure to mature, increased sensitivity to fungal decay, and rapid decomposition.
Above all, browning is considered the most typical symptom of CI. Cold damage can lead
to the destruction of the internal structure of fruits and vegetables, the loss of nutrients,
and a decline in disease resistance and storage resistance, and the subsequent deterioration
of fruits and vegetables. Studies have indicated that low-temperature stress triggers the
production of excessive intracellular reactive oxygen species (ROS), resulting in oxidation
of macromolecules such as DNA, proteins, and lipids, as well as damage to the plasma
membrane, weakening its selective permeability [15]. These disturbances increase cellular
disorder and decrease fruit quality.

At room temperature, guavas typically exhibit a 3–4 d shelf-life, although at suitably
low temperatures (7–10 ◦C), the shelf-life can be extended to 2–3 weeks [16–18]. However,
the threat of chilling injury has restricted the use of cold transport and storage, which has
greatly impacted the economic value of guava fruit.

1.5. Postharvest Spoilage

Mechanical wounding of guava fruit before, during, and after harvest results in
rapid invasion by spoilage microorganisms and decay. Damaged fruit exhibit black or
brown pitting, peel browning, and tissue softening. Some of the most important fungal
infections affecting guava fruit quality are anthracnose (Colletotrichum spp.) and soft rot
(Aspergillus flavus and/or Rhizopus stolonifer) [19,20]. The most common fungal spoilage
organisms include species of the Fusarium and Aspergillus genera [21]. In addition, guavas
can become susceptible to decay caused by bacteria and other microorganisms, including
Bacillus megaterium, B. subtilis, B. cereus, Enterobacter aerogenes, Micrococcus luteus, Klebsiella
pneumoniae, Staphylococcus aureus, S. epidermidis, and Proteus vulgaris [22].

2. Physical Postharvest Preservation of Guava Fruit

Recent studies point to several promising techniques for extending the shelf-life of
guava fruit, including controlled atmosphere storage, modified packaging, and physical
and chemical treatments.

2.1. Controlled Atmosphere Storage

Controlled atmosphere (CA) storage, also referred as to air conditioning storage,
implies regulating the composition, concentration, and pressure of O2, CO2, ethylene,
and other gases in the storage environment, up to and including imposing low-O2 (LO)
conditions [23,24]. A subtype of CA is modified atmosphere (MA) storage. Specifically, CA
utilizes mechanical gas regulation and monitoring to artificially control the composition
and concentration of gases in a storage environment. The relatively closed nature of the
storage environment ensures that the gases are accurately monitored and regulated to
produce optimal storage conditions. However, CA warehouses are costly to construct and
operate, making them unpopular among food business operators. MA, also known as
simple gas regulation or limited gas storage, relies on the physiological capacity of the fruit
(i.e., respiration and ethylene production) to spontaneously regulate the concentration of
O2 and CO2 under certain ventilation capacities. MA has gained popularity among food
business operators due to its relatively low investment cost and ease of operation.

Long-term CA storage (including LO and/or high-CO2 conditions) can adversely
affect fruit quality by inducing the production of ethanol and acetaldehyde, undesirable
odors, and ROS, and promoting over-maturation and nutrient loss [25]. For example,
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Teixeira et al. [26] reported that guava (cv. ‘Pedro Sato’) fruit quality was negatively
affected after 28 d of storage at 12.2 ◦C under 5% O2 and elevated CO2 (10%, 15%, and
20%), even though there was no difference in the respiratory rate between fruit stored
under ambient and modified atmospheric conditions. Perhaps most notably, fruit firmness
dropped sharply under 5% O2 and 20% CO2 conditions, and the soluble pectin content
increased on the 14th d of storage [26]. Kader [27] reported that the optimal storage
conditions for guava are between 2–5% O2 and 0–1% CO2 at 5–15 ◦C. Storage at 40% CO2
and <1% O2 for 12 h has been shown to curtail insect growth, maintain quality, and lengthen
the shelf-life of guava fruit [28]. Brackmann et al. [29] found that guavas (cv. ‘Paluma’)
decayed more slowly when stored under different CA conditions compared with those
stored under ambient atmospheric conditions. Finally, pre-treatment with nitric oxide
(N2O) successfully inhibits the development of decay in guava [30].

