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Abstract: Fruits and vegetables are an important part of our daily diet and contain low-content
components that are crucial for our health. Detecting these components accurately is of paramount
significance. However, traditional detection methods face challenges such as complex sample
processing, slow detection speed, and the need for highly skilled operators. These limitations
fail to meet the growing demand for intelligent and rapid detection of low-content components in
fruits and vegetables. In recent years, significant progress has been made in intelligent rapid detection
technology, particularly in detecting high-content components in fruits and vegetables. However,
the accurate detection of low-content components remains a challenge and has gained considerable
attention in current research. This review paper aims to explore and analyze several intelligent
rapid detection techniques that have been extensively studied for this purpose. These techniques
include near-infrared spectroscopy, Raman spectroscopy, laser-induced breakdown spectroscopy,
and terahertz spectroscopy, among others. This paper provides detailed reports and analyses of
the application of these methods in detecting low-content components. Furthermore, it offers a
prospective exploration of their future development in this field. The goal is to contribute to the
enhancement and widespread adoption of technology for detecting low-content components in fruits
and vegetables. It is expected that this review will serve as a valuable reference for researchers and
practitioners in this area.

Keywords: fruits and vegetables; intelligent rapid detection; low-content components

1. Introduction

With the burgeoning development of the world’s economy, there is a growing concern
regarding food quality. Fruits and vegetables, considered daily essentials, are no longer
pursued solely for texture and flavor but have garnered attention for their nutritional value.
These essential ingredients encompass numerous low-content components, including bene-
ficial elements like vitamins and minerals [1,2], offering timely nutritional supplementation.
Concurrently, they also harbor potentially harmful components such as heavy metals,
fungi, and pesticide residue [3,4], posing a significant threat to human health if consumed
in excess. Timely and precise detection of these low-content components in fruits and
vegetables is imperative for safeguarding human health.

Conventional methods for detecting low-content components in fruits and vegetables,
such as spectrophotometric, titration, atomic absorption spectrometry (AAS), atomic fluo-
rescence spectrometry (AFS), and inductively coupled plasma-mass spectrometry (ICP-MS),
often involve complex preprocessing, cumbersome detection procedures, long analysis
times, and demanding requirements for inspectors. These factors hinder the real-time
monitoring of fruits and vegetables. However, advancements in science and technology
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have led to the emergence of new rapid detection methods that simplify the process and
reduce analysis times. While intelligent technologies have made notable strides in detecting
high-content substances like sugar, moisture, and starch content, there is limited research
on the detection of low-content components. Moreover, the accuracy of intelligent rapid
detection technology remains a focal point of current research. Despite these advancements,
intelligent rapid detection technology still has some drawbacks, including lower accuracy
compared to traditional methods and higher costs. Therefore, continuous improvement
is necessary to refine and enhance this technology. This paper aims to explore the current
development status, applications, and existing challenges of intelligent rapid detection
technology while proposing future research directions to inspire further advancements in
the field.

2. Low-Content Components in Fruits and Vegetables
2.1. Nutrients in Fruits and Vegetables

Fruits and vegetables contain various essential components that are not just limited to
protein, sugar, and fat. These components, including trace minerals like Fe, Zn, Cu, and Mn,
as well as vitamins A, C, and E, amino acids, flavonoids, polyphenols, and other bioactive
compounds, play a significant role in maintaining human health [5,6]. Minerals are vital for
regulating physiological functions such as substance metabolism, oxygen transportation,
and cell signaling, ensuring the proper functioning of organs in the human body. Minerals
are also key components that makeup bones and teeth, helping to maintain the strength and
stability of the bone structure [7–9]. On the other hand, vitamins are life-sustaining compo-
nents that maintain normal body functions by regulating various biochemical processes
and metabolic pathways within cells. Different types of vitamins play different roles in
cells, including participation in energy metabolism, cell signaling, DNA synthesis, immune
function, maintenance of cellular structure, etc., which are essential for maintaining normal
physiological functions of the body [10–12]. In addition, people can also absorb many
nutrients from fruits and vegetables, such as anthocyanins, carotene, flavonoids, and other
low-content components, all of which play a crucial role in maintaining health. Despite
their low content in food, these nutrients are indispensable for promoting human health. It
is crucial to detect these nutrients in fruits and vegetables in a timely and rapid manner.
This not only improves the quality of produce in the market but also safeguards the health
of the population.

2.2. Ingredients Required for the Growth of Fruits and Vegetables

Low-content components in fruits and vegetables not only play a vital role in human
health but also contribute significantly to plant growth and maturation. One example
is gibberellin, which can be found in tomatoes and peppers in varying concentrations,
ranging from micrograms to milligrams. It stimulates the growth of plant stems and
promotes flowering and fruiting [13]. Minerals like magnesium act as activators for various
enzymes in plant metabolism and nucleic acid synthesis. Iron, on the other hand, is
primarily found in plant chloroplasts and has an indirect impact on plant photosynthesis,
ensuring efficient utilization of light energy for energy conversion. Therefore, the timely
detection of these low-content components in fruits and vegetables is crucial for monitoring
plant growth [14,15]. By closely monitoring these elements, farmers can make necessary
adjustments to their planting programs, ensuring plants receive adequate nutrition. This,
in turn, enhances fruit yield and quality, contributing to the scientific management of
agricultural production.

2.3. Toxic Residues in Fruits and Vegetables

Fruits and vegetables often contain toxic components, which are attributed to the use of
pesticides in their cultivation. Farmers rely on pesticides to prevent insects, control weeds,
and clear pathogens. However, excessive pesticide usage leads to the presence of pesticide
residues in these crops. In China, the maximum residue limit (MRL) for organophosphorus
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pesticides in fruits and vegetables falls between 0.01 mg/kg and 0.5 mg/kg, according to
the national standard GB2763-2021 [16]. Consuming fruits and vegetables with pesticide
residues poses significant health risks. These pesticide chemicals, if the dose is too large,
will lead to acute poisoning in the human body, and in severe cases, it may even be life
threatening. Long-term exposure to low doses of pesticides can also result in chronic health
problems, such as damage to the nervous system, immune system, and an overburdened
liver [17–20]. Furthermore, pesticide residues absorbed by the liver during plant growth,
along with the uptake of heavy metal substances from the soil, can result in heavy metal
poisoning, cellular cancer, and chronic diseases. Therefore, the implementation of intelligent
and rapid detection technology for harmful substances in fruits and vegetables before they
reach the market is crucial for enhancing food safety and preventing health issues caused
by these harmful substances. The development of such detection methods is urgently
needed [21–24].

Research and detection of low-content components in fruits and vegetables has re-
ceived significant attention due to the increasing complexity of food safety concerns. To
address the growing demand for accurate and efficient detection methods, there is a need
for intelligent rapid detection technology. This technology is expected to provide a more
precise and efficient way of detecting low-content components to quickly and accurately
detect harmful substances in fruits and vegetables, so as to screen them and ensure the
health problems of the residents’ diet. The goal of research in this field is to bridge existing
gaps and provide comprehensive support for public health protection.

3. Rapid and Intelligent Detection Technology for Low-Content Components
3.1. Near-Infrared Spectroscopy (NIR)

NIR is mainly due to the non-resonant nature of molecular vibrations. When near-
infrared light illuminates a sample, the molecules absorb light at a specific frequency, which
causes the molecules to vibrate or rotate, producing leaps in the molecular energy levels.
These jumps result in a reduction in the intensity of the transmitted light. The relevant
information is captured and converted into electrical signals through optical fibers, and
these signals are then transmitted to a spectrometer to form a near-infrared spectrum.
The spectra are analyzed using chemometrics, from which the relevant information on
low-content components in fruits and vegetables can be extracted and describe the chemical
composition of an unknown mixture or food. Then, the detection model is established
by combining spectral data and machine learning. By inputting the spectral data of fruits
and vegetables into the detection model, rapid and intelligent detection can be achieved.
Reflectance occurs when a sample is illuminated by a light source, absorbing some of the
light while reflecting the rest. The receiver then captures the intensity of this reflected light.
In transmission mode, the light source passes through the sample, where it is partially
absorbed and scattered, with the remaining portion penetrating the sample and reaching
the receiver, which records the intensity of the transmitted light. In diffuse reflectance
mode, NIR light is directed onto the sample surface, where some of it is reflected. The
receiver then captures and records the intensity of this reflected light, forming a reflectance
spectrum of the sample. Reflectance is commonly utilized to assess surface characteristics,
allowing for the evaluation of fruit and vegetable appearance quality, defects, and ripeness
by analyzing the properties of the reflected light. Meanwhile, transmission enables light
to penetrate the sample, providing insights into its internal organization and composition.
Diffuse reflectance involves light that has been scattered multiple times within the sample,
yielding more comprehensive information, used for analyzing the chemical composition,
nutritional content, and tissue structure of fruits and vegetables [25–27].

NIR is a valuable technique for analyzing chemical bonds, including C–O, O–H, N–H,
and S–H, among others, thus providing valuable insights into the composition of organic
matter and compounds found in samples. Compared to traditional detection methods, NIR
spectroscopy offers several advantages such as no preprocessing requirements, quick detec-
tion times, easy operation, and absence of pollution. Its effectiveness has been demonstrated
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in the detection of various low-content components, including carotenoids, polyphenols,
fatty acids, and thioglucosides, in a wide range of fruits and vegetables [28].

3.2. Hyperspectral Imaging (HSI)

Hyperspectral imaging (HSI) technology is a rapid, nondestructive, and intelligent
detection technique with timely results. The HSI detection device depicted in Figure 1
consists of a hyperspectral camera, an imaging spectrometer, a fiber optic halogen lamp,
and a computer [29]. The technology is based on spectral images; HSI combines spectral
data and computer images when a halogen lamp emits a beam of light on the sample, and
the hyperspectral camera receives the light reflected by the sample, takes pictures, and
captures the optical properties of the same crop over a continuous wavelength range.
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HSI technology enables the extraction of internal compositional details of fruits and
vegetables by capturing two-dimensional spectral information. On the other hand, com-
puter images provide physical information such as external size, shape, and color, facilitat-
ing intelligent classification of these agricultural products.

HSI technology offers numerous advantages, particularly in terms of high-resolution
and real-time capabilities. Currently, extensive research is being conducted to explore the
application of HSI technology in the detection of low-content components in fruits and
vegetables. This research focuses on estimating various internal chemical composition
parameters such as nitrogen, phosphorus, chlorophyll, leaf area index, yield, and water
content. By employing HSI technology for real-time monitoring of crop growth, valuable
information regarding the physiological state and internal composition of crops can be
obtained [30–33].

Hyperspectral spectroscopy, compared to near-infrared spectroscopy, offers a greater
capacity for capturing a larger number of wavelength bands. This leads to the generation of
extensive and high-dimensional spectral data, which provides more detailed information
about the internal composition of fruits and vegetables. However, dealing with such vast
data introduces certain challenges, including redundant information and interference. To
address these challenges and ensure accurate analysis, it becomes necessary to employ
various techniques for extracting wavelengths and preprocessing the data. Additionally,
the construction of precise prediction models based on this extensive data requires careful
consideration and fine-tuning.

3.3. Raman Spectroscopy

Raman spectroscopy consists of Rayleigh scattering and Raman scattering. Scattering
occurs when a laser beam of a specific frequency strikes the surface of a sample. In most
cases, the scattered light has the same frequency as the incident light, and this scattering,
known as Rayleigh scattering, is a type of elastic scattering in which no exchange of energy
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occurs during the process. However, there is another case where some of the scattered
light has a different frequency than the incident light, which is inelastic scattering due to
interaction with the sample, called Raman scattering. Since Raman spectroscopic detection
is based on inelastic scattering, Rayleigh scattering does not provide useful information.
Raman scattering detects samples by inelastic scattering of molecular vibrations. Figure 2
illustrates the basic principle of Raman scattering: when a molecule in its ground state is
irradiated by a laser, it is excited and polarized. Electrons jump to higher energy levels and
then return to lower energy levels, resulting in a change in the frequency of the scattered
light. A decrease in frequency is called a Stokes line and an increase in frequency is called an
anti-Stokes line. By analyzing Raman spectroscopic data (including vibrational frequencies,
peak position changes, and peak widths), important information about the biochemical
state and compositional structure of a sample can be obtained [34–36].

Raman spectroscopy is known for its ability to detect low-content components in fruits
and vegetables, but its main limitation is its weak signal strength. In 1974, Fleischmann
et al. discovered that the adsorption of pyridine on a rough silver electrode could greatly
enhance the Raman scattering signal. Building on this, Moskovits et al. proposed that the
collective oscillation of electrons in nanostructures on metal surfaces contributes to the
signal enhancement in Raman spectroscopy. As a result, the technique of surface-enhanced
Raman spectroscopy (SERS) emerged, which integrates precious metals to amplify Raman
signals [37–40]. Both Raman spectroscopy and SERS have become powerful tools for
detecting low-content components in fruits and vegetables. The application of Raman
spectroscopy has expanded to include the detection of heavy metal ions, microorganisms,
nutrients, and pesticide residues [41,42].
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3.4. Laser Induced Breakdown Spectroscopy (LIBS)

LIBS is presented in Figure 3. This technique utilizes a high-power pulsed laser to
excite a sample, causing it to undergo excitation through numerous pulses in a short period.
This process leads to the formation of a weak electron plasma. After the plasma diffuses and
cools down, the excited atomic and ionic species within the plasma emit an optical signal.
The signal is then collected and transmitted to a spectrometer. By analyzing the spectral
information collected by the spectrometer, a computer creates a characteristic spectrum.
The composition of the tested samples, along with stoichiometry, can be rapidly determined
by analyzing these characteristic spectra. This enables quantitative and qualitative analysis
of the target elements [44,45].

