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Abstract: Sesame seeds (Sesamum indicum L.) have been cultivated for thousands of years and have
long been celebrated for their culinary versatility. Beyond their delightful nutty flavor and crunchy
texture, sesame seeds have also gained recognition for their remarkable health benefits. This article
provides an in-depth exploration of the numerous ways in which sesame seeds contribute to overall
well-being. Sesame seeds are a powerhouse of phytochemicals, including lignans derivatives, toco-
pherol isomers, phytosterols, and phytates, which have been associated with various health benefits,
including the preservation of cardiovascular health and the prevention of cancer, neurodegenerative
disorders, and brain dysfunction. These compounds have also been substantiated for their efficacy
in cholesterol management. Their potential as a natural source of beneficial plant compounds is
presented in detail. The article further explores the positive impact of sesame seeds on reducing the
risk of chronic diseases thanks to their rich polyunsaturated fatty acids content. Nevertheless, it is
crucial to remember the significance of maintaining a well-rounded diet to achieve the proper balance
of n-3 and n-6 polyunsaturated fatty acids, a balance lacking in sesame seed oil. The significance of
bioactive polypeptides derived from sesame seeds is also discussed, shedding light on their applica-
tions as nutritional supplements, nutraceuticals, and functional ingredients. Recognizing the pivotal
role of processing methods on sesame seeds, this review discusses how these methods can influence
bioactive compounds. While roasting the seeds enhances the antioxidant properties of the oil extract,
certain processing techniques may reduce phenolic compounds.

Keywords: sesame (Sesamum indicum L.); sesame oil; bioactive compounds; health benefits;
extraction methods

1. Introduction

Sesame (Sesamum indicum L.) is a plant classified under the Pedaliaceae family and is
often called the “seed of immortality.” This plant is an erect annual herb that has different
names across various cultures, including ajonjoli (Spanish), hu ma (Chinese), gergelim (Por-
tuguese), goma (Japanese), sesame (French), til (Hindi), and konjed (Persian) [1–3]. This crop
is among the earliest to have been domesticated for oil production and also served as one of
the first condiments utilized [4,5]. The precise location of sesame’s domestication remains
uncertain; however, despite various assertions, it is widely believed that the crop originated
in Africa and subsequently disseminated to West Asia, China, India, and Japan [5,6]. The
harvested area (which has expanded from 5.0 million hectares in 1961 to 13.97 million ha in
2022) and the production of sesame have increased over the last few decades (1.4 million
tonnes in 1961 to 7.4 million tonnes in 2022) [7,8]. Despite its widespread cultivation in
various regions of the southern United States, Latin America, Asia, and Africa, the crop
commonly known as the “queen of oilseeds” is considered an orphan crop and is not cur-
rently mandated by any International Crop Research Institute for Semi-Arid Tropics [7,9].
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According to the Food and Agriculture Organization, most of the world’s sesame crop is
cultivated in less developed nations like Uganda, Sudan, Nigeria, India, China, Burma, and
Brazil. South Sudan ranks fifth in the world for area harvested for sesame seeds. The crop is
mainly grown by small-holder farmers, while some commercial farmers are in Upper Nile
State. In 2021, the total sesame production in South Sudan was 26,000 MT, and the yield was
0.3 tons/ha. Local demand for processed sesame seeds and byproducts, most of which are
imported from neighboring countries, is growing. In 2021, South Sudan exported USD 253k
in sesame oil or fractions not chemically modified, making it the 44th largest exporter in
the world. Sesame is the 16th most exported product in South Sudan, the main destination
of exports being the United Arab Emirates and France [7,8,10]. Sesame is regarded as one
of China’s four most important traditional edible oil crops, along with soybean, peanut,
and rape. Approximately 45% of sesame in China is allocated for producing sesame oil,
while 22% is utilized for sesame paste, another 22% for sesame peeling, and a mere 5%
for baked goods [11,12]. Sesame has long been a favorite among humans as a traditional
medicinal plant with rich nutritional value and taste; also, it plays a crucial part in humans’
diet as a nutrient-dense food that is widely used in the food industry as an ingredient in
various food products (e.g., bread, biscuits, burgers, cakes, dressings, dishes, snacks, and
edible oil) due to its high oil content, pleasant scent, and resilience to oxidation [13]. In
addition to their use as a food source, sesame seeds have extensive applications within the
pharmaceutical and cosmetic sectors [14]. To produce different food products, animal feed,
industrial supplies, lubricants, soaps, medicinal supplies, and co-products from sesame,
the primary process of raw material is acquired [15].