2.2. Refrigerated Storage

Refrigeration is the most common and effective storage practice for extending the
shelf-lives of many fruits and vegetables, including citrus [31], pineapple [32], apple, and
pear [33]. A gradual cooling method is preferred for particularly cold-sensitive fruits.
For example, Singh and Pal [34] report that the shelf-life of guava could be extended to
30 d under 8 ◦C storage. However, because the temperature of commercial cold storage
warehouses tends to fluctuate by about 5 ◦C, refrigerated guavas are still susceptible to
chilling injury. In guavas, the minimal optimal storage temperature depends on both
variety and maturity status.

2.3. Packaging
2.3.1. Controlled and Modified Atmosphere Package

Both CA packaging (CAP) and MA packaging (MAP) rely on the creation of an ar-
tificial and relatively closed storage environment around the fruit in order to extend its
shelf-life. Generally, the packaging consists of a thin plastic film, which can be manufac-
tured from high-density polyethylene (HDPE), polypropylene (PP), polyvinyl chloride
(PVC), polyvinyl alcohol (PVA), or low-density polyethylene (LDPE) [35]. However, plastic
packaging, especially LDPE and PP, results in the production of environmentally sustain-
able, difficult-to-degrade plastic waste [9,26,36]. MAP is dynamic and self-regulated, and
relies on the permeability of the film to adjust the gas composition and control ethylene
production during storage [9]. MAP delays the loss of bioactive compounds, including phe-
nols and flavonoids, and maintains the antioxidant capacity of the fruit [37]. On the other
hand, CAP precisely regulates the atmosphere environment through the use of sensors or
electronic controls.

Both MAP and CAP can significantly improve the shelf-life and maintain the sensory
qualities and nutritional profile of guava fruit (Table 1). However, to date, the majority
of studies have focused on the use of MAP to maintain postharvest quality in guava. For
example, wrapping guava fruit in tissue paper has been shown to extend the shelf-life
to 12 d at 16 ◦C compared to 24 ◦C, effectively preventing water loss and maintaining
physiological and biochemical characteristics [38]. Similarly, the use of MAP has been
shown to extend the shelf-life of guava fruit to 7 d at 25 ◦C [39]. Guavas packaged in LDPE
with 9% O2 and 5% CO2 can be preserved for 21 d at 10 ◦C and 7 ◦C [36,40,41]. Similarly,
guavas packaged in PP can be preserved up to 28 d at 8–12 ◦C [17]. Finally, Kumar et al. [42]
report that PP-based MAP could extend the shelf-life of guava fruit to 25 d at 6 ◦C. The
optimal CAP storage conditions for guava fruit remain to be clarified.
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Table 1. MAP and CAP storage on guava.

Cultivar Storage Condition Main Findings References

‘Allahabad Safeda’
Different packaging or wrapping materials of
tissue paper, newspaper, and plastic bag at
24 ◦C(±2 ◦C) and 16 ◦C(±2 ◦C).

Lengthened the shelf-life to 12 d at
room temperature. Tissue paper
showed the best effect among the
materials.

[38]

‘Pant Prabhat’

Different wrapping materials of tissue paper,
cling warp, banana leaves and teak leaves, or
cushioning materials of neem leaves, rice
straw, and bamboo leaves at 25 ± 2 ◦C and
85 ± 5%RH in corrugated fibre board boxes.

Lengthened the shelf-life to at least
7 d at 25 ◦C, maintained the
appearance and quality of fruit. Cling
wrap effected the best among
the materials.

[39]

‘Lucknow-49’
25 µm and 50 µm LDPE bags at 3% O2 + 5%
CO2, 6% O2 + 5% CO2 and 9% O2 + 5% CO2,
and 5 ± 1 ◦C and 10 ± 1 ◦C.

Lengthened the shelf-life to 42 d in
50 µm LDPE bags with 9% O2 + 5%
CO2 at 10 ◦C.

[41]

‘Hisar Safeda’ Polythene bags (LDPE) of 200-gauge
thickness by vacuum packaging at 7 ± 3 ◦C.

Lengthened the shelf-life to at least
21 d, maintained the
physico-chemical characteristics and
quality for a longer time, and delayed
the ripening.

[36]

‘Allahabad Safeda’

LDPE, MAP with PP, MAP in LDPE with
pin-hole films, MAP in PP with pin-hole
films, shrink packaging with BOPP film, and
vacuum packaging with PP films at ambient
conditions (25 to 28 ◦C, 60 to 70% RH) and in
a cool chamber (8 to 12 ◦C, 88 to 90% RH).

MAP in PP with pin-hole film in cool
chamber lengthened the shelf-life to
28 d with maintenance of commercial
value and biochemical quality.