The LIBS technique suffers from several limitations such as poor stability, inaccurate
measurement, insufficient sensitivity, plasma shielding effect, and interference from com-
plex matrix effects, which restrict its practical applications [46]. Although LIBS is faster
and causes minimal damage to samples, it still has room for improvement compared to
traditional detection techniques such as inductively coupled plasma mass spectrometry and
atomic absorption spectrometry. In recent years, several studies have emerged aiming to
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enhance the performance of LIBS, involving both algorithm optimization and modifications
to the technique itself. Some researchers have focused on optimizing the algorithm to
improve the effectiveness of LIBS detection. For example, Meng et al. [47] incorporated
artificial neural networks (ANN) into the detection of copper in soil, which led to improved
accuracy and stability of the analytical results. Additionally, modified LIBS techniques
that utilize nanoparticles, metal substrates, and plasma confinement have been explored.
However, there is currently limited research on the application of these improved LIBS
techniques in the detection of fruit and vegetable components. It is expected that with
continued optimization, the application of LIBS in the quantitative detection of fruits and
vegetables will expand in the future.
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3.5. Nuclear Magnetic Resonance (NMR)

NMR is an important technique that utilizes the magnetic properties of atomic nuclei
to study the structure, dynamics, and interactions of compounds without damaging the
sample. Currently, NMR techniques are categorized into various types depending on the
object to be measured, including 1H, 13C, 19F, and 31P. Since hydrogen atoms are widely
present in many compounds, 1H spectroscopy is one of the most widely used quantitative
NMR methods. The nucleus of an atom with a fixed magnetic moment absorbs electro-
magnetic waves of a specific frequency in the presence of a magnetic field, jumps from a
low energy level to a high energy level, and generates a detection signal. By analyzing
the NMR spectra formed by these signals, the structure, dynamics, and interactions of
the compounds in the sample can be understood. This technique can be divided into two
categories: low-field NMR technology and high-field NMR technology. Low-field NMR
detection technology utilizes a magnetic field strength of less than 0.5 T. The instruments
used for this method are affordable and widely employed in practical applications due to
the lower magnetic field strength. In contrast, high-field NMR detection technology refers
to nuclear magnetic resonance conducted with a magnetic field strength exceeding 1.5 T.
The higher magnetic field strength in this method results in a superior signal-to-noise ratio,
increasing the accuracy and sensitivity of the measurements. Therefore, depending on
the desired application and equipment budget, researchers can choose between low-field
NMR or high-field NMR for their studies. Both techniques provide insight into and identi-
fication of the structure of a sample and play an important role in various scientific fields.
NMR technology is widely used in various industries such as agriculture, energy, medical
treatment, and food safety due to its simplicity, minimal sample damage, rapid detection
speed, and its ability to provide quantitative and qualitative analysis when combined with
chemometrics [49,50]. Figure 4 illustrates a simplified schematic of the NMR system. The
underlying principle of NMR technology involves the application of a radio frequency (RF)
excitation source to administer a specific frequency RF signal to the sample. When the
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sample is exposed to the RF signal, the hydrogen nuclei within undergo NMR phenomena
and absorb energy. Subsequently, the nuclei in the sample relax at a specific frequency and
amplitude, releasing energy. By measuring the relaxation time width of each nucleus, it
becomes possible to calculate the concentration of each nucleus and the content of other
chemical components in the sample [51–53].

Foods 2024, 13, 1116 7 of 27 
 

 

NMR or high-field NMR for their studies. Both techniques provide insight into and iden-
tification of the structure of a sample and play an important role in various scientific fields. 
NMR technology is widely used in various industries such as agriculture, energy, medical 
treatment, and food safety due to its simplicity, minimal sample damage, rapid detection 
speed, and its ability to provide quantitative and qualitative analysis when combined with 
chemometrics [49,50]. Figure 4 illustrates a simplified schematic of the NMR system. The 
underlying principle of NMR technology involves the application of a radio frequency 
(RF) excitation source to administer a specific frequency RF signal to the sample. When 
the sample is exposed to the RF signal, the hydrogen nuclei within undergo NMR phe-
nomena and absorb energy. Subsequently, the nuclei in the sample relax at a specific fre-
quency and amplitude, releasing energy. By measuring the relaxation time width of each 
nucleus, it becomes possible to calculate the concentration of each nucleus and the content 
of other chemical components in the sample [51–53]. 

   
Figure 4. Simplified schematic of an NMR  system.  

Despite its advantages, the application of the NMR technique for component quanti-
fication is limited due to certain drawbacks, such as low resolution and high detection 
environmental requirements. These limitations impact the accuracy of detection. In recent 
years, researchers have been working on addressing these limitations by integrating low-
field NMR with near-infrared spectroscopy techniques for joint analysis. For instance, 
Meng et al. [54] distinguished the origins of various teas by merging NMR and NIR tech-
niques, integrating the spectral data from both methods to create novel NMR-NIR spectra. 
These combined spectra were then analyzed using chemometric approaches. The findings 
revealed that the accuracy of results derived from analyzing NMR-NIR data ranged from 
86.2% to 95.8%, surpassing the accuracy achieved with NMR alone (68.2% to 78.7%) and 
NIR alone (80.0% to 89.3%). It is anticipated that further advancements in this area of re-
search will provide a new direction for enhanced detection of components in fruits and 
vegetables through the integration of NMR with NIR. 

3.6. Terahertz Spectroscopy (THz) 
THz, which operates in the frequency range of 0.1 terahertz to 10 terahertz, mainly 

detects slow vibrations of molecules and is a technique used for substance detection. It is 
intermediate between microwave and infrared light on the electromagnetic spectrum, cor-
responding to wavelengths of 30 µm to 3000 µm. An early terahertz spectrometer was the 
time-domain spectrometer (THz-TDs). The schematic of the device for THz-TDs is shown 
in Figure 5. The ultrafast pulse is generated by a femtosecond laser and is divided into a 
pump beam and a probe beam by a beam splitter. The pumped beam excites the terahertz 
emitter to produce a terahertz time-domain pulse, which is collimated through a parabolic 
mirror and focused on the sample. The terahertz pulse carrying the sample information is 
again collimated and focused onto the terahertz detector. The probe beam is collinear with 
the terahertz beam and is used to control the gate detector and measure the instantaneous 

Figure 4. Simplified schematic of an NMR system.

Despite its advantages, the application of the NMR technique for component quan-
tification is limited due to certain drawbacks, such as low resolution and high detection
environmental requirements. These limitations impact the accuracy of detection. In re-
cent years, researchers have been working on addressing these limitations by integrating
low-field NMR with near-infrared spectroscopy techniques for joint analysis. For instance,
Meng et al. [54] distinguished the origins of various teas by merging NMR and NIR tech-
niques, integrating the spectral data from both methods to create novel NMR-NIR spectra.
These combined spectra were then analyzed using chemometric approaches. The findings
revealed that the accuracy of results derived from analyzing NMR-NIR data ranged from
86.2% to 95.8%, surpassing the accuracy achieved with NMR alone (68.2% to 78.7%) and
NIR alone (80.0% to 89.3%). It is anticipated that further advancements in this area of
research will provide a new direction for enhanced detection of components in fruits and
vegetables through the integration of NMR with NIR.

3.6. Terahertz Spectroscopy (THz)

THz, which operates in the frequency range of 0.1 terahertz to 10 terahertz, mainly
detects slow vibrations of molecules and is a technique used for substance detection. It
is intermediate between microwave and infrared light on the electromagnetic spectrum,
corresponding to wavelengths of 30 µm to 3000 µm. An early terahertz spectrometer was
the time-domain spectrometer (THz-TDs). The schematic of the device for THz-TDs is
shown in Figure 5. The ultrafast pulse is generated by a femtosecond laser and is divided
into a pump beam and a probe beam by a beam splitter. The pumped beam excites the
terahertz emitter to produce a terahertz time-domain pulse, which is collimated through
a parabolic mirror and focused on the sample. The terahertz pulse carrying the sample
information is again collimated and focused onto the terahertz detector. The probe beam is
collinear with the terahertz beam and is used to control the gate detector and measure the
instantaneous terahertz electric field. The delay system adjusts the time delay between the
pump beam and the probe beam and allows iterative sampling of the terahertz timeline.
By scanning the time delay, the time-domain waveform of the terahertz pulse is obtained,
and the processed terahertz spectral data are visualized in a spectrum diagram. Through
meticulous analysis of the terahertz spectrogram and assessment of the absorption peak’s
intensity, specific molecular structures present in the sample can be inferred, thereby
elucidating the possible components [55–57].
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In the years leading up to the 1980s, the limited availability of instruments for ma-
nipulating and studying terahertz waves led to a heavy reliance on microwave and in-
frared spectroscopy in electromagnetic wave research. However, with advancements in
ultrafast femtosecond lasers and terahertz detectors, the field of terahertz spectroscopy
started gaining traction. Researchers began delving into the unexplored realms of terahertz
spectroscopy, leading to a gradual increase in the application of this technology [59–61].
Terahertz spectroscopy offers numerous advantages [62,63]. THz produces minimal energy
release during the detection process, making nondestructive sample detection possible.
Compared to other detection techniques, terahertz waves have a high penetration capa-
bility and relatively low attenuation after penetration. THz produces unique fingerprint
spectra for different samples, which can reveal physical and chemical information inside
the sample and be used for qualitative and quantitative analysis of the samples.

Despite its delayed initiation, terahertz spectroscopy is progressively evolving into a
promising analytical technique in the agricultural field owing to its outstanding penetration
capabilities, rich spectral information, swift detection, and minimal sample damage.

4. Application of Rapid and Intelligent Detection Technology

Most advanced detection technologies integrate spectral and frequency data with
chemometrics and machine learning to enable intelligent detection of fruit and vegetable
components. The detection process is outlined in Figure 6. This comprehensive analysis
typically comprises two primary stages: data correction and prediction. The solid-line
segment represents the data correction phase, which aims to establish functional rela-
tionships. Initially, spectral or frequency data of fruits and vegetables are captured by
the device, and their compositional details are determined using conventional analytical
methods. Subsequently, chemometrics is applied to remove noise from the spectra or
frequency data and correlate it with compositional data to construct an analytical model.
The dotted-line segment illustrates the prediction phase. Here, information about the fruit
and vegetable under assessment is collected, processed, and fed into the model. Once
the model completes its analysis, it facilitates swift and intelligent detection of fruit and
vegetable composition [64,65].
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4.1. Near-Infrared Spectroscopy (NIR)

In recent years, NIR spectroscopy has gained significant attention as a promising
approach for various research applications due to its affordability, ease of use, and real-
time capabilities. Researchers from both domestic and international backgrounds have
successfully utilized this technique, combined with chemometrics, to establish prediction
models for the qualitative and quantitative detection of internal constituents in fruits and
vegetables. To provide a comprehensive overview of the applications of NIR spectroscopy
detection, we have summarized the findings in Table 1.

Table 1. Application of NIR spectroscopy to the low-content components of fruits and vegetables.

Target of
Detection Component Preprocessing Variable

Selecting
Optimal
Model Effect Reference

Blueberry SSC, Vitamin C MSC + 2-DER CARS + RF PLSR

SSC:
RMSEP = 0.9673

RP = 0.7376
Vitamin C:

RMSEP = 3.6885
RP = 0.7021

[66]

Blueberry Total Flavonoids,
Anthocyanins 1-DER / PLSR

Total Flavonoids:
RP

2 = 0.7968
Anthocyanins:
RP

2 = 0.7902

[67]

Broccoli Glucosinolates / / PLSR R2 = 0.5–0.78
RPD = 1.35–2.19 [68]

Tomato Lycopene, β-carotene MSC + 2-DER / PLS-1

Lycopene:
RP

2 = 0.9996
β-carotene:

RP
2 = 0.9981

[69]

Mango As / PCA + SPA PLS R2 ranged from 0.9 to 0.96 for
different arsenic concentrations [70]

Cucumber Diazinon Residue MSC + 1-DER PSO PLS-DA RCV = 0.91
SECV = 3.22 [71]

Navel Oranges Dichlorvos / PSO PLS R2 = 0.8732 [72]

Cucumber N, Mg SNV GA KNN Training Set Recognition Rate: 98%
Prediction Set Recognition Rate: 96% [73]

Woody Plant N, P, Ca data / PLSR
Ca: R2 = 0.91
P: R2 = 0.74
N: R2 = 0.95

[74]

4.1.1. Health-Promoting Components

(NIR) spectroscopy detection technology is widely used in analyzing the nutrient
composition of fruits and vegetables as an indirect detection method. This technology
utilizes NIR spectral features and various algorithms to accurately identify the nutrients in
agricultural products. As a result, it is an effective tool for assessing the nutritional value of
these produce items.
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Wang et al. [66] developed an analytical model for the detection of vitamin C content
in blueberries using NIR spectroscopy. They compared different preprocessing techniques
for spectral data and used competitive adaptive reweighted sampling (CARS) and Ran-
dom Frog (RF) for variable selection. They found that the multiplicative scatter correction
combined with the second derivative (MSC + 2-DER) preprocessing approach was the
most suitable for handling the raw spectra of blueberries, and can effectively remove the
interfering information in the spectra. Combining this approach with partial least square
regression (PLSR), they established a model that provided a theoretical foundation and
data support for the intelligent and rapid detection of vitamin C contents in blueberries.
In a similar study, Liu et al. [67] developed an analytical model for total flavonoids and
anthocyanins content in blueberries by using several methods to preprocess the spectral
data, combined with PLSR. Their research served as a basis for monitoring the nutritional
quality of fruits and vegetables. Sahamishirazi et al. [68] used NIR for spectral scanning of
broccoli, then the scanned broccoli was subjected to chemical indexes, and the processed
spectral data, as well as the chemical indexes, were combined to establish a PLSR model
to analyze the content of glucosinolates in broccoli. Their model exhibited exceptional
performance in determining glucosinolates, enabling the rapid detection of glucosino-
lates without the need for high-performance liquid chromatography (HPLC) analysis.
Pedro et al. [69] developed a model that correlated the chemical constituents of tomatoes,
such as lycopene and β-carotene, with the characteristics of tomato near-infrared spectra.
They employed preprocessing techniques such as MSC + 2-DER to process the spectra and
then the characteristic wavelengths will be extracted from the data to obtain the optimal
detection model using PLS-1 modeling. This study further highlights the feasibility of
NIR spectroscopy for detecting low-content components in fruits and vegetables and its
practical application in the quality sorting of fruits and vegetables by Unilever Brazil.