Sesame seeds are obtainable in three distinct colors: black, brown, and white. They
contain several essential nutrients in varying proportions. The composition of sesame
seeds comprises 45–65% oil, a noteworthy source of plant-based protein with content
ranging from 19 to 35% per 100 g of seeds, 14 to 20% carbohydrates, and 15 to 20% hull
material. Although the protein content of sesame seeds is lower than that of meat, it is
comparable to or higher than many grains, such as rice or wheat [16,17]. These tiny seeds
also contain measurable amounts of oxalic acid, dietary fiber, antioxidants, and minerals
(iron, magnesium, and zinc). The fatty acid content in sesame seeds is predominantly
unsaturated fatty acids, such as oleic and linoleic acids, with smaller amounts of saturated
fatty acids, like palmitic and stearic acids. Sesame oil consists of unsaponifiable fractions
such as sesamin, sesamolin, and sterols. Additionally, sesame seeds are an excellent source
of calcium, containing essential amino acids like methionine, valine, and tryptophan.
Sesame seeds also contain bioactive components like phenolics, vitamins, phytosterols, and
polyunsaturated fatty acids (PUFAs), which benefit human health [18,19]. Figure 1 shows
bioactive compounds that could be detected in sesame.

Sesame lignans may account for the seed’s popularity, including sesamin, sesamolin,
and sesamol. Sesame oil has been shown to have antioxidant and health-promoting
benefits due to its high concentration of tocopherol, phytosterol, lignan, and other com-
ponents [20,21]. The protective effects of sesame on heart function, regulation of lipid
metabolism, and prevention of mutations and cancer have been demonstrated in numerous
studies [22,23]. According to Ahmad and Ghosh’s (2020) research, sesame seeds possess a
high nutrient content that may benefit the immune system significantly and potentially mit-
igate the risk of health complications associated with COVID-19. They have reported that
regular consumption of sesame may lessen the likelihood of contracting viruses and stave
against health issues like malnutrition that might arise [24]. Hsu and Parthasarathy [25]
have indicated that the consumption of sesame oil can reduce levels of low-density lipopro-
tein (LDL) and decrease the risk of atherosclerosis and cardiovascular diseases. Alzheimer’s
disease is linked to the deposition of toxic cellular amyloid proteins, and the prolonged
consumption of sesamol may efficiently hinder this buildup [26].
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Figure 1. Bioactive components in sesame (Sesamum indicum L.).

This review presents a comprehensive overview of the structure of various bioactive
compounds found in sesame seeds and products. This review also covers recent advance-
ments in studying the impact of food processing on sesame seed oil and the mechanisms
by which these technologies affect the bioactivity of sesame compounds.

2. The Bioactive Compounds and Health Benefits of Sesame

Bioactive compounds present in food are considered advantageous constituents that
contribute to the prevention of diseases (Figure 2). The compounds in this category are
diverse and consist of carotenoids, phenolics, phytosterols, and PUFAs [20,27,28]. The
mentioned compounds are frequently employed as antioxidants and for various other
functions, including but not limited to impeding cholesterol absorption and obstructing
the activity of bacterial toxins [29–31]. PUFAs, lignans, tocopherols, and phytosterols are
among the antioxidants and bioactive compounds that could be present in high levels of
sesame. Compared to other edible oils, the high antioxidant content of sesame oil improves
energy and resistance to aging [12,30].