[17]

‘Pedro Sato’ 12.2 ◦C, low O2 concentration (5 kPa) and
levels of CO2 (1, 5, 10, 15, 20 kPa)

Lengthened the shelf-life of guava to
28 d. ‘Pedro Sato’ guavas should be
stored at 5 kPa O2 and no more than
5 kPa CO2, or CO2 damage will be
caused.

[26]

‘Allahabad Safeda’ Polypropylene bags with 2, 4, 6, 8, and
10 pores at 6 ± 1 ◦C.

Lengthened the shelf-life to 25.63 d in
4-pore polypropylene bags. [43]

Unknown At 5 to 15 ◦C, 2 to 5% O2, and 0 to 1% CO2. The best controlled condition
for guava. [27]

‘Allahabad Safeda’ and
‘Lucknow-49’

CO2 (20%) + O2 (<1%), CO2 (40%) + O2
(<1%), and CO2 (60%) + O2 (<1%) at 40 ◦C for
12 h then stored at 22 to 38 ◦C, 70 to 85% RH.

Achieved the effect of complete
disinfection and lengthened the
shelf-life.

[28]

‘Paluma’

20.9 kPa O2 + 0.03 kPa CO2 (CK),1.0 kPa O2 +
2.0 kPa CO2, 2.0 kPa O2 + 2.0 kPa CO2, 3.0
kPa O2 + 2.0 kPa CO2, 3.0 kPa O2 + 4.0 kPa
CO2, and stored at 8 ± 0.2 ◦C, 95 ± 2.0% RH.

1.2 kPa O2 + 2 kPa CO2 effects best.
Reduced the color change, firmness
loss and quality loss; lengthened the
shelf-life to 28 d.

[29]

Unknown (seedling guava) Exposed to 80%:20% (N2O:O2) for 2, 4, and 6
d and stored at 20 ◦C.

Delayed the occurrence of decay and
disease; reduced quality loss. [30]

2.3.2. Edible Packaging

Edible packaging has recently been introduced in order to protect the environment
and enhance food safety. Edible packaging, generally in the form of films and coatings, can
be made from combinations of polysaccharides, proteins, and lipids [43]. Polysaccharide-
based edible polymers are commonly made of corn starch, tapioca starch, potato starch,
cellulose, hemicellulose, and/or gums; protein-based edible polymers are primarily based
on either casein or zein; and lipid-based edible polymers include oils and waxes. In films,
polymers comprised of independent material are used to cover the food surface, while
coatings are formed directly on the food surface by impregnation or spraying [44]. Edible
packaging relies on the water-repellent and air-blocking properties of the polymers to create
a barrier between the food and the external environment. As with other forms of packaging,
these barriers decrease the respiration, transpiration, surface scarring, and invasion of
pathogenic or spoilage organisms.
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Researchers have tested the performance of many edible polymers on postharvest
guava quality and shelf-life (Table 2). Hong et al. [45] found that a 2.0% (w/v) chitosan
solution in combination with low temperature (11 ◦C) could significantly delay ripening
and maintain quality, likely because chitosan can reduce oxidative stress and protect cell
membranes from damage. Francisco et al. [46] reported that a biodegradable film made of
25% acetylated cassava starch (ACS) and 75% hydroxyethyl cellulose (HEC) could maintain
the coloration and firmness of guava fruit for 13 d. The researchers explained that HEC75
was able to maintain these quality parameters due to a combination of solubility, opacity,
water vapor transportation, thickness, and other beneficial characteristics [46]. Vishwasrao
and Ananthanarayan [47] found that a coating containing 1% hydroxypropyl methycel-
lulose (HPMC) and 0.3% palm oil (PO) substantially reduced weight loss, softening, and
color change while maintaining the antioxidant capacity and nutrient profile of guava fruit
stored for 9 to 12 d at 24 ± 1 ◦C and 65 ± 5% RH. Both tannic acid-cross-linked zein olatin
coating (ZTA) and non-cross-linked zein olatin coating (Z) have been shown to improve the
stability of guava fruit during storage [48]. Both Oliveira et al. [49] and Formiga et al. [50]
showed that biopolymeric coatings hydrophobized with beeswax (BW) and HPMC com-
posite coatings could delay fruit ripening, maintain fruit firmness and color, and extend the
shelf-life due to their low rates of water vapor transmission and O2-CO2 exchange.