4.1.2. Harmful Components

The use of calcium carbide has been banned in the artificial ripening of fruits as it
contains traces of arsenic. Lakade et al. [70] utilized NIR spectroscopy along with partial
least squares (PLS) to detect the presence of As content in mangoes and determine whether
calcium carbide was used in the ripening process. This study employed unsupervised
techniques, such as principal component analysis (PCA), to differentiate between naturally
ripened and artificially ripened mango samples based on spectral data. Subsequently,
successive projections algorithm (SPA) was used to extract the characteristic wavelength
of the spectrum, and PLS was used to model the As content in mango, so as to detect
the use of calcium carbide in the ripening process. This methodology is crucial in pre-
venting the introduction of toxic substances into the market through fruits. In a study by
Jamshidi et al. [71], software based on Vis-NIR spectroscopy techniques was developed.
The researchers utilized various preprocessing methods to denoise and correct the spectra,
incorporating physicochemical data. PLS models and partial least squares-discriminant
analysis (PLS-DA) models were established to predict the diazinon content in cucumbers
and categorize cucumbers based on diazinon residue. Xue et al. [72] employed Vis-NIR
spectroscopy to identify pesticide residue concentrations in navel oranges. They utilized
PLS in conjunction with the particle swarm optimization (PSO) algorithm for variable
selection and model optimization. Their research confirmed the feasibility of quantita-
tively detecting dichlorvos in navel oranges using variable selection Vis-NIR spectroscopy
and chemometrics.

4.1.3. Components Required for Fruit and Vegetable Growth

Nitrogen (N), phosphorus (P), magnesium (Mg), and other low-content components
play a pivotal role in the growth of fruits and vegetables. These components actively
contribute to the construction of proteins and chlorophyll formation in the body of fruits
and vegetables, thereby promoting their growth and development. Additionally, they
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modulate the physiological activities of plants, showcasing significant importance in the
context of fruits and vegetables.

Shi et al. [73] developed a detection model using NIR spectroscopy to analyze the
levels of N and Mg in cucumbers. They optimized the model by determining the number of
principal component factors and the K value using a combination of the K-nearest neighbor
(KNN) method and genetic algorithm (GA) interactive validation. The NIR spectral data
were preprocessed and the total number of subintervals were optimized to obtain the
best GA-KNN model. This study demonstrated the feasibility of using NIR spectroscopy
for rapid detection of N and Mg in cucumbers. In a separate study, Petisco et al. [74]
utilized NIR reflectance spectroscopy to detect the content of N, P, and Ca in 18 woody
plants. The spectral data underwent preprocessing using the first derivative (1-DER) and
second derivative (2-DER) methods in order to establish correction equations. The models
developed through PLSR and multiple linear regression (MLR) were compared, and PLSR
was found to exhibit superior accuracy and effectiveness in detecting the levels of Ca in the
woody plants.

NIR spectroscopy has proven to be a well-established technique for detecting the
composition of fruits and vegetables, as evidenced by numerous studies. However, one
challenge in analyzing NIR spectra is the presence of interference from environmental
factors and the samples themselves. In order to address this issue, Jiao et al. [75] pro-
posed a systematic evaluation framework for quantifying the impact of preprocessing and
identifying an appropriate de-interference approach for multiple datasets. Nevertheless,
since the effectiveness of preprocessing depends on the specific data, there is no univer-
sal solution available. It is important to note that during spectrum preprocessing, the
removal of useful information may lead to an increase in detection errors. To overcome
this, Abrahamsson et al. [76] introduced a method based on time-resolved spectroscopy
and diffusion theory to correct spectral data, which improved the predictive power of the
method by 50% compared to a model solely based on traditional NIR data. Moreover,
in addition to addressing the linearity aspect of spectra, some researchers are exploring
ways to enhance NIR spectra from a nonlinear perspective. Lv [77] and others proposed
a denoising stacked autoencoder model that effectively extracts low-dimensional feature
information from NIR spectra by evaluating robust samples. These advancements in NIR
spectroscopy show great potential for enhancing its application in component detection.

4.2. Hyperspectral Imaging (HSI)

HSI technology is a cutting-edge form of intelligent detection that combines tradi-
tional imaging technology with spectroscopic technology. This integration allows for the
precise, efficient, and nondestructive collection of physiological data pertaining to fruits
and vegetables, covering aspects such as growth patterns, pathological characteristics, and
quality attributes.

In recent years, there has been a shift in the focus of HSI technology research from
qualitative to quantitative analysis of fruits and vegetables. This shift is evident from
the growing body of literature exploring the application of HSI technology to accurately
measure the composition of these agricultural products (Table 2) [78]. This emerging
research trend represents a significant advancement in the field of HSI technology, as it
provides a more precise and objective approach to analyzing the composition of fruits
and vegetables.

Table 2. Application of HSI to the low-content components of fruits and vegetables.

Target of
Detection Component Preprocessing Variable Selecting Optimal Model Effect Reference

Acerolas Vitamin C SNV+SG PCA CLS The amount of vitamin C gradually
decreases during growth. [79]

Potato Vitamin C MSC CARS FDA + BPNN R2 = 0.999
REMSP = 0.1727 [80]

Pomelo Vitamin C / / RBF + PLS RMSEV = 41.381 mg/kg [81]
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Table 2. Cont.

Target of
Detection Component Preprocessing Variable Selecting Optimal Model Effect Reference

Potato Chlorophyll / / PLSR R2 = 0.93~0.97 [82]
Cucumber Chlorophyll SNV PCA MLR R2 = 0.8712 [83]

Honey Peach Chlorophyll / SPA PLS, SPA-PLS

PLS:
RP

2 = 0.904
RMSEP = 0.633%

SPA-PLS:
RP

2 = 0.858
RMSEP = 0.751%

[84]

Kale and Basil Cadmium / RF+PCA ANN
Ability to classify plants according
to cadmium concentration above or

below 0.2 mg/kg.
[85]

Lettuce
Leaves Cadmium 1-DER WT-ST MLR RP

2 = 0.7905
RMSEP = 0.0096 [86]

4.2.1. Health-Promoting Components

Assessment of the nutritional value of fruits and vegetables relies heavily on their
low-content composition. In a study conducted by Malegori et al. [79], ten acerolas were
examined at different ripening stages (green, yellow, and red) based on color. Hyperspectral
imaging (NIR-HSI) and Fourier transform near-infrared spectroscopy (FT-NIR) were used
to obtain information about the samples. Preprocessing techniques such as standard normal
variate (SNV) and Savitzky–Golay (SG) were applied to ensure consistency in the spectral
data. The classical least squares (CLS) model was utilized to identify the presence of vitamin
C by comparing the spectra of the samples with the reference spectra (samples containing
different concentrations of vitamin C) and to generate the corresponding distribution
maps, which showed that the vitamin C content in the different fruit regions in the needles
gradually decreased during the maturation process. Similarly, Guo et al. [80] developed
a model for detecting vitamin C content in potatoes using Fisher’s discriminant analysis
(FDA) and data fusion. Various preprocessing methods were compared, and multiple
scattering correction (MSC) was found to be the optimal approach for potato spectral data.
Competitive adaptive reweighted sampling (CARS) was used for variable selection and
reducing redundant information in the spectra. The processed data were combined with
FDA to establish a backpropagation neural network (BPNN) model to predict the range of
vitamin C. Fusion of FDA with the spectral data at the extracted characteristic wavelengths
to form a new variable can reduce the effect of correlation between variables on the model,
which was used in the BPNN model to improve the prediction accuracy of the content of
vitamin C in potatoes. In another study, Chen et al. [81] utilized near-infrared hyperspectral
imaging and the RBF-PLS model to rapidly detect pomelo quality. Partial least squares
(PLS) is a multivariate linear regression analysis method, which is not as effective as
nonlinear regression in detecting complex objects when facing them. The authors improved
PLS by invoking the nonlinear kernel function Gaussian radial basis function (RBF) as
an algorithmic embedding for PLS and optimized the modeling process parameters. The
compositional data in pomelo were input into the RBF-PLS model for model training, the
model was detected with unknown samples, and the prediction results were also quite
impressive. The experimental results show that the proposed RBF-PLS model combined
with near-infrared hyperspectral imaging technology is feasible to quantitatively detect the
target content of pomelo fruits. They provide valuable guidance for future developments
in this field.

4.2.2. Chlorophyll

Chlorophyll is an essential component in the process of photosynthesis, and its con-
centration in plants typically ranges from 0.5 to 3 mg/g. Plants that have a deficiency in
chlorophyll find it challenging to efficiently utilize sunlight for nutrient replenishment,
resulting in slow growth and reduced yields [87].
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Kjær et al. [82] used HSI techniques to predict the concentration of chlorophyll in
potatoes. They conducted an experiment with four different potato varieties subjected to
various treatments and light conditions to induce changes in the relative content of chloro-
phyll. The same model was then utilized to detect chlorophyll content in the potatoes.
The results demonstrated consistent responses of the different potato varieties to the treat-
ments and light conditions, with R2 values ranging from 0.93 to 0.97. This method shows
promise for predicting chlorophyll content in potatoes. Chlorophyll content in plants is
closely related to nitrogen content, a key component of chlorophyll. Shi et al. [83] collected
spectral data of multiple leaves from nitrogen-deficient and normal plants, respectively,
using hyperspectral imaging techniques. They then determined the accurate chlorophyll
content data in the leaves using high-performance liquid chromatography (HPLC), solved
the problem of scattering interference in the estimation of chlorophyll concentration in
cucumber by using standard normal variables (SNV), and established a calibration model
to correlate the spectra with the chlorophyll concentration determined by HPLC. By com-
bining the model with near-infrared hyperspectral image data to calculate the chlorophyll
distribution map on cucumber leaves, the obvious difference between nitrogen-deficient
leaves and control leaves could be directly observed. This approach helps overcome the
problem of uneven nutrient distribution in fruits and vegetables, thereby enhancing overall
yield. In another study, Sun et al.’s [84] investigation determined that chlorophyll content
decreases significantly when peach is infected by pathogens. Thus, chlorophyll content
was detected by using HSI and honey peach rot was recognized based on the chlorophyll
level. In this study, three optimal wavelengths (617 nm, 675 nm, and 818 nm) were selected
by successive projections algorithm (SPA) to build quantitative partial least squares (PLS)
and SPA-PLS models for chlorophyll content for determining chlorophyll content. For
classification, although it is possible to classify diseased peaches based on complete spectral
data, the dataset is too large for practical application, so the team obtained three band
ratios (B617/818, B675/818, and B675/617) from the spectral data to synthesize images for
distinguishing early-stage diseased peaches from healthy peaches, and demonstrated an ac-
curacy of 98.75%. This study represents a pioneering use of HSI combined with chlorophyll
content for disease detection in fruits and vegetables. The results highlight the potential
of HSI to accurately assess chlorophyll content and classify decayed peaches based on
chlorophyll levels, providing a novel method for quality detection in fruits and vegetables.

4.2.3. Heavy Metal

With the worsening of environmental pollution, the presence of heavy metal elements
in fruits and vegetables is on the rise, as they absorb these elements from the air, water, and
soil during their growth process. This poses a health risk for residents who consume fruits
and vegetables that contain excessive levels of heavy metals. For instance, heavy metal
poisoning can occur if an individual consumes over 100 mg of copper in a single instance.

Souza et al. [85] conducted a study on predicting cadmium concentrations in kale
and basil using HSI and machine learning. The researchers used traditional methods
to determine the cadmium concentrations at the time of collection and then utilized the
collected data for machine learning purposes. They also collected and processed Vis/NIR
images. To select the most relevant variables, the reflectance spectra underwent variable
selection through RF before being applied to three machine learning models. The results
showed that the artificial neural network (ANN) was effective in detecting cadmium content
in leaves. The ANN successfully classified the samples using a threshold of 0.2 mg/kg to
differentiate between samples with cadmium concentration exceeding the limit and those
below it. In a similar study, Zhou et al. [86] used fluorescence hyperspectral imaging to
detect cadmium content in lettuce leaves. They applied five different spectral preprocessing
algorithms (Savitzky–Golay, SG; multiple scattering correction, MSC; standard normal
variate, SNV; first derivative, 1-DER; second derivative, 2-DER) to process the spectra. After
determining the optimal preprocessing method, the researchers performed dimensionality
reduction using various variable selection methods (successive projections algorithm,
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SPA; competitive adaptive reweighted sampling, CARS; iteratively retaining informative
variables, IRIV; variable iterative space shrinkage approach, VISSA; wavelet transform
combined with stepwise regression, WT-SR). The processed data were then fed into a
multiple linear regression (MLR) model to establish a prediction model for cadmium
content in lettuce leaves. The MLR model using the 1-Der + WT-ST algorithm was found
to be the most effective in predicting cadmium content and visualizing the distribution of
heavy metals in lettuce leaves.