Secondary metabolites known as natural phenolic compounds are extensively found
throughout the plant kingdom. Phenolic compounds found in plants have been recognized
for their potential to mitigate oxidative-stress-related conditions, including but not limited
to cardiovascular and neurodegenerative disorders, as well as cancer [32–37]. Phenolics are
distinguished by an aromatic ring, typically with one or more hydroxyl groups attached.
Phenolics exhibit a notable antioxidative capacity owing to their ability to generate stable
radical intermediates through electron utilization. Owing to their capacity to act as antioxi-
dants, they assume a significant function in stabilizing edible oils and safeguarding against
the development of undesirable flavors [38–42]. Recent research indicates that phenolic
compounds may significantly impact ailments related to oxidative stress. The antioxidant
and diverse benefits associated with sesame seed and its oil are due to the existence of
lignans, specifically sesamin, sesamolin, sesaminol, sesangolin, 2-episalatin, and tocopherol
isomers [18,43]. The high resistance of sesame oil to oxidative rancidity can be attributed to
the chemical constituents sesamol and sesamol dimer.
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Figure 2. Health benefits of bioactive compounds in sesame (Sesamum indicum L.) and its mecha-
nism. ABCG: ATP-binding cassette, subfamily G; ACCa: acetyl-CoA carboxylase 1; ACHE: acetyl-
cholinesterase; ACL: ATP citrate lyase; ACO: 1-aminocyclopropane-1-carboxylic acid oxidase; ACOTs:
acyl-CoA thioesterases; ALDH: aldehyde dehydrogenases; ALT: alanine aminotransferase; APOA4:
apolipoprotein; AST: aspartate aminotransferase; AT1: angiotensin type 1; BAX: apoptosis regulator;
BDNF: brain-derived neurotrophic factor; BIRC5: survivin protein; CASP3: caspase 3; CASP12:
caspase 12; CAT: catalase; CCL2: chemokine ligand 2; CCND1: cyclin D1; CD: conjugated di-
enes; CDK2: cyclin-dependent kinase 2; CD4: cluster of differentiation; CK: creatine kinase; CPT1:
carnitine palmitoyl transferase I; COX: cyclooxygenase; CRP: C-reactive protein; CYBA: human
neutrophil cytochrome b light chain; DJ-1: protein deglycase; ERK: extracellular signal-regulated ki-
nase; FBP: fructose 1,6-bisphosphatase; GAA: alpha glucosidase; GADD153: DNA damage-inducible
gene 153; GPx: glutathione peroxidase; GR: glutathione reductase; GRP78: glucose regulatory pro-
tein 78; GSH: reduced glutathione; GSTs: glutathione-S-transferases; G6P: glucose 6-phosphate;
HADH: 3-hydroxy acyl-CoA dehydrogenase; HK: hexokinase; ICAM-1: Intercellular adhesion
molecule-1; IFN-β: Interferon-β; IgM: anticardiolipin antibody; IL-1β: interleukin-1β; IL-6: inter-
leukin 6; IL-4: interleukin-4; JNK: c-Jun N-terminal kinase; KAT: 3-ketoacyl-CoA thiolase; LDH:
lactate dehydrogenase; LOOHs: lipid hydroperoxide; LOX: lipoxygenase; LPO: lipid peroxidation;
mAChRs: muscarinic acetylcholine receptors; MCP1: monocyte chemoattractant protein-1; MMP2:
metalloproteinase-2; MMP-9: matrix metallopeptidase 9; NF-κB: nuclear factor kappa B; NO: nitric
oxide; NOX1: NADPH oxidase 1; NRF2: nuclear-factor-erythroid-2-related factor 2; Nrf2-ARE path-
way: transcription factor Nrf2- antioxidant responsive element; NT3: neurotrophin-3; p38 MAPK:
p38 mitogen-activated protein kinases; P53: yumor protein P53; PAkt-PI3K: phosphatidylinositol
3-kinase (PI3K)/protein kinase B (AKT) signaling pathway;PGE2: prostaglandin E2; PK: pyruvate ki-
nase; PKB: protein kinase B; PPARs: peroxisome proliferate activated receptor α; PPAR-γ: peroxisome
proliferator-activated receptor gamma; SELP: P-selectin; SIRT1: sirtuin 1; SREBPs: sterol regulatory
element binding proteins; TBARS: thiobarbituric acid reactive substances; TH: tyrosine hydroxylase;
TGF-β1: transforming growth factor beta 1; TIMP-1: tissue inhibitor of metalloproteinases-1; TropT:
troponin T;TNFα: tumor necrosis factor α; VEGF: vascular endothelial growth factor [20].
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2.1. Lignans