In addition, plant extracts used in edible packaging can extend the shelf-life of guava
by affecting the internal regulation mechanism of the fruit. Vichaiya et al. [51] showed that
an exogenous trehalose coating could reduce cold damage in guava fruit by upregulating
the expression of SnRK1. Nair et al. [52] reported that the introduction of pomegranate peel
extract (PPE) into a chitosan- and alginate-based coating not only improved the sensory
characteristics of guava, but also retained the nutritional value by reducing respiratory
rate and aging. Rehman et al. [53] found that an aloe vera (AV) gel coating can delay
ripening and reduce lipid peroxidation by maintaining antioxidant enzyme (APX, CAT,
and SOD) activity and redox homeostasis. Finally, De Oliveira et al. [54] explored the
effects of a composite coating of chitosan (Chi) and citronella citrate essential oil (CCEO) on
postharvest quality of guava, and found that the Chi-CCEO coating effectively maintained
postharvest quality over 10 d of storage at low temperature.

Table 2. Edible packaging on guava.

Cultivar Coating Material Main Findings References

‘Pearl’ 0.5, 1.0, and 2.0% chitosan.
2.0% chitosan coating significantly reduced firmness
loss and water loss, and enhanced the antioxidant ability
of fruit.

[45]

Unknown

100% acetylated cassava starch (ACS) + 0%
hydorxyethyl cellulose (HEC), 75% ACS +
25% HEC, 50% ACS + 50% HEC, 25% ACS
+ 75% HEC, 0% ACS + 100% HEC.

75% HEC and 25% ACS or 100% HEC films delayed the
firmness loss and color change, reduced ripeness for
13 d at 21.0 ± 1.2 ◦C with 53 ± 16% RH, and lengthened
the shelf-life.

[46]

‘Lalit’ 1% hydroxypropyl methyl cellulose
(HPMC) and 0.03, 0.3% palm oil (PO).

1% HPMC and 0.3% PO delayed weight loss and color
change, reduced the activity of oxidase, and lengthened
the shelf-life to 12 d at 24 ± 1 ◦C and 65 ± 5% RH.

[47]

Red guava Unmodified zein (Z) and zein treated with
tannic acid (ZTA).

ZTA acted better when decreasing gas permeability,
reducing respiration rates and ROS production,
delaying the ripening process, and enhancing guava
stability at 23 ± 2 ◦C and 88 ± 5% RH.

[48]

‘Paluma’

Composite coating based on Amylose and
Amylopectin, 3% cornstarch, 2% cassava
starch and 5% gelatin with beeswax (0, 5,
10%) and surfactant (0, 2.5, 5%).

The coating with 10% beeswax presented the best effects
in the water vapor transmission rate (WVTR), enhancing
the resistance ability and reducing weight loss at
15 ± 2 ◦C, 90 ± 2% RH.

[49]

‘Pedro Sato’ Hydroxypropyl methylcellulose (HPMC)
+10, 20, 40% (dry basis) beeswax (BW).

HPMC + 20% BW acted the best, maintaining the quality
and lengthening the shelf-life for 6 d at 21 ± 0.3 ◦C and
77 ± 6% RH.

[50]
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Table 2. Cont.

Cultivar Coating Material Main Findings References

‘Kim Ju’ 0 and 200 mM of trehalose immersion for
30 min.

Exogenous trehalose induced a transient rise in sucrose
against chilling injury. [51]

‘Allahabad
Safeda’

1% chitosan + pomegranate peel extract
(PPE), 1% chitosan, 2% alginate + PPE, 2%
alginate immersion for 1 min.

Chitosan with PPE showed the best effect on
maintaining the overall quality and enhancing
antioxidant ability of fruit, and lengthened the shelf-life
to at least 20 d at 10 ◦C with 90 to 95% RH without
chilling injury.

[52]

‘Gola’

0, 20, 40, 60, 80% aloe cera (AV) gel with
AsA (4% w/v) as an antimicrobial agent,
CaCl2 (3% w/v) as a firming agent, glycerol
(1% v/v) as a plasticizer, and CMC
(3% w/v) as a thickening agent added to
each solution, dipped for 3 min.

AV gel coating, especially at high concentrations,
presented better effects on the maintenance of
commercial and medical value, along with a higher level
of antioxidant capacity at 23 ± 2 ◦C and 70 to 75% RH.

[53]

Unknown

Bioconjugate sprays of GOx (glucose
oxidase)/ZnONPs (zinc oxide
nanoparticles), GOx/AgNPs (silver
nanoparticles), ZnONPs, and AgNPs.