4.3. Raman Spectroscopy

Compared to conventional detection techniques, Raman spectroscopy offers several
advantages in terms of sensitivity, resistance to water and background interference, sim-
plicity in sample preprocessing, and rapid nondestructive detection. These unique features
have led to the widespread application of Raman spectroscopy in the field of food safety.
Table 3 presents the extensive research conducted by various countries and research teams
on the use of Raman spectroscopy for detecting trace substances in fruits and vegetables.

Table 3. Application of Raman spectroscopy to low-content components of fruits and vegetables.

Target of
Detection Component Preprocessing Variable

Selecting
Optimal
Model Effect Reference

Maize AFB1, ZEN,
and OTA / / PLS

The correlation coefficients for AFB1,
ZEN, and OTA were 0.74, 0.89, and

0.72, respectively, by PLS model.
[88]

Apple PAT, AOH 2-DER Si, GA Si-PLS,
GA-PLS

PAT:
SI-PLS:

RC = 0.9905
RP = 0.9759

AOH:
GA-PLS:

RC = 0.9829
RP = 0.9808

[89]

Maize Aflatoxin Deconvolution / PLSR RV
2 = 0.990 [90]

Pakchoi PHO MSC / PLS RP
2 = 0.9807

RMSECV = 0.886 mg/L [91]

Vegetables MAP / / SPSS R2 = 0.9852 [92]

Peach Organophosphorus
Chemical Pesticides / / / The detection limit was

0.001 mg/kg. [93]

4.3.1. Mycotoxin

During the growth and storage processes of fruits and vegetables, environmental fac-
tors such as temperature and humidity make them vulnerable to fungal growth. Common
fungal species that affect these crops include Aspergillus, Fusarium, and molds. Mycotoxins
are metabolites produced by fungi, and human ingestion of mycotoxins may lead to acute
food poisoning, liver and immune system damage, and carcinogenic risk. One notorious
example is aflatoxin, which, when consumed excessively, can lead to various health issues
including liver damage, immune system suppression, and potential carcinogenic effects.
Therefore, food safety standards have strict limits on aflatoxin levels. In Chinese food safety
standards, the maximum allowable level of aflatoxin in daily food for residents is specified
as 0.5–20 µg/kg [94,95].

Gabbitas et al. [88] developed a rapid method using label-free enhanced Raman spec-
troscopy (SERS) with colloidal gold nanoparticles for simultaneous detection of aflatoxin B1
(AFB1), zearalenone (ZEN), and ochratoxin A (OTA) in maize. Reserve solutions of AFB1,
ZEN, and OTA were mixed with SERS nanosubstrates and subsequently placed on corn for
data acquisition. After applying a second-order guide to the SERS spectrum to eliminate
baseline bias and isolate overlapping peaks, each mycotoxin had its unique Raman finger-
print, which could be clearly distinguished by principal component analysis. The study
also evaluated the quantitative power of the method to determine whether concentrations
of multiple mycotoxins in maize could be predicted. Different concentrations of mycotoxins
in maize would cause the difference in peak intensity of the corresponding SERS spectrum,
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so it could be used for quantitative analysis. The linear relationship between predicted
concentrations and actual concentrations was evaluated based on SERS spectra of known
concentrations combined with partial least squares regression models with concentrations
up to 1.5 ppm (4.8 µM) for AFB1, ZEN, and OTA, with correlation coefficients of 0.74, 0.89,
and 0.72, respectively. Guo et al. [89] established a high-throughput label-free detection
model and synthesized AuNRs substrate with a good enhancement effect. The coffee ring
structure with a regular shape and good enrichment effect was optimized by comparing
different drip volumes and drying temperatures, and the sensitivity of detection was im-
proved. After pretreatment and feature extraction of the SERS spectrum, Patulin (PAT) and
alternariol (AOH) in apples were quantitatively analyzed by the stoichiometric method.
Partial least squares with a genetic algorithm (GA-PLS) model showed the best perfor-
mance for AOH, Rp = 0.9759, RMSEP = 0.336, and the joint interval partial least squares
(SiPLS) model showed the best performance for PAT, Rp = 0.9759, and RMSEP = 0.378. The
detection limit of PAT and AOH was reduced to 1 µg L-1. The rapid detection of PAT
and AOH toxins in apples was realized, and the marking-free detection could improve
the detection efficiency and reduce the cost. Lee et al. [90] conducted a study combining
Raman spectroscopy with chemometrics to quantitatively and categorically analyze afla-
toxin contamination in maize. Linear discriminant analysis (LDA) was used to classify corn
samples with and without aflatoxin, achieving correct classification rates ranging from 94
to 100%. Among the models developed for predicting aflatoxin concentrations, the partial
least squares regression (PLSR) model exhibited the best detection accuracy, performing
comparably to the high-performance liquid chromatography (HPLC) reference value.

4.3.2. Pesticide Residue

Huang et al. [91] demonstrated the use of surface-enhanced Raman scattering (SERS)
spectroscopy with colloidal gold nanoparticles for the rapid detection of phosalone residues
in pakchoi. The entire detection process, including sample extraction and spectral acqui-
sition, was completed in approximately 15 min. Preprocessing of the raw spectra using
three methods (multiple scattering correction, MSC, standard normal variate SNV, and
normalization) was followed by the development of a partial least squares (PLS) model.
The combination of MSC and PLS showed the best detection performance. To validate the
accuracy of the model, five paraquat samples with unknown phosalone concentrations
were analyzed. The predicted values from the model were in agreement with the measured
values obtained using gas chromatography–mass spectrometry (GC-MS), with no signif-
icant difference observed. Thus, this method proves effective for the rapid detection of
phosalone pesticide residues in pakchoi. Xie et al. [92] introduced a novel SERS method
for the swift quantitative and qualitative detection of methamidophos in vegetables. The
study compared different experimental conditions related to solvents and pH values. An
orthogonal experimental design was used to determine methamidophos contents in six
vegetable samples. The standard curves showed excellent linearity within the range of
0.1~100 µg/mL. The relative standard deviations (RSD) were within the range of 1.2–2.5%,
and the detection limit was 0.01 µg/mL. These results highlight the capability of surface-
enhanced Raman spectroscopy as a robust tool for detecting methamidophos in fruits and
vegetables. The method has potential applications in detecting other food contaminants
to ensure food safety. Yaseen et al. [93] developed a silver-coated gold nanoparticle-based
SERS method for the rapid detection of multiple organophosphorus chemical pesticides in
peach fruits. The study compared the Raman spectra of silver-coated gold nanoparticles
with those of single silver nanoparticles and single gold nanoparticles. The silver-coated
gold nanoparticles proved to be more suitable for detecting organophosphorus compounds
in various samples. The method showed high recoveries ranging from 93.36% to 123.6%
and could be applied for the analysis of trace contaminants like triazophos and methyl-
parathion in different food matrices.
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4.4. Laser-Induced Breakdown Spectroscopy (LIBS)

LIBS is a real-time, non-invasive method for analyzing multi-element samples without
the need for sample pretreatment. By adjusting the irradiation conditions such as laser
wavelength, pulse duration, pulse energy, and focusing geometry, LIBS can be applied
to analyze various substances. The continuous advancement of LIBS technology has
enabled more accurate and convenient analysis of low-content components in fruits and
vegetables [96]. Table 4 provides examples of the applications of LIBS.

Table 4. Application of LIBS to low-content components of fruits and vegetables.

Target of Detection Component Preprocessing Variable
Selecting

Optimal
Model Effect Reference

Momordica Charantia Na, K, Mg, Ca / / SPSS The LIBS technology test
matches the AAS test results. [97]

Melon Seed Na, K, Mg, Ca / / SPSS p < 0.05 [98]

Mulberry Fruit Thiophanate-
Methyl Residue SNV CARS PLSR

RPD = 2.585
RMSEP = 7.09 × 10−4

RP
2 = 0.921

[99]

Fruits and Vegetables P, S, CI / / /
Detection limits are two orders

of magnitude lower than
typical detection limits.

[100]

Chard Leaves P, S, C, Cl / PCA LDA Detection error rate of less than 9.5%. [101]

Lettuce Cd Normalization GA PLS Rp
2 more than 0.94, LODs
less than 5.5 mg/kg

[102]

Mulberry Leaves Cu, Cr / SOM, SPA,
UVE PLS

Cu:
RPD = 10.0494

RMSEP = 110.4550
Cr:

RPD = 8.3874
RMSEP = 41.4561

[103]

4.4.1. Health-Promoting Components

Rai et al. [97] conducted a study on the application of LIBS technology in the de-
tection of trace elements such as Na, K, Mg, and Ca in momordica charantia. They did
this by giving different doses of bitter melon frozen fruit powder to animals in animal
experiments and observing its effects on the animals’ blood sugar levels. By monitoring
and comparing the blood glucose levels of different experimental groups, the author can
explore the relationship between the trace elements in bitter melon and the changes in
blood glucose levels. In addition to LIBS, the researchers also utilized atomic absorption
spectroscopy (AAS) to analyze the low-content components in Momordica charantia. The
results showed a consistent measurement of low-content components between LIBS and
AAS, demonstrating the capability of LIBS in detecting low-content components. In another
study, Singh et al. [98] quantitatively analyzed Na, K, Mg, Ca, and other trace elements in
melon seeds using LIBS combined with the calibration curve method. The results obtained
from LIBS were found to be in agreement with the findings from AAS. This study not
only confirmed that melon seeds are rich in essential nutrients for the human body but
also demonstrated the feasibility of employing LIBS technology for detecting low-content
components in fruits and vegetables.

4.4.2. Pesticide Residue

Wu et al. [99] applied LIBS and HSI techniques for the rapid detection of thiophanate-
methyl residue in mulberry fruits. They utilized the competitive adaptive weighted sam-
pling (CARS) algorithm to simplify spectral data after preprocessing. This approach was
combined with principal component analysis (PCA) and partial least squares regression
(PLSR) modeling to both qualitatively and quantitatively analyze thiophanate-methyl
residue in a variety of mulberry fruit samples. In a similar vein, Zhao et al. [100] enhanced
the detection of various fruits and vegetables using metal nanoparticles to amplify the
signal of LIBS. By analyzing characteristic peaks in LIBS spectra, they were able to deter-
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mine the content of P, S, and Cl, leading to the quantification of pesticide residues in these
products. The use of metal nanoparticle-enhanced LIBS significantly lowered the detection
limits of pesticide residues compared to standard LIBS, indicating its potential for precise
quantification in fruits and vegetables. Martino et al. [101] investigated the application of
the LIBS technique for the rapid measurement of pesticide residues in chard leaves. They
employed spectral data preprocessing to identify the contents of P, S, C, and Cl based on
LIBS spectra. Classification through PCA, followed by validation using linear discriminant
analysis (LDA), yielded a detection error rate of less than 9.5% in their analysis. Overall,
these studies highlight the effectiveness of LIBS and the potential to enhance its capabilities
through techniques such as nanoparticle amplification and data preprocessing. The com-
bination of LIBS with various analytical approaches shows promise for the accurate and
rapid detection of pesticide residues in fruits and vegetables.

4.4.3. Heavy Metal

Detecting heavy metals in fruits and vegetables is crucial for ensuring food safety.
Researchers have explored the use of LIBS for this purpose. Shen et al. [102] employed LIBS
to analyze the spectral information of lettuce and detect the presence of Cd. They used
various preprocessing techniques in combination with genetic algorithms (GA) to select
22 variables. Based on these variables, they established a PLS model for accurate Cd content
detection. In addition to LIBS, K-nearest neighbor (KNN) and random forest (RF) algo-
rithms were utilized to assess the level of Cd contamination. The study demonstrated that
LIBS is a rapid and effective method for evaluating heavy metal contamination. Building
upon LIBS, Yang et al. [103] proposed a novel analytical framework for detecting Cu and
Cd contents in mulberry leaves. Their framework incorporated Self-organizing Mapping
(SOM), as well as variable selection methods such as the successive projections algorithm
(SPA) and Uninformative Variable Elimination (UVE). By combining these techniques with
a PLS model, they achieved high prediction accuracies for copper and chromium content
in mulberry leaves. The best model obtained Relative Prediction Deviation (RPD) values
of 10.0494 and 8.3874 for copper and chromium content, respectively. The Root Mean
Square Error of Prediction (RMSEP) for copper and chromium content reached 110.4550
and 41.4561, respectively. This methodology not only reduces data complexity but also
improves model accuracy, making it highly relevant for detecting heavy metals in fruits
and vegetables.

4.5. Nuclear Magnetic Resonance (NMR)

NMR is a powerful tool for detecting and identifying different substances based on
their signal characteristics. It has been widely utilized in various applications, such as
moisture and fat detection, identifying food adulteration, and assessing meat quality. For
example, Xu et al. [104] used NMR and magnetic resonance imaging (MRI) to investigate
moisture distribution in broccoli tissues. Hatzakis et al. [105] employed NMR to quantify
free glycerol in virgin olive oils from different Greek regions. Siciliano et al. [106] utilized
high-resolution H−1 NMR spectroscopy to determine fatty acid chain distribution in matur-
ing pork products. However, when it comes to the detection of low-content components in
fruits and vegetables, there is limited research in this area, resulting in fewer applications
of NMR techniques. Therefore, further studies are needed to explore the potential of NMR
in this domain.

Capitani et al. [107] conducted a study to evaluate the internal condition of Hayward
kiwifruits using a portable unilateral NMR instrument. They employed high-field NMR
spectroscopy to track the changes in amino acids, sugars, organic acids, and other metabo-
lites within the kiwifruits from June to December. This allowed them to gain insights into
the variations in nutrient content during different growth stages and determine the optimal
time for harvest. In a similar vein, Clausen et al. [108] utilized a metabolomics approach
based on 1H NMR to analyze the differences in sugars and β-carotene content among
various carrot genotypes. They employed the NMR technique in conjunction with principal
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component analysis (PCA) to identify compositional variations between the genotypes.
This methodology not only enables the investigation of the authenticity of plant foods but
also facilitates the assessment of the impact of post-harvest handling and storage on the
quality of plant foods. Ultimately, this research contributes to improving the overall quality
and diversity of plant-based products available in the market.

NMR, with its ability to provide detailed information about molecular structure
and composition, facilitates rapid, intelligent, and nondestructive detection of fruits and
vegetables, holding significant potential for future development.

4.6. Terahertz Spectroscopy (THz)

THz has gained significant attention in various fields such as biomedicine, wireless
communications, food safety, and agriculture due to its low energy, exceptional pene-
tration, and nondestructive detection capabilities [109]. Notably, advancements in THz
have been made in biomedicine and wireless communication. In biomedicine, it is benefi-
cial for determining and localizing tumors, while in wireless communication, researchers
have explored its application in 6G systems. Although the use of THz in food safety
and agriculture is still in its early stages due to high research costs, it shows poten-
tial for detecting food adulteration and additives and classifying genetically modified
plants [110–113]. In food safety, THz is effective for identifying food adulteration and addi-
tives, while in agriculture, it aids in detecting crop moisture and sugar content [114,115].
However, the exploration of low-content components in fruits and vegetables remains an
ongoing area of study.

One of the broader applications of THz technology is its potential to detect low-content
components, including pesticide residues. Baek et al. [116] used terahertz time-domain
spectroscopy (THz-TDs) to quickly detect the pesticide methomyl in food. However,
they faced challenges due to the technology’s low sensitivity and the limited quantity of
pesticide residues in food, which made detecting them difficult. To address these issues,
several researchers proposed targeted studies. Qi et al. [117] and Qin et al. [118] enhanced
the terahertz spectroscopy system structure by incorporating metamaterial sensors based
on single and double U-shaped resonators, as well as metal ohmic ring arrays. These
modifications aimed to improve the sensitivity of the terahertz detection technique and
enable the realistic detection of pesticide residues. Although these sensitivity enhancements
were achieved, the traditional THz-TDs method analyzed absorption peaks in the spectra to
determine pesticide residue concentrations. This approach could overlook other essential
information about the pesticides, resulting in detected concentrations lower than the
actual values. To overcome this limitation, Chen et al. [119] utilized the asymmetric least
squares (ASLS) method to calibrate the terahertz spectra, improving the signal-to-noise
ratio. They combined this method with chemometric techniques such as partial least
squares (PLS), support vector regression (SVR), interval partial least squares (iPLS), and
backward interval partial least squares (biPLS) to successfully detect imidacloprid in rice
samples. In another study, Ma et al. [120] employed spectral preprocessing and genetic
algorithms (GA) to enhance the accuracy of a backpropagation neural network (BPNN)
model. This approach, coupled with THz technology, facilitated high-precision quantitative
analysis of low-concentration ternary blends of pesticides in wheat flour. These findings
demonstrate the feasibility of combining terahertz spectroscopy and chemometrics for the
detection of pesticide residues, thereby expanding the application of THz technology in
detecting low-content components.

5. Conclusions

This paper provides an overview of the intelligent and rapid detection technologies
that have gained widespread adoption in recent years. It aims to outline the advantages and
disadvantages of these technologies, as summarized in Table 5. These advanced techniques
effectively address the limitations of traditional detection methods, such as prolonged
detection times, complex preprocessing procedures, and the potential for environmental
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pollution. By integrating chemometrics, sensors, and other cutting-edge technologies,
these methods enable intelligent and swift detection of low-content components in fruits
and vegetables. They not only improve the efficiency of detecting internal nutrients and
potentially harmful substances but also play a crucial role in monitoring the changing
condition of fruits and vegetables throughout their growth, transportation, and storage. The
application of these technologies has the potential to significantly reduce waste, enhance
the quality of fruits and vegetables, and provide consumers with reliable assurance of food
quality and safety when purchasing these products.

Table 5. Advantages and disadvantages of different intelligent rapid detection technologies.

Detection Technology Advantage Disadvantage

Near-infrared Spectroscopy Fast and inexpensive detection Vulnerable to environmental
disturbances, low stability

Hyperspectral Imaging More comprehensive
spectral data

Excessive volume and
complexity of information,
requiring time-consuming

data analysis

Raman Spectroscopy

Rapid, accurate, nondestructive,
good identification of molecular

functional groups present
within the substance

Expensive, weak
spectral signal

Laser-induced Breakdown
Spectroscopy

Real-time, simultaneous
multi-element analysis, simple

detection process, wide
detection range

Low resolution, unstable
signal strength, baseline drift,
substrate effect phenomenon

Nuclear Magnetic Resonance
Simple operation, little

damage to the sample, fast
detection speeds

Lower resolution, higher
environmental requirements

Terahertz Spectroscopy

Strong penetrating power,
unique electromagnetic waves
can detect the physicochemical
information inside the material

Low sensitivity, difficult to
detect low-level substances

Among the myriad intelligent detection technologies, NIR detection technology, a
relatively mature method for detecting low-content components, has been widely employed
in conjunction with chemometric methods for intelligent and rapid detection of fruit and
vegetable composition. Portable NIR detection equipment is gaining attention, paving the
way for its practical quantitative application. In contrast, HSI, an emerging technology
that integrates image and machine learning, has garnered significant interest in agriculture.
While capable of obtaining richer spectral information on fruits and vegetables, it is suitable
for large-scale field detection, particularly in composition detection during the growth stage.
However, its information redundancy and interference characteristics impact detection
speed and accuracy. Raman spectroscopy, with the ability to recognize molecular structures
and functional groups, holds promise for application in fruit and vegetable composition
detection. Challenges include low sensitivity, susceptibility to interference from other
components, and high costs. Ongoing research aims to enhance signal intensity and reduce
costs to improve the technique’s detection capability. LIBS, despite limitations in sensitivity
and measurement accuracy, offers the unique advantage of simultaneously analyzing
multiple elements and effectively analyzing samples of different material forms. Current
research focuses on optimizing algorithms and detection instrument structures to further
enhance the technique.

The NMR and THz techniques have the potential to greatly enhance the efficiency of
data processing and analysis in assessing the quality and safety of fruits and vegetables.
These techniques are known for their rapid detection speeds and nondestructive properties.
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However, their broader application in detecting low-content components in fruits and veg-
etables has been limited due to the high instrument costs and sensor sensitivity constraints.
As a result, there is a scarcity of reported studies in this area.

5.1. Existing Problems

The seven intelligent detection techniques mentioned above provide a solid theoretical
basis for the intelligent rapid detection of low-content components in fruits and vegetables.
However, the following problems still need to be solved in order to successfully apply
these intelligent rapid detection techniques to field analysis:

1. Sensor stability problems are hindering the accurate detection of low-content compo-
nents in fruits and vegetables. Despite being crucial components of detection devices,
sensors face challenges relating to their stability. Firstly, environmental factors sig-
nificantly affect sensor performance. For instance, temperature fluctuations lead to
temperature drift errors, resulting in inconsistent detection results at different temper-
atures. Secondly, traditional sensor materials have limited response capabilities, thus
impacting detection sensitivity. While using new materials can mitigate this issue, the
complex preparation process and high cost associated with these materials hamper
their commercial implementation. Moreover, large-scale production and utilization
of these new materials pose additional obstacles. As a result, addressing these chal-
lenges requires innovative approaches to improve sensor stability and overcome the
limitations of traditional materials.

2. Sample storage and handling methods in the field of rapid detection technology and
chemometrics lack standardization, resulting in potential discrepancies in the data
obtained from the same sample in different studies. While intelligent rapid detec-
tion technology combined with chemometrics has improved detection efficiency and
minimized environmental and sample interference, the results are still influenced
by sample characteristics such as skin thickness, surface irregularities causing scat-
tering, and internal moisture of fruits and vegetables. Consequently, a significant
amount of extraneous information is present in the results, affecting the accuracy of
the test results for fruits and vegetables that differ in origin, variety, and transportation
conditions. It is crucial to explore methods to mitigate the impact of these charac-
teristics and external conditions. Additionally, when detecting components present
in low concentrations, the instrument’s sensitivity and service life can contribute to
errors. Addressing this technical challenge necessitates effective improvement in the
instrument’s structure to accommodate the detection of low-content components.

3. Algorithmic problems arise in the field of intelligent rapid detection technology com-
bined with chemometrics, particularly when establishing qualitative and quantitative
analysis models for the rapid and intelligent detection of low-content components in
fruits and vegetables. One major challenge is the reliance on a large amount of sample
data to improve and optimize the model, which can lead to information overload
and negatively impact detection efficiency. Thus, it is crucial to effectively mine the
data in the detection results and establish optimal detection models. Moreover, the
current models lack versatility for databases of different samples, necessitating the
establishment of separate databases for each type of sample. This can increase the
workload of the model and potentially affect its stability and repeatability. Therefore,
it is necessary to address the issue of developing a versatile and stable model for fruit
and vegetable composition detection, which remains a prominent concern in this field.

5.2. Prospects

In the context of the era of intelligence and diversification, as well as the development
of intelligent and rapid detection technology, become a trend with great market value and
social value.
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1. To enhance the stability of the sensor, various approaches can be considered. Firstly,
it is crucial to conduct research on new sensor materials that have minimal environ-
mental impact but can still improve sensitivity. This can significantly contribute to the
overall stability of the sensor. Additionally, the implementation of multi-sensor fusion
technology can further enhance system stability and improve detection accuracy.
Through the collaborative effect of different sensors, the overall performance of the
system can be greatly improved. To address the influence of environmental factors
on the sensor, it is advisable to integrate advanced environmental compensation
technology. Temperature compensation algorithms can be employed to reduce the
impact of temperature variations on the sensor’s performance. This would extend its
applicability across diverse environmental conditions. To ensure reliable performance,
regular testing and maintenance of the sensor are necessary. This practice helps to
identify and rectify any issues promptly, ensuring continued stable operation.

2. To optimize the structure of testing instruments, it is crucial to focus on the core
components that directly influence testing accuracy. By enhancing the sensitivity of
sensors, stabilizing the signal processing system, and increasing the brightness of the
light source, the detection accuracy can be significantly improved. These optimization
strategies aim to minimize interference factors generated by the instrument, enhance
electrical signals captured during the detection process, and ultimately achieve precise
detection of low-content components in fruits and vegetables.

3. Optimization of artificial intelligence algorithms: In the process of detecting fruit and
vegetable ingredients, artificial intelligence algorithms play a vital role through data
processing, feature variable selection, and modeling analysis. The optimization of
these artificial intelligence algorithms can better reduce data errors and interference,
and improve the accuracy of fruit and vegetable composition detection. The optimiza-
tion of AI algorithms can start by reducing the redundant information in the data,
reducing the data dimension; combining the cross-validation method to verify the
model, selecting the best combination of parameters to improve the accuracy of the
model; and adopting more complex neural network structure and training strategy to
improve the model’s explanatory and accuracy. These optimization directions will
make the algorithm process the data more efficiently, and thus improve the reliability
and accuracy of fruit and vegetable composition detection.

4. Utilize intelligent rapid detection technology and integrate it into various applications,
such as a mobile app, to enable real-time transmission and sharing of data. This would
allow users to conveniently view and share test results on their cell phones, providing
a timely solution for the detection of fruits and vegetables with low ingredient con-
tent. Combining the advantages of intelligent detection technology and mobile app
functionality, it offers a more convenient, intelligent, and comprehensive approach to
testing the quality of produce.

Author Contributions: S.X.: investigation and writing—original draft and editing; Y.G.: investiga-
tion and writing—original draft and editing; X.L.: investigation and writing—review and editing;
H.L.: project administration and writing—review and editing and supervision. All authors have read
and agreed to the published version of the manuscript.

Funding: This paper received funding from the Special Fund for Rural Revitalization of Guangdong
Province (no. 2024TS-1-2), the National Key Research and Development Program of China (no.
2022YFD2002203), the International Science and Technology Cooperation Project of Guangdong
Province (no. 2023A0505050129), the National Natural Science Foundation of China (no. 31901404),
the Innovation Fund Industry Special Project of Guangdong Academy of Agricultural Science (grant
no. 202306), the Laboratory of Lingnan Modern Agriculture Project (no. NT2021009), the Natural
Science Foundation of Guangdong Province (no. 2021A1515010834), the New Developing Subject
Construction Program of Guangdong Academy of Agricultural Science (no. 202134TD), and the
Talent Training Program of Guangdong Academy of Agricultural Science (no. R2020PY-JJX020).

Institutional Review Board Statement: Not applicable.