GOx/ZnONPs actively maintained biochemical quality
and enhanced antioxidant system inside of fruit at 25 ◦C. [55]

2.3.3. Composite Packaging

The effects of other types of packaging, including antibacterial packaging, antifungal
packaging, and nano packaging, have primarily been studied in the context of composite
packaging comprised of some combinations of MAP, CAP, and/or edible packaging. For
example, Shouket et al. [55] studied combinations of enzymes (glucose oxidase, GOx) and
metal nanoparticles (silver, Ag; zinc, Zn) on the postharvest quality of guava fruit. They
concluded that the GOx/ZnONP and GOx/AgNP combination sprays could effectively
extend the shelf-life of guava fruit.

2.3.4. Mechanical Packaging

Mechanical packaging is mainly used during transportation to reduce vibration. Me-
chanical packaging, such as foam boxes, and pearl cotton (EPE) mesh sets, disperses the
impact force through the buffer to prevent the fruit from bruising that not only accelerates
the respiratory rate, browning, and post-ripening, but also pave the way for microbial and
pathogenic invasion. Chaiwong et al. [56] enhanced the biodegradability of natural rubber
latex foam mesh (NRL-FN) buffer material by adding bamboo leaf fiber (BLF), which is an
environmentally friendly cushion with excellent buffer capacity and designable properties.

2.4. Physical Treatment

Physical treatments include heat, ultraviolet radiation, ultrasonication, and combi-
nations of these. Among these, heat treatments (HTs) are considered fairly conventional
and have been in use for many years, while the other treatment options have emerged
only recently. HTs can take many forms, including hot water dip (HWD), brief hot water
rinsing and brushing (HWRB), hot air (HA), steam or vapor heating treatment (VHT), and
radio frequency (RF) heating [57]. To make full use of the treatment and avoid damage,
the temperature is generally controlled between 35 and 55 ◦C (Table 3). Guava fruits were
treated by HW at 45 ◦C, 50 ◦C, and 55 ◦C for 3 min and it was confirmed that the measure of
45 ◦C maintained the postharvest quality best [58]. Research suggests that HTs can reduce
respiration, ethylene biosynthesis, and the accumulation of toxic and cellular materials, ef-
fectively delaying ripening and extending the shelf-life of guava fruit. Microcosmically, HTs
disrupt the functioning of several key enzymes, including ethylene-forming enzyme (EFE)
(which coverts ACC to C2H4), pectin methylesterase (PME), and polygalacturonase (PG)
(which initiates the pectin degradation and softening). HT also influences protein synthesis,
secondary metabolism, and antioxidant enzyme activity [59–62]. Finally, HT is bactericidal
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and insecticidal [63]. Studies have indicated that VHT at 46 ◦C for 10 min can kill fruitfly
larvae [64], HW at 47 ◦C for 20 min efficiently controlled anthracnose disease [65], and HW
at 50 ◦C for 10 and 30 min can reduce microorganisms on fresh-cut guava [66]. Although
HTs have been utilized to improve the shelf-life of guava fruit, conditions which may be
suitable for some other fruits may be detrimental to guava due to its comparably thin skin.
For example, 60 min of HT at 48 ◦C is acceptable for mango, but unsuitable for guava [67].

Table 3. Heat treatment on guava.

Cultivar Treatment Main Findings References

‘Gola’ and ‘Surahi’ VHT at 47.5 ◦C for 0, 12, and
25 min

VHT at 47.5 ◦C for 25 min maintained the
commodity quality best. [67]

‘Kampucea’ HWD and VHT at 46 ◦C for 5,
10, 15, 20 min. VHT 46 ◦C for 10 min can kill fruitfly larvae. [64]

‘Pedro Sato’ HW at 47 ◦C for 20 min. Effectively controlled anthracnose (Colletotrichum
simmondsii) disease. [65]

‘Shweta’ HW at 45 ◦C, 50 ◦C, 55 ◦C for
3 min

HW at 45 ◦C maintained the physiological
characteristics best. [58]

‘Kimju’ and ‘Pan Srithong’ HW at 40, 50, and 60 ◦C for 10
and 30 min

HW at 50 ◦C for 10 and 30 min successfully
maintained quality and reduced microorganisms
on fresh-cut guava.