Foods 2024, 13, 1116 22 of 26

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wolber, F.M.; Beck, K.L.; Conlon, C.A.; Kruger, M.C. Chapter Thirteen—Kiwifruit and Mineral Nutrition. In Advances in Food and

Nutrition Research; Boland, M., Moughan, P.J., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 68, pp. 233–256.
2. Pál, É.; Ungvári, Z.; Benyó, Z.; Várbíró, S. Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular

Diseases. Nutrients 2023, 15, 334. [CrossRef] [PubMed]
3. Lv, X.C.; Chang, Q.Y.; Li, H.; Liang, S.X.; Zhe, Z.; Shen, S.G.; Pang, G.F. Risk assessment of carbofuran residues in fruits and

vegetables at the Chinese market: A 7-year survey. Ecotoxicol. Environ. Saf. 2022, 239, 113667. [CrossRef] [PubMed]
4. Kang, Y.; Pan, W.J.; Liang, S.Y.; Li, N.; Zeng, L.X.; Zhang, Q.Y.; Luo, J.W. Assessment of relative bioavailability of heavy metals

in soil using in vivo mouse model and its implication for risk assessment compared with bioaccessibility using in vitro assay.
Environ. Geochem. Health 2016, 38, 1183–1191. [CrossRef] [PubMed]

5. Clemens, S. Metal ligands in micronutrient acquisition and homeostasis. Plant Cell Environ. 2019, 42, 2902–2912. [CrossRef]
[PubMed]

6. Michalak, M.; Pierzak, M.; Krecisz, B.; Suliga, E. Bioactive Compounds for Skin Health: A Review. Nutrients 2021, 13, 203.
[CrossRef]

7. Sun, B.L.; Tan, B.B.; Zhang, P.X.; Zhu, L.L.; Wei, H.M.; Huang, T.; Li, C.; Yang, W.E. Iron deficiency anemia: A critical review on
iron absorption, supplementation and its influence on gut microbiota. Food Funct. 2024, 15, 1144–1157. [CrossRef]

8. Moore, S.S.; Costa, A.; Pozza, M.; Weaver, C.M.; De Marchi, M. Nutritional scores of milk and plant-based alternatives and their
difference in contribution to human nutrition. LWT-Food Sci. Technol. 2024, 191, 115688. [CrossRef]

9. Xu, T.; Wan, S.T.; Shi, J.X.; Xu, T.C.; Wang, L.R.; Guan, Y.R.; Luo, J.J.; Luo, Y.T.; Sun, M.Y.; An, P.; et al. Antioxidant Minerals
Modified the Association between Iron and Type 2 Diabetes in a Chinese Population. Nutrients 2024, 16, 335. [CrossRef] [PubMed]

10. Szabo, K.; Catoi, A.F.; Vodnar, D.C. Bioactive Compounds Extracted from Tomato Processing by-Products as a Source of Valuable
Nutrients. Plant Food Hum. Nutr. 2018, 73, 268–277. [CrossRef]

11. Galasso, C.; Gentile, A.; Orefice, I.; Ianora, A.; Bruno, A.; Noonan, D.M.; Sansone, C.; Albini, A.; Brunet, C. Microalgal Derivatives
as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients
2019, 11, 1226. [CrossRef]

12. Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The health effects of vitamin D supplementa-
tion: Evidence from human studies. Nat. Rev. Endocrinol. 2022, 18, 96–110. [CrossRef]

13. BRIAN, P.W. Role of gibberellin-like hormones in regulation of plant growth & flowering. Nature 1958, 181, 1122–1123. [CrossRef]
14. Jukes, T.H. Mineral nutrition of plants. Photosynth. Res. 1995, 46, 13–15. [CrossRef]
15. Barbosa, H.Z.; Batista, K.; Gimenes, F.; Gerdes, L.; Giacomini, A.A.; de Mattos, W.T.; Barbosa, C. Yield responses of Macrotyloma

axillare (family Fabaceae) to combinations of doses of phosphorus and calcium. Semin.-Cienc. Agrar. 2019, 40, 2561–2570. [CrossRef]
16. Ramadori, G.P. Organophosphorus Poisoning: Acute Respiratory Distress Syndrome (ARDS) and Cardiac Failure as Cause of

Death in Hospitalized Patients. Int. J. Mol. Sci. 2023, 24, 6658. [CrossRef]
17. Miao, S.; Wei, Y.; Pan, Y.; Wang, Y.; Wei, X. Detection methods, migration patterns, and health effects of pesticide residues in tea.

Compr. Rev. Food. Sci. Food Saf. 2023, 22, 2945–2976. [CrossRef]
18. Ashraf, S.A.; Mahmood, D.; Elkhalifa, A.E.O.; Siddiqui, A.J.; Khan, M.I.; Ashfaq, F.; Patel, M.; Snoussi, M.; Kieliszek, M.; Adnan,

M. Exposure to pesticide residues in honey and its potential cancer risk assessment. Food. Chem. Toxicol. 2023, 180, 114014.
[CrossRef]

19. de Andrade, J.C.; Galvan, D.; Effting, L.; Tessaro, L.; Aquino, A.; Conte-Junior, C.A. Multiclass pesticide residues in fruits and
vegetables from Brazil: A systematic review of sample preparation until post-harvest. Crit. Rev. Anal. Chem. 2023, 53, 1174–1196.
[CrossRef]

20. Zheng, K.M.; Wu, X.P.; Chen, J.N.; Chen, J.X.; Lian, W.H.; Su, J.F.; Shi, L.H. Establishment of an LC-MS/MS Method for the
Determination of 45 Pesticide Residues in Fruits and Vegetables from Fujian, China. Molecules 2022, 27, 8674. [CrossRef] [PubMed]

21. He, Y.; Bai, X.; Xiao, Q.; Liu, F.; Zhou, L.; Zhang, C. Detection of adulteration in food based on nondestructive analysis techniques:
A review. Crit. Rev. Food. Sci. Nutr. 2021, 61, 2351–2371. [CrossRef] [PubMed]

22. Upadhyay, M.K.; Shukla, A.; Yadav, P.; Srivastava, S. A review of arsenic in crops, vegetables, animals and food products. Food
Chem. 2019, 276, 608–618. [CrossRef]

23. Zheng, K.; Zeng, Z.; Tian, Q.; Huang, J.; Zhong, Q.; Huo, X. Epidemiological evidence for the effect of environmental heavy metal
exposure on the immune system in children. Sci. Total Environ. 2023, 868, 161691. [CrossRef]

24. Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in
plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [CrossRef]

25. Beghi, R.; Spinardi, A.; Bodria, L.; Mignani, I.; Guidetti, R. Apples Nutraceutic Properties Evaluation through a Visible and
Near-Infrared Portable System. Food Bioprocess Technol. 2013, 6, 2547–2554. [CrossRef]

https://doi.org/10.3390/nu15020334
https://www.ncbi.nlm.nih.gov/pubmed/36678205
https://doi.org/10.1016/j.ecoenv.2022.113667
https://www.ncbi.nlm.nih.gov/pubmed/35643028
https://doi.org/10.1007/s10653-015-9782-0
https://www.ncbi.nlm.nih.gov/pubmed/26603169
https://doi.org/10.1111/pce.13627
https://www.ncbi.nlm.nih.gov/pubmed/31350913
https://doi.org/10.3390/nu13010203
https://doi.org/10.1039/D3FO04644C
https://doi.org/10.1016/j.lwt.2023.115688
https://doi.org/10.3390/nu16030335
https://www.ncbi.nlm.nih.gov/pubmed/38337620
https://doi.org/10.1007/s11130-018-0691-0
https://doi.org/10.3390/nu11061226
https://doi.org/10.1038/s41574-021-00593-z
https://doi.org/10.1038/1811122a0
https://doi.org/10.1007/BF00020410
https://doi.org/10.5433/1679-0359.2019v40n6p2561
https://doi.org/10.3390/ijms24076658
https://doi.org/10.1111/1541-4337.13167
https://doi.org/10.1016/j.fct.2023.114014
https://doi.org/10.1080/10408347.2021.2013157
https://doi.org/10.3390/molecules27248674
https://www.ncbi.nlm.nih.gov/pubmed/36557806
https://doi.org/10.1080/10408398.2020.1777526
https://www.ncbi.nlm.nih.gov/pubmed/32543218
https://doi.org/10.1016/j.foodchem.2018.10.069
https://doi.org/10.1016/j.scitotenv.2023.161691
https://doi.org/10.1016/j.jhazmat.2016.11.063
https://doi.org/10.1007/s11947-012-0824-7


Foods 2024, 13, 1116 23 of 26

26. Magwaza, L.S.; Opara, U.L.; Nieuwoudt, H.; Cronje, P.; Saeys, W.; Nicolaï, B. NIR Spectroscopy Applications for Internal and
External Quality Analysis of Citrus Fruit-A Review. Food Bioprocess Technol. 2012, 5, 425–444. [CrossRef]

27. Zhu, G.; Tian, C. Determining sugar content and firmness of ‘Fuji’ apples by using portable near-infrared spectrometer and
diffuse transmittance spectroscopy. J. Food Process Eng. 2018, 41, e12810. [CrossRef]

28. McGoverin, C.M.; Weeranantanaphan, J.; Downey, G.; Manley, M. The application of near infrared spectroscopy to the measure-
ment of bioactive compounds in food commodities. J. Near Infrared Spectrosc. 2010, 18, 87–111. [CrossRef]

29. Youwen, T.; Xin, M.; Yi, C. Advancement of Nondestructive Detection of Fruit Defects Based on Hyperspectral Imaging. J. Agric.
Mech. Res. 2014, 36, 1–5. [CrossRef]

30. Liu, Y.; Pu, H.; Sun, D. Hyperspectral imaging technique for evaluating food quality and safety during various processes:
A review of recent applications. Trends Food Sci. Technol. 2017, 69, 25–35. [CrossRef]

31. Raki, H.; Aalaila, Y.; Taktour, A.; Peluffo-Ordonez, D.H. Combining AI Tools with Non-Destructive Technologies for Crop-Based
Food Safety: A Comprehensive Review. Foods 2023, 13, 11. [CrossRef]

32. Nasrabadi, N.M. Hyperspectral Target Detection. IEEE Signal Process. Mag. 2014, 31, 34–44. [CrossRef]
33. Gao, H.M.; Zhang, Y.T.; Chen, Z.H.; Xu, S.F.; Hong, D.F.; Zhang, B. A Multidepth and Multibranch Network for Hyperspectral

Target Detection Based on Band Selection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5506818. [CrossRef]
34. Petry, R.; Schmitt, M.; Popp, J. Raman spectroscopy—A prospective tool in the life sciences. ChemPhysChem 2003, 4, 14–30.

[CrossRef]
35. Petersen, M.; Yu, Z.; Lu, X. Application of Raman spectroscopic methods in food safety: A review. Biosensors 2021, 11, 187.

[CrossRef]
36. Das, R.S.; Agrawal, Y.K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57,

163–176. [CrossRef]
37. Xu, Y.; Zhong, P.; Jiang, A.; Shen, X.; Li, X.; Xu, Z.; Shen, Y.; Sun, Y.; Lei, H. Raman spectroscopy coupled with chemometrics for

food authentication: A review. Trac-Trends Anal. Chem. 2020, 131, 116017. [CrossRef]
38. Zhang, D.; Pu, H.; Huang, L.; Sun, D. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive

food detection: Fundamentals and recent applications. Trends Food Sci. Technol. 2021, 109, 690–701. [CrossRef]
39. Nilghaz, A.; Mahdi Mousavi, S.; Amiri, A.; Tian, J.; Cao, R.; Wang, X. Surface-enhanced Raman spectroscopy substrates for food

safety and quality analysis. J. Agric. Food. Chem. 2022, 70, 5463–5476. [CrossRef]
40. Pang, S.; Yang, T.; He, L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides.

Trac-Trends Anal. Chem. 2016, 85, 73–82. [CrossRef]
41. Corsetti, S.; McGloin, D.; Kiefer, J. Comparison of Raman and IR spectroscopy for quantitative analysis of gasoline/ethanol

blends. Fuel 2016, 166, 488–494. [CrossRef]
42. Zhang, D.; Liang, P.; Chen, W.W.; Tang, Z.X.; Li, C.; Xiao, K.Y.; Jin, S.Z.; Ni, D.J.; Yu, Z. Rapid field trace detection of pesticide

residue in food based on surface-enhanced Raman spectroscopy. Mikrochim. Acta 2021, 188, 370. [CrossRef] [PubMed]
43. Yang, D.T.; Ying, Y.B. Applications of Raman Spectroscopy in Agricultural Products and Food Analysis: A Review. Appl. Spectrosc.

Rev. 2011, 46, 539–560. [CrossRef]
44. Khan, Z.H.; Ullah, M.H.; Rahman, B.; Talukder, A.I.; Wahadoszamen, M.; Abedin, K.M.; Haider, A. Laser-induced breakdown

spectroscopy (LIBS) for trace element detection: A review. J. Spectrosc. 2022, 2022, 3887038. [CrossRef]
45. Brunnbauer, L.; Gajarska, Z.; Lohninger, H.; Limbeck, A. A critical review of recent trends in sample classification using

Laser-Induced Breakdown Spectroscopy (LIBS). Trac-Trends Anal. Chem. 2023, 159, 116859. [CrossRef]
46. Laserna, J.; Vadillo, J.; Purohit, P. Laser-Induced Breakdown Spectroscopy (LIBS): Fast, Effective, and Agile Leading Edge

Analytical Technology. Appl. Spectrosc. 2018, 72, 35–50. [CrossRef] [PubMed]
47. Meng, D.S.; Zhao, N.J.; Ma, M.J.; Gu, Y.H.; Liu, J.G. Quantitative detection of Cu in different types of soils using laser induced

breakdown spectroscopy combined with artificial neural network. J. Optoelectron. Laser 2015, 26, 1984–1989. [CrossRef]
48. Sun, J.; Li, H.; Lv, H.; Li, X.; Wu, Q.; Yang, X. Detection of heavy metals based on laser-induced breakdown spectroscopy under

magnetic field constraints. J. Optoelectron. Laser 2023, 34, 422–428.
49. Kirtil, E.; Oztop, M.H. 1H Nuclear Magnetic Resonance Relaxometry and Magnetic Resonance Imaging and Applications in Food

Science and Processing. Food Eng. Rev. 2016, 8, 1–22. [CrossRef]
50. Akanbi, T.O.; Barrow, C.J. Compositional Information Useful for Authentication of Krill Oil and the Detection of Adulterants.

Food Anal. Methods 2018, 11, 178–187. [CrossRef]
51. Rudszuck, T.; Nirschl, H.; Guthausen, G. Perspectives in process analytics using low field NMR. J. Magn. Reson. 2021, 323, 106897.

[CrossRef]
52. Marcone, M.F.; Wang, S.A.; Albabish, W.; Nie, S.P.; Somnarain, D.; Hill, A. Diverse food-based applications of nuclear magnetic

resonance (NMR) technology. Food Res. Int. 2013, 51, 729–747. [CrossRef]
53. Agiomyrgianaki, A.; Petrakis, P.V.; Dais, P. Detection of refined olive oil adulteration with refined hazelnut oil by employing

NMR spectroscopy and multivariate statistical analysis. Talanta 2010, 80, 2165–2171. [CrossRef]
54. Meng, W.J.; Xu, X.N.; Cheng, K.K.; Xu, J.J.; Shen, G.P.; Wu, Z.D.; Dong, J.Y. Geographical Origin Discrimination of Oolong

Tea (TieGuanYin, Camellia sinensis (L.) O. Kuntze) Using Proton Nuclear Magnetic Resonance Spectroscopy and Near-Infrared
Spectroscopy. Food Anal. Methods 2017, 10, 3508–3522. [CrossRef]

https://doi.org/10.1007/s11947-011-0697-1
https://doi.org/10.1111/jfpe.12810
https://doi.org/10.1255/jnirs.874
https://doi.org/10.13427/j.cnki.njyi.2014.06.001
https://doi.org/10.1016/j.tifs.2017.08.013
https://doi.org/10.3390/foods13010011
https://doi.org/10.1109/MSP.2013.2278992
https://doi.org/10.1109/TGRS.2023.3258061
https://doi.org/10.1002/cphc.200390004
https://doi.org/10.3390/bios11060187
https://doi.org/10.1016/j.vibspec.2011.08.003
https://doi.org/10.1016/j.trac.2020.116017
https://doi.org/10.1016/j.tifs.2021.01.058
https://doi.org/10.1021/acs.jafc.2c00089
https://doi.org/10.1016/j.trac.2016.06.017
https://doi.org/10.1016/j.fuel.2015.11.018
https://doi.org/10.1007/s00604-021-05025-3
https://www.ncbi.nlm.nih.gov/pubmed/34622367
https://doi.org/10.1080/05704928.2011.593216
https://doi.org/10.1155/2022/3887038
https://doi.org/10.1016/j.trac.2022.116859
https://doi.org/10.1177/0003702818791926
https://www.ncbi.nlm.nih.gov/pubmed/30265142
https://doi.org/10.16136/j.joel.2015.10.0425
https://doi.org/10.1007/s12393-015-9118-y
https://doi.org/10.1007/s12161-017-0988-x
https://doi.org/10.1016/j.jmr.2020.106897
https://doi.org/10.1016/j.foodres.2012.12.046
https://doi.org/10.1016/j.talanta.2009.11.024
https://doi.org/10.1007/s12161-017-0920-4


Foods 2024, 13, 1116 24 of 26

55. Afsah-Hejri, L.; Akbari, E.; Toudeshki, A.; Homayouni, T.; Alizadeh, A.; Ehsani, R. Terahertz spectroscopy and imaging: A review
on agricultural applications. Comput. Electron. Agric. 2020, 177, 105628. [CrossRef]

56. Jiang, Y.Y.; Li, G.M.; Lv, M.; Ge, H.Y.; Zhang, Y. Determination of potassium sorbate and sorbic acid in agricultural products using
THz time-domain spectroscopy*. Chin. Phys. B 2020, 29, 098705. [CrossRef]

57. Jiang, Y.Y.; Li, G.M.; Ge, H.Y.; Wang, F.Y.; Li, L.; Chen, X.Y.; Lu, M.; Zhang, Y. Machine Learning and Application in Terahertz
Technology: A Review on Achievements and Future Challenges. IEEE Access 2022, 10, 53761–53776. [CrossRef]

58. Fu, X.J.; Liu, Y.J.; Chen, Q.; Fu, Y.; Cui, T.J. Applications of Terahertz Spectroscopy in the Detection and Recognition of Substances.
Front. Phys. 2022, 10, 869537. [CrossRef]

59. Wang, K.Q.; Pu, H.B.; Sun, D.W. Emerging Spectroscopic and Spectral Imaging Techniques for the Rapid Detection of Microorgan-
isms: An Overview. Compr. Rev. Food. Sci. Food Saf. 2018, 17, 256–273. [CrossRef]

60. Gowen, A.A.; O’Sullivan, C.; O’Donnell, C.P. Terahertz time domain spectroscopy and imaging: Emerging techniques for food
process monitoring and quality control. Trends Food Sci. Technol. 2012, 25, 40–46. [CrossRef]

61. Wang, C.; Qin, J.Y.; Xu, W.D.; Chen, M.; Xie, L.J.; Ying, Y.B. Terahertz Imaging Applications in Agriculture and Food Engineering:
A Review. Trans. Asabe 2018, 61, 411–424. [CrossRef]

62. Anitha, V.; Beohar, A.; Nella, A. THz Imaging Technology Trends and Wide Variety of Applications: A Detailed Survey. Plasmonics
2023, 18, 441–483. [CrossRef]

63. Shi, S.J.; Tang, Z.H.; Ma, Y.Y.; Cao, C.G.; Jiang, Y. Application of spectroscopic techniques combined with chemometrics to the
authenticity and quality attributes of rice. Crit. Rev. Food. Sci. Nutr. 2023, 1–23. [CrossRef]

64. Tarapoulouzi, M.; Mironescu, M.; Drouza, C.; Mironescu, I.D.; Agriopoulou, S. Insight into the Recent Application of Chemomet-
rics in Quality Analysis and Characterization of Bee Honey during Processing and Storage. Foods 2023, 12, 473. [CrossRef]

65. Varzakas, T. Implementation of Chemometrics and Other Techniques as Means of Authenticity and Traceability to Detect
Adulteration in Foods for the Protection of Human Health. Foods 2023, 12, 652. [CrossRef]

66. Wang, T.; Feng, G.; Zhu, Y. Rapid Determination of Soluble Solids and Vitamin C in Blueberry by Near Infrared Spectroscopy
Combined with Chemometrics. Sci. Technol. Food Ind. 2023, 44, 297–305. [CrossRef]

67. Xiao-Lu, L.; Lu, X.; Xiao-Xiang, L.U.; Peng, Z.; Shao-Hui, C.; Jiang-Kuo, L.I. Fast non-destructive testing of total flavonoids and
anthocyanins in blueberries by near-infrared spectroscope. Sci. Technol. Food Ind. 2015, 36, 58–61. [CrossRef]

68. Sahamishirazi, S.; Zikeli, S.; Fleck, M.; Claupein, W.; Graeff-Hoenninger, S. Development of a near-infrared spectroscopy method
(NIRS) for fast analysis of total, indolic, aliphatic and individual glucosinolates in new bred open pollinating genotypes of
broccoli (Brassica oleracea convar. botrytis var. italica). Food Chem. 2017, 232, 272–277. [CrossRef]

69. Pedro, A.; Ferreira, M. Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy
and multivariate calibration. Anal. Chem. 2005, 77, 2505–2511. [CrossRef]

70. Lakade, A.J.; Venkataraman, V.; Ramasamy, R.; Shetty, P.H. NIR spectroscopic method for the detection of calcium carbide in
artificial ripening of mangoes (Magnifera indica). Food Addit. Contam. Part A 2019, 36, 989–995. [CrossRef] [PubMed]

71. Jamshidi, B.; Mohajerani, E.; Jamshidi, J. Developing a Vis/NIR spectroscopic system for fast and non-destructive pesticide
residue monitoring in agricultural product. Measurement 2016, 89, 1–6. [CrossRef]

72. Xue, L.; Cai, J.; Li, J.; Liu, M. Application of Particle Swarm Optimization (PSO) Algorithm to Determine Dichlorvos Residue on
the Surface of Navel Orange with Vis-NIR Spectroscopy. Procedia Eng. 2012, 29, 4124–4128. [CrossRef]

73. Shi, J.; Zou, X.; Zhao, J.; Mao, H.; Huang, X. Rapid and non-destructive diagnostics of nitrogen and magnesium deficiencies in
cucumber plants by near-infrared spectroscopy. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2011, 27, 283–287.

74. Petisco, C.; García-Criado, B.; Vázquez De Aldana, B.R.; Zabalgogeazcoa, I.; Mediavilla, S.; García-Ciudad, A. Use of near-infrared
reflectance spectroscopy in predicting nitrogen, phosphorus and calcium contents in heterogeneous woody plant species. Anal.
Bioanal. Chem. 2005, 382, 458–465. [CrossRef]

75. Jiao, Y.P.; Li, Z.C.; Chen, X.S.; Fei, S.M. Preprocessing methods for near-infrared spectrum calibration. J. Chemom. 2020, 34, e3306.
[CrossRef]

76. Abrahamsson, C.; Löwgren, A.; Strömdahl, B.; Svensson, T.; Andersson-Engels, S.; Johansson, J.; Folestad, S. Scatter correction of
transmission near-infrared spectra by photon migration data: Quantitative analysis of solids. Appl. Spectrosc. 2005, 59, 1381–1387.
[CrossRef]

77. Lv, J.P.; Chen, Z.H.; Luan, X.L.; Liu, F. Denoising stacked autoencoders-based near-infrared quality monitoring method via robust
samples evaluation. Can. J. Chem. Eng. 2023, 101, 2693–2703. [CrossRef]

78. Morales-Sillero, A.; Pierna, J.; Sinnaeve, G.; Dardenne, P.; Baeten, V. Quantification of protein in wheat using near infrared
hyperspectral imaging: Performance comparison with conventional near infrared spectroscopy. J. Near Infrared Spectrosc. 2018, 26,
186–195. [CrossRef]

79. Malegori, C.; Grassi, S.; Marques, E.; de Freitas, S.; Casiraghi, E. Vitamin C distribution in acerola fruit by near infrared
hyperspectral imaging. J. Spectr. Imaging 2016, 5, a6. [CrossRef]

80. Guo, L.; Yin, Y.; Yu, H.; Yuan, Y. Hyperspectral detection method of potato vitamin C content based on Fisher discriminant analysis
separability information fusion. Food Sci. 2023, 1–12. Available online: https://link.cnki.net/urlid/11.2206.TS.20231123.1441.034
(accessed on 10 January 2024).

81. Chen, H.Z.; Qiao, H.L.; Feng, Q.X.; Xu, L.L.; Lin, Q.Y.; Cai, K. Rapid Detection of Pomelo Fruit Quality Using Near-Infrared
Hyperspectral Imaging Combined with Chemometric Methods. Front. Bioeng. Biotechnol. 2021, 8, 616943. [CrossRef]

https://doi.org/10.1016/j.compag.2020.105628
https://doi.org/10.1088/1674-1056/ab9f25
https://doi.org/10.1109/ACCESS.2022.3174595
https://doi.org/10.3389/fphy.2022.869537
https://doi.org/10.1111/1541-4337.12323
https://doi.org/10.1016/j.tifs.2011.12.006
https://doi.org/10.13031/trans.12201
https://doi.org/10.1007/s11468-022-01775-9
https://doi.org/10.1080/10408398.2023.2284246
https://doi.org/10.3390/foods12030473
https://doi.org/10.3390/foods12030652
https://doi.org/10.1016/j.tifs.2023.06.012
https://doi.org/10.13386/j.issn1002-0306.2015.16.003
https://doi.org/10.1016/j.foodchem.2017.04.025
https://doi.org/10.1021/ac048651r
https://doi.org/10.1080/19440049.2019.1605206
https://www.ncbi.nlm.nih.gov/pubmed/31084465
https://doi.org/10.1016/j.measurement.2016.03.069
https://doi.org/10.1016/j.proeng.2012.01.631
https://doi.org/10.1007/s00216-004-3046-7
https://doi.org/10.1002/cem.3306
https://doi.org/10.1366/000370205774783269
https://doi.org/10.1002/cjce.24684
https://doi.org/10.1177/0967033518780506
https://doi.org/10.1255/jsi.2016.a6
https://link.cnki.net/urlid/11.2206.TS.20231123.1441.034
https://doi.org/10.3389/fbioe.2020.616943


Foods 2024, 13, 1116 25 of 26

82. Kjær, A.; Nielsen, G.; Stærke, S.; Clausen, M.R.; Edelenbos, M.; Jorgensen, B. Detection of Glycoalkaloids and Chlorophyll in
Potatoes (Solanum tuberosum L.) by Hyperspectral Imaging. Am. J. Potato Res. 2017, 94, 573–582. [CrossRef]

83. Shi, J.Y.; Zou, X.B.; Zhao, J.W.; Wang, K.L.; Chen, Z.W.; Huang, X.W.; Zhang, D.T.; Holmes, M. Nondestructive diagnostics of
nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imaging. Sci. Hortic.
2012, 138, 190–197. [CrossRef]

84. Sun, Y.; Wang, Y.H.; Xiao, H.; Gu, X.Z.; Pan, L.Q.; Tu, K. Hyperspectral imaging detection of decayed honey peaches based on
their chlorophyll content. Food Chem. 2017, 235, 194–202. [CrossRef] [PubMed]

85. Souza, A.; Rojas, M.Z.; Yang, Y.; Lee, L.; Hoagland, L. Classifying cadmium contaminated leafy vegetables using hyperspectral
imaging and machine learning. Heliyon 2022, 8, e12256. [CrossRef]