[66]

Ultraviolet (UV) radiation refers to the bands in the electromagnetic spectrum between
X-rays (200 nm) and visible light (400 nm). UV radiation is characterized as long wavelength
(UV-A, 320–400 nm), medium wavelength (UV-B, 280–320 nm), and short wavelength (UV-
C, 200–280 nm) [68]. Among these, UV-C wavelengths are mainly used in postharvest
management [69]. The main functions of UV-C treatment are surface sterilization [70,71],
ethylene degradation, and induction of plant resistance [71–74]. Research suggests that the
effects of UV-C may arise due to a combination of mechanical effects resulting from transient
temporal collapse, such as high heating and cooling rates (109 K/s), shock wave forma-
tion, high temperature (5000 K), and high pressure (1000 atm). In microbes, these effects
rupture cellular envelopes and photosensitize DNA even after very short exposures [75].
The antimicrobial effects of UV-C exposure are linked to the formation of cyclobutane
thymine dimer and OH−/H+ chemistry, both of which can inhibit the growth of (or kill)
microbes [76]. For example, exposure to UV-C radiation at an intensity of 16 KJ·m−2 can
kill 100% of the eggs of Ceratitis capitata [77].

Ultrasonication (US) produces a pressure wave beyond human hearing (20–100 kHz)
which induces acoustic cavitation. Cavitation results in the production of ROS in fruits and
vegetables, leading to the inactivation of microbial contaminants and the stimulation of
secondary metabolism [78–80].

The combination of UV-C and US has been shown to improve the antimicrobial
capabilities of both [81], likely due to the low UV-C penetration of opaque and the high
real-time energy consumption of production. Alterations to the US field promote cavitation
and uniform UV-C exposure at the fruit surface. In addition, the use of agitation and
mixing in a free-flowing US bath can reduce the standing wave effect and the generation of
cavitation bubbles of different sizes to ensure uniform cavitation [80,82]. By changing the
US frequency, variation in UV-C intensity can be reduced, allowing the radiation to reach
the fruit surface more efficiently. Notably, synergies have been reported between US and
chemical disinfectants, surfactants, organic acids, and/or electrolyzed water related to both
surface decontamination and quality improvement [83–85]. For example, antimicrobial
effects against Cronobacter Sakazaki have been reported in guava fruit subjected to US at
37 kHz and 380 W in combination with NaOCl application [86].

Overall, physical treatments are appealing to many producers and consumers because
of their safety and effectiveness, but their application is still in the preliminary stage. In
particular, the effects and mechanisms associated with combined treatments require further
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validation. The development and optimization of physical treatments will pave the way
for improved postharvest management of guava and other sensitive commodities.

3. Chemical Treatments
3.1. 1-Methylcyclopropene (1-MCP) Treatment

1-MCP is a colorless, odorless, and non-toxic gas widely used in agriculture to delay
ripening and aging in fruits and vegetables by competitively binding to ethylene receptors.
1-MCP indirectly and directly affects postharvest disease resistance by modulating ethylene
signal transduction and induced systemic resistance (ISR), thus extending the shelf-life
of fruits and vegetables [87]. 1-MCP treatment is often combined with CA storage, CA
packaging, or edible packaging to delay the respiratory peak and ripening of fruits. Low
concentrations (300 nL·L−1 1-MCP) and short treatment durations (6 h) do not effectively
delay the respiratory peak of guava fruit, as ethylene signaling is incompletely blocked.
Nevertheless, higher concentrations (600 nL·L−1 1-MCP) and longer treatment durations
(12 h) have proven effective at extending the shelf-life of guava fruit to 25 d at 10 ◦C or 9 d
at 25–29 ◦C [34].

3.2. Calcium Salt Treatment

When fruits are immersed in a calcium salt solution, the calcium ions enter the cell
walls and form stable compounds, thereby improving the structural stability of the cell
walls and slowing softening and aging. Exposure to calcium salts also improves the shelf-
life by reducing respiration, protein catabolism, and spoilage susceptibility. However,
through fruits and vegetables treated with calcium salts are considered safe for human
consumption, calcium ions and other substances on the fruit surface may not be suitable
for direct consumption. Calcium salt treatment has shown promise for maintaining the
postharvest quality of guava fruit [88–90]. According to Deepthi et al. [91], 5–10 min of
treatment with 2% calcium nitrate could extend the shelf-life of guava fruit (cv. ‘Lucknow-
49’) to 23.83 d under cold storage (10 ± 10 ◦C and 90 ± 5% RH).

Calcium salt treatment can also be used in combination with other treatments to extend
the shelf-life of guava fruit. For example, a combination of calcium chloride treatment and
lemon grass fumigation significantly increased the content of ascorbic acid (AsA) and total
fruit gum, decreased the content of soluble solids (SSC), and curtailed Rhizopus soft rot in
guava fruit stored for 15 d at 8 ± 1 ◦C [92]. These effects may be attributed to the formation
of a protective layer on the surface of the fruit through a chemical reaction between calcium
chloride and lemon grass. Lemon grass has bactericidal and odor-controlling properties,
and the principal component of lemon grass oil (citral) can inhibit the growth of fungal
pathogens [93,94]. Furthermore, natural lemon grass extract can weaken transpiration by
forming a water-retaining layer on the fruit surface, as well as repair mechanical damage,
thereby reducing water loss and limiting decay during transport and storage.

3.3. Melatonin Treatment

Melatonin is an endogenous hormone which plays a significant role in fruit ripen-
ing and quality maintenance. Research suggests that melatonin treatment can improve
postharvest quality through several mechanisms: (i) reducing respiration; (ii) increasing
antioxidant capacity; and (iii) acting as a plant growth regulator to regulate ripening and
senescence. Melatonin has been used to delay postharvest ripening in a diverse array
of fruits, including apple [95], sweet cherry [96], banana [97,98], pear [99], peach [100],
kiwifruit [85,101], and mango [102]. Exogenous melatonin treatment can also increase the
disease resistance and decrease the incidence of decay in fruits during postharvest storage,
as has been demonstrated in litchi [103] and strawberry [104]. Fan et al. [105] reported
that exogenous melatonin treatment (600 µM, 2 h) remarkably delayed ripening, inhibited
postharvest anthracnose, improved antioxidant capacity, and reduced oxidative damage in
guava fruit.
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3.4. ε-Poly-L-Lysine Treatment

ε-Poly-L-lysine (ε-PL) is a cationic homopolyamide composed of 25–30 L-lysine
residues that are characterized by a unique connection between the ε-amino and α-carboxyl
of L-lysine. Due to its polycationic properties, ε-PL exhibits broad-spectrum antimicrobial
activity against bacteria, fungi, yeasts, and some viruses. For example, ε-PL can efficiently
inhibit Penicillium digitum and Botryis cinerea [106,107]. ε-PL is also degradable, heat-stable,
water-soluble, non-toxic, and environmentally friendly [108]. Therefore, ε-PL is considered
a promising natural antibacterial agent, and is wildly used as a food additive in Japan,
the Republic of Korea, the United States, and China [109]. Soaking guava fruit in ε-PL
diluent (200 mg/L) significantly delayed quality deterioration, reduced the decay rate,
and upregulates the activities of enzymatic antioxidants, and increased the contents of
non-enzymatic antioxidants [110].

3.5. Hydrogen Peroxide Treatment

Hydrogen peroxide solution can extend the shelf-life of fruits by inhibiting the growth
of microorganisms on the fruit surface at certain concentration. When hydrogen peroxide
breaks down, it forms a protective O2 barrier on the fruit surface which prevents the
growth of certain fungi. In addition, hydrogen peroxide is a strong oxidant which can both
clean and disinfect fruit surface, removing impurities and harmful substances. However,
high concentrations of hydrogen peroxide are harmful to fruits due to cellular oxidative
damage. Juven and Pierson [111] reviewed the antimicrobial activity of hydrogen peroxide,
as well as its applications in the food industry. Ismail et al. [92] reported that the use of
a hydrogen peroxide solution delayed the R-type linear growth of Rhizopus stolonifer, a
pathogen responsible for the spoilage of guava fruit. Formiga and Júnior [112] found that
storing guava in an atmosphere of hydrogen peroxide had a positive effect on prolonging
shelf-life and maintaining quality.

3.6. Acetaldehyde Treatment

Phospholipids affect the stability of cell membranes, and a reduction in phospholipids
can significantly reduce membrane integrity and selective permeability. Phospholipid
metabolism involves phospholipid D (PLD), lipolylacylhydrolase (LAH), lipoxygenase, and
their sequential reactions. Specifically, PLD initiates membrane deterioration. Acetaldehyde
is a naturally occurring volatile C6 aldehyde which strongly suppresses the activity of
phospholipase D (PLD) by regulating the transcription of genes related to the phospholipase
D family. In this way, acetaldehyde extends the shelf-life of fruits by delaying browning
and aging.