86. Zhou, X.; Zhao, C.J.; Sun, J.; Yao, K.S.; Xu, M.; Cheng, J.H. Nondestructive testing and visualization of compound heavy metals
in lettuce leaves using fluorescence hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 291, 122337.
[CrossRef] [PubMed]

87. Simkin, A.J.; Kapoor, L.; Doss, C.; Hofmann, T.A.; Lawson, T.; Ramamoorthy, S. The role of photosynthesis related pigments in
light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth. Res. 2022, 152, 23–42. [CrossRef]

88. Gabbitas, A.; Ahlborn, G.; Allen, K.; Pang, S. Advancing Mycotoxin Detection: Multivariate Rapid Analysis on Corn Using
Surface Enhanced Raman Spectroscopy (SERS). Toxins 2023, 15, 610. [CrossRef] [PubMed]

89. Guo, Z.; Chen, P.; Wang, M.; Zuo, M.; El-Seedi, H.R.; Chen, Q.; Shi, J.; Zou, X. Rapid enrichment detection of patulin and
alternariol in apple using surface enhanced Raman spectroscopy with coffee-ring effect. LWT 2021, 152, 112333. [CrossRef]

90. Lee, K.; Herrman, T.J.; Yun, U. Application of Raman spectroscopy for qualitative and quantitative analysis of aflatoxins in
ground maize samples. J. Cereal Sci. 2014, 59, 70–78. [CrossRef]

91. Huang, S.G.; Hu, J.P.; Wu, R.M.; Liu, M.H.; Fan, Y.; Wang, X.B.; Guo, P. Establishment of rapid detection method of phosalone
residues in pakchoi by surface-enhanced Raman scattering spectroscopy. Spectr. Lett. 2016, 49, 128–134. [CrossRef]

92. Xie, Y.; Mukamurezi, G.; Sun, Y.; Wang, H.; Qian, H.; Yao, W. Establishment of rapid detection method of methamidophos in
vegetables by surface enhanced Raman spectroscopy. Eur. Food Res. Technol. 2012, 234, 1091–1098. [CrossRef]

93. Yaseen, T.; Pu, H.; Sun, D. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues
in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Addit. Contam. Part A 2019, 36, 762–778. [CrossRef]

94. Wu, Z.; Pu, H.; Sun, D. Fingerprinting and tagging detection of mycotoxins in agri-food products by surface-enhanced Raman
spectroscopy: Principles and recent applications. Trends Food Sci. Technol. 2021, 110, 393–404. [CrossRef]

95. Chauhan, R.; Singh, J.; Sachdev, T.; Basu, T.; Malhotra, B.D. Recent advances in mycotoxins detection. Biosens. Bioelectron. 2016, 81,
532–545. [CrossRef]

96. Beldjilali, S.; Borivent, D.; Mercadier, L.; Mothe, E.; Clair, G.; Hermann, J. Evaluation of minor element concentrations in potatoes
using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 727–733. [CrossRef]

97. Rai, N.K.; Rai, P.K.; Pandhija, S.; Watal, G.; Rai, A.K.; Bicanic, D. Application of LIBS in Detection of Antihyperglycemic Trace
Elements in Momordica charantia. Food Biophys. 2009, 4, 167–171. [CrossRef]

98. Singh, J.; Kumar, R.; Awasthi, S.; Singh, V.; Rai, A.K. Laser Induced breakdown spectroscopy: A rapid tool for the identification
and quantification of minerals in cucurbit seeds. Food Chem. 2017, 221, 1778–1783. [CrossRef]

99. Wu, D.; Meng, L.W.; Yang, L.; Wang, J.Y.; Fu, X.P.; Du, X.Q.; Li, S.J.; He, Y.; Huang, L.X. Feasibility of Laser-Induced Breakdown
Spectroscopy and Hyperspectral Imaging for Rapid Detection of Thiophanate-Methyl Residue on Mulberry Fruit. Int. J. Mol. Sci.
2019, 20, 2017. [CrossRef]

100. Zhao, X.D.; Zhao, C.J.; Du, X.F.; Dong, D.M. Detecting and Mapping Harmful Chemicals in Fruit and Vegetables Using
Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy. Sci. Rep. 2019, 9, 906. [CrossRef]

101. Martino, L.J.; D’Angelo, C.A.; Marinelli, C.; Cepeda, R. Identification and detection of pesticide in chard samples by laser-induced
breakdown spectroscopy using chemometric methods. Spectrochim. Acta Part B At. Spectrosc. 2021, 177, 106031. [CrossRef]

102. Shen, T.T.; Kong, W.W.; Liu, F.; Chen, Z.H.; Yao, J.D.; Wang, W.; Peng, J.Y.; Chen, H.Z.; He, Y. Rapid Determination of Cadmium
Contamination in Lettuce Using Laser-Induced Breakdown Spectroscopy. Molecules 2018, 23, 2930. [CrossRef]

103. Yang, L.; Meng, L.W.; Gao, H.Q.; Wang, J.Y.; Zhao, C.; Guo, M.M.; He, Y.; Huang, L.X. Building a stable and accurate model for
heavy metal detection in mulberry leaves based on a proposed analysis framework and laser-induced breakdown spectroscopy.
Food Chem. 2021, 338, 127886. [CrossRef]

104. Xu, F.; Jin, X.; Zhang, L.; Chen, X.D. Investigation on water status and distribution in broccoli and the effects of drying on water
status using NMR and MRI methods. Food Res. Int. 2017, 96, 191–197. [CrossRef] [PubMed]

105. Hatzakis, E.; Agiomyrgianaki, A.; Dais, P. Detection and Quantification of Free Glycerol in Virgin Olive Oil by 31P-NMR
Spectroscopy. J. Am. Oil. Chem. Soc. 2010, 87, 29–34. [CrossRef]

106. Siciliano, C.; Belsito, E.; De Marco, R.; Di Gioia, M.L.; Leggio, A.; Liguori, A. Quantitative determination of fatty acid chain
composition in pork meat products by high resolution 1H NMR spectroscopy. Food Chem. 2013, 136, 546–554. [CrossRef]

107. Capitani, D.; Mannina, L.; Proietti, N.; Sobolev, A.P.; Tomassini, A.; Miccheli, A.; Di Cocco, M.E.; Capuani, G.; De Salvador, R.;
Delfini, M. Monitoring of metabolic profiling and water status of Hayward kiwifruits by nuclear magnetic resonance. Talanta
2010, 82, 1826–1838. [CrossRef] [PubMed]

108. Clausen, M.R.; Edelenbos, M.; Bertram, H.C. Mapping the Variation of the Carrot Metabolome Using 1H NMR Spectroscopy and
Consensus PCA. J. Agric. Food. Chem. 2014, 62, 4392–4398. [CrossRef]

https://doi.org/10.1007/s12230-017-9595-z
https://doi.org/10.1016/j.scienta.2012.02.024
https://doi.org/10.1016/j.foodchem.2017.05.064
https://www.ncbi.nlm.nih.gov/pubmed/28554626
https://doi.org/10.1016/j.heliyon.2022.e12256
https://doi.org/10.1016/j.saa.2023.122337
https://www.ncbi.nlm.nih.gov/pubmed/36680832
https://doi.org/10.1007/s11120-021-00892-6
https://doi.org/10.3390/toxins15100610
https://www.ncbi.nlm.nih.gov/pubmed/37888641
https://doi.org/10.1016/j.lwt.2021.112333
https://doi.org/10.1016/j.jcs.2013.10.004
https://doi.org/10.1080/00387010.2015.1096289
https://doi.org/10.1007/s00217-012-1724-9
https://doi.org/10.1080/19440049.2019.1582806
https://doi.org/10.1016/j.tifs.2021.02.013
https://doi.org/10.1016/j.bios.2016.03.004
https://doi.org/10.1016/j.sab.2010.04.015
https://doi.org/10.1007/s11483-009-9114-y
https://doi.org/10.1016/j.foodchem.2016.10.104
https://doi.org/10.3390/ijms20082017
https://doi.org/10.1038/s41598-018-37556-w
https://doi.org/10.1016/j.sab.2020.106031
https://doi.org/10.3390/molecules23112930
https://doi.org/10.1016/j.foodchem.2020.127886
https://doi.org/10.1016/j.foodres.2017.03.041
https://www.ncbi.nlm.nih.gov/pubmed/28528099
https://doi.org/10.1007/s11746-009-1466-4
https://doi.org/10.1016/j.foodchem.2012.08.058
https://doi.org/10.1016/j.talanta.2010.07.080
https://www.ncbi.nlm.nih.gov/pubmed/20875584
https://doi.org/10.1021/jf5014555


Foods 2024, 13, 1116 26 of 26

109. Zhong, S.C. Progress in terahertz nondestructive testing: A review. Front. Mech. Eng. 2019, 14, 273–281. [CrossRef]
110. Liu, J.J. Terahertz spectroscopy and chemometric tools for rapid identification of adulterated dairy product. Opt. Quantum

Electron. 2017, 49, 1. [CrossRef]
111. Zhang, H.; Li, Z. Terahertz spectroscopy applied to quantitative determination of harmful additives in medicinal herbs. Optik

2018, 156, 834–840. [CrossRef]
112. Zhang, J.N.; Feng, X.P.; Jin, J.; Fang, H. Concise Cascade Methods for Transgenic Rice Seed Discrimination using Spectral

Phenotyping. Plant Phenomics 2023, 5, 0071. [CrossRef]
113. Liu, W.; Liu, C.H.; Hu, X.H.; Yang, J.B.; Zheng, L. Application of terahertz spectroscopy imaging for discrimination of transgenic

rice seeds with chemometrics. Food Chem. 2016, 210, 415–421. [CrossRef]
114. Liu, J.J. Determination of transgenic organisms from non-transgenic using terahertz spectroscopy and chemometrics. Optik 2017,

131, 885–891. [CrossRef]
115. Zhang, Y.X.; Wang, X.Z.; Wang, Y.F.; Hu, L.; Wang, P. Detection of tomato water stress based on terahertz spectroscopy. Front.

Plant Sci. 2023, 14, 1095434. [CrossRef]
116. Baek, S.H.; Kang, J.H.; Hwang, Y.H.; Ok, K.M.; Kwak, K.; Chun, H.S. Detection of Methomyl, a Carbamate Insecticide, in Food

Matrices Using Terahertz Time-Domain Spectroscopy. J. Infrared Millim. Terahertz Waves 2016, 37, 486–497. [CrossRef]
117. Wang, Q.; Yin, S.; Shi, X.; Fan, J.; Huang, K.; Gao, W.; Xie, L.; Ying, Y. High-sensitivity detection of trace imidacloprid and

tetracycline hydrochloride by multi-frequency resonance metamaterials. J. Food Meas. Charact. 2022, 16, 2041–2048. [CrossRef]
118. Qin, B.; Li, Z.; Hu, F.; Hu, C.; Chen, T.; Zhang, H.; Zhao, Y. Highly Sensitive Detection of Carbendazim by Using Terahertz

Time-Domain Spectroscopy Combined with Metamaterial. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 149–154. [CrossRef]
119. Chen, Z.W.; Zhang, Z.Y.; Zhu, R.H.; Xiang, Y.H.; Yang, Y.P.; Harrington, P.B. Application of terahertz time-domain spectroscopy

combined with chemometrics to quantitative analysis of imidacloprid in rice samples. J. Quant. Spectrosc. Radiat. Transf. 2015, 167,
1–9. [CrossRef]

120. Ma, Q.; Teng, Y.; Li, C.; Jiang, L. Simultaneous quantitative determination of low-concentration ternary pesticide mixtures in
wheat flour based on terahertz spectroscopy and BPNN. Food Chem. 2022, 377, 132030. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11465-018-0495-9
https://doi.org/10.1007/s11082-016-0848-8
https://doi.org/10.1016/j.ijleo.2017.12.050
https://doi.org/10.34133/plantphenomics.0071
https://doi.org/10.1016/j.foodchem.2016.04.117
https://doi.org/10.1016/j.ijleo.2016.11.213
https://doi.org/10.3389/fpls.2023.1095434
https://doi.org/10.1007/s10762-015-0234-9
https://doi.org/10.1007/s11694-022-01314-4
https://doi.org/10.1109/TTHZ.2017.2787458
https://doi.org/10.1016/j.jqsrt.2015.07.018
https://doi.org/10.1016/j.foodchem.2021.132030

	Introduction 
	Low-Content Components in Fruits and Vegetables 
	Nutrients in Fruits and Vegetables 
	Ingredients Required for the Growth of Fruits and Vegetables 
	Toxic Residues in Fruits and Vegetables 

	Rapid and Intelligent Detection Technology for Low-Content Components 
	Near-Infrared Spectroscopy (NIR) 
	Hyperspectral Imaging (HSI) 
	Raman Spectroscopy 
	Laser Induced Breakdown Spectroscopy (LIBS) 
	Nuclear Magnetic Resonance (NMR) 
	Terahertz Spectroscopy (THz) 

	Application of Rapid and Intelligent Detection Technology 
	Near-Infrared Spectroscopy (NIR) 
	Health-Promoting Components 
	Harmful Components 
	Components Required for Fruit and Vegetable Growth 

	Hyperspectral Imaging (HSI) 
	Health-Promoting Components 
	Chlorophyll 
	Heavy Metal 

	Raman Spectroscopy 
	Mycotoxin 
	Pesticide Residue 

	Laser-Induced Breakdown Spectroscopy (LIBS) 
	Health-Promoting Components 
	Pesticide Residue 
	Heavy Metal 

	Nuclear Magnetic Resonance (NMR) 
	Terahertz Spectroscopy (THz) 

	Conclusions 
	Existing Problems 
	Prospects 

	References