As well as protecting membrane integrity, acetaldehyde fumigation indirectly en-
hances the stress resistance of fruits. It has been reported that acetaldehyde fumigation
inhibits the growth of pathogenic fungi and induces the expression of genes encoding
defense-related enzymes, thus minimizing the postharvest decay in banana [113]. Gill
et al. [114] found that spraying guava fruit (cv. ‘Allahabad Safeda’) prior to harvest with a
0.015% v/v (1.6 mM) acetaldehyde solution was effective at preventing decay, reducing
pectin methylesterase activity, and extending the shelf-life to 28 d under cold storage
(6–8 ◦C and 90–95% RH) [114].

In summary, existing studies mainly focus on growth regulators, amino acid reagents,
inorganic reagents, and their combinations (Table 4). Besides the sterilization on the surface,
it mainly extends the shelf-life of guava and increases the antioxidant capacity of fruits
by regulating the activity of various enzymes and the expression of their coding genes.
However, due to food safety considerations, the use of chemical reagents has been greatly
limited, and the screening of available reagents and efficient treatments is still in the initial
stage. In addition, the pathways and functions of chemical signals in fruit are still unclear.
Research on chemical treatment can be a significant reference for the selection of high-
volume and low-cost fruit treatment methods, and provide new ideas and horizons for the
postharvest preservation methods of other varieties of fruits.
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Table 4. Chemical treatment on guava.

Cultivar Treatment Main Findings References

‘Lucknow-49’, ‘Allahabad
Safeda’, and ‘Apple Colour’

Immersed in 600 nL·L−1 1-MCP
aqueous solutions
for 12 h.

Extended the shelf-life to 25 d at 10 ◦C or 9 d at
25–29 ◦C. [34]

‘Lucknow-49’
Dipped at 2% calcium nitrate
solution for 5–10 min and stored
at 10 ± 10 ◦C with 90 ± 5% RH.

Extend the shelf-life of guava fruit to 23.83 d under
cold storage; increased the TSS and sensory rating
in 10 days.

[91]

Unknown

Dipped at CaCl2 at 2% for four
minutes and fumigation with
crude lemon grass oil
(6 mL/carton box).

Maintained the most appearance, physical,
chemical fruit properties at the sensory evaluation
and freed from rots at 8 ± 1 ◦C for 15 d.

[92]

’Jen-Ju Bar’

Soaked in 0, 100, 400, and
600 µmolL−1 melatonin solution
for 10 min and stored at 25 ± 1 ◦C
with 70–80% RH.

Maintained the quality of guava fruit and
enhanced its resistance to oxidation and disease by
improving the antioxidant and defense systems of
the fruit.

[105]

Unknown Immersed in ε-PL diluent
(200 mg/L) for 2 min.

Delayed the decline of quality and decay
incidences; increased the activity of
defense-related enzymes peroxidase and
polyphenol oxidase.

[110]

‘Pedro Sato’ Stored in a hydrogen peroxide
atmosphere.

The treatment showed positive effects on
extending the shelf-life and maintaining
the quality.

[112]

‘Allahabad Safeda’
Spraying guava fruit prior to
harvest with a 0.015% v/v
(1.6 mM) acetaldehyde solution.

Prevented decay, reduced pectin methylesterase
activity, and extended the shelf-life to 28 d under
cold storage.

[114]

4. Conclusions

Finding ways to effectively extend the shelf-life of guava fruit is imperative to support
the sustainability and growth of the guava industry. Studies have revealed the physiological,
biochemical, and genetic regulatory changes which occur in guava fruit during postharvest
transport and storage, and have been used to develop shelf-life extension techniques
(Figure 1). Researchers have developed concrete methods to extend the shelf-life of fruits,
including refrigeration, special packaging, and physical and chemical treatments. However,
the shelf-life of guava fruit is still limited to approximately 25 d under the most optimal
storage conditions.

Emerging technologies include combination methods, edible packaging, CA storage,
UV and US treatment, and chemical preservation. Expect for classical physical treatments
such as packaging and CA storage, other studies are at the initial stage. However, further
research is required to optimize these techniques and illuminate their precise modes of
action. Available materials, ray wavelengths, and reagents, as well as their dosage, duration,
and effective pathways, are prime areas for research exploration. Research ideas can
be obtained from many aspects. In the former studies, reviews of guava postharvest
preservation and other similar or identical families, genii, or even species are useful.
Considering guava itself, studies can focus on the known quality-related enzymes and
their genes, and try to summarize the signaling pathways and gene expression patterns
belonging to guava by referring to other fruit varieties with more mature models. There is
still a blank space to be filled in the field of postharvest preservation of guava, and research
on it will be of great help in the guava industry.
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