Natural products are based on the fundamental structure of a C6C3 unit, which is
identified as a phenylpropanoid skeleton or propylbenzene [29,44]. The first proposal to
the categorization of compounds formed by the linkage of two C6C3 units with a β,β′

bond (8-8′ bond) as lignans was proposed by Haworth [45] in a study on natural resins.
Lignan, derived from two p-hydroxyphenylpropane molecules, is a constituent of lignin,
a substance with a general term. Sesame seeds contain two primary groups of lignans:
(I) oil-soluble lignans (sesamin, sesamolin, sesaminol, sesamolinol, and pinoresinol) and
(II) glycosylated water-soluble lignans (sesaminol triglucoside, pinoresinol triglucoside,
sesaminol monoglucoside, pinoresinol monoglucoside, and two isomers of pinoresinol
diglucoside and sesaminol diglucoside) [46,47]. They all demonstrate various biological
characteristics (Table 1) [48–50].

The antimicrobial and antioxidant efficacy ranking among the three compounds is
as follows: sesamolin, sesamin, and sesamol [51–53]. Egawa et al. [54] reported that
stimulating sympathetic nerve activity by sesame lignans improves muscle blood flow.
In addition, the antioxidative properties of lignans have been observed to affect multiple
models of brain dysfunction and protect against age-related brain dysfunction [20,55].
Enhancing the lignan content of sesame has become a crucial objective in sesame breeding
programs because of its health-promoting properties, which have made it a functional
compound [48,56]. Sesamin and sesamolin are viable options for conducting quality control
assessments on samples and determining their biological value [57–59].
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Table 1. Structures, quantities, biological activities, and mechanisms of different lignans detected from Sesamum indicum.

Lignans in
Sesame

Name of
Component Molecular Structure

Quantity/Amount of
Raw Sesame Seeds

and Sesame Oil

Biological
Characteristics Mechanism Reference

Oil-soluble
lignans Sesamin
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C20H18O6

Sesame seed:
0.77–9.3 mg/g

Sesame oil:
6.20 mg/g

Antioxidant Properties

- Scavenging free radicals, such as ROS and RNS.
Sesamin mitigates oxidative stress by donating
electrons to these radicals, preventing cellular
damage and lipid peroxidation.

- Upregulating endogenous antioxidant enzymes,
such as SOD, catalase, and GSH-Px. This
enhancement of the cellular antioxidant defense
systems contributes to the overall reduction of
oxidative stress.

- Through binding to transition metal ions, it
engages in chelation, reducing their capacity to
catalyze the formation of free radicals and thereby
mitigating oxidative damage.

[50,56,60–65]

Metabolic Health and
Prevention of Diabetes

- Promoting glucose uptake into cells, thereby
reducing blood glucose levels. The enhanced
insulin sensitivity can contribute to the prevention
of insulin resistance, a key factor in developing
type 2 diabetes.

- It may influence adipose tissue metabolism by
modulating the expression and activity of key
enzymes involved in lipogenesis and lipolysis.
This regulation can contribute to maintaining a
healthy balance of adipose tissue and preventing
obesity-related metabolic dysregulation.

- Inhibiting gluconeogenesis, the process by which
the liver produces glucose. By suppressing the
excessive glucose production in the liver, sesamin
may prevent hyperglycemia, a characteristic
feature of diabetes.
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Table 1. Cont.

Lignans in
Sesame

Name of
Component Molecular Structure

Quantity/Amount of
Raw Sesame Seeds

and Sesame Oil

Biological
Characteristics Mechanism Reference

Cytotoxic Activity

- Inducing cell cycle arrest in different phases, such
as G1, S, or G2/M, depending on the cancer cell
type. This regulatory effect on the cell cycle
prevents uncontrolled cell proliferation and
contributes to the cytotoxic activity of sesamin.

- It is associated with pharmacological activities
against breast cancer. It regulates receptors such as
estrogen receptor-α (ER-α), estrogen receptor-β
(ER-β), and growth factor receptors (HER2 and
EGFR). Also, it may suppress programmed
death-ligand 1 (PD-L1) overexpression and inhibit
growth factor receptors.

- Sesamin interferes with these signaling cascades
by modulating cell survival pathways, such as the
PI3K/Akt and MAPK pathways. This disruption
effectively targets the prosurvival signals crucial
for the viability of cancer cells.

Atherosclerosis

- It promotes NO synthesis by activating endothelial
NO synthase (eNOS), leading to vasodilation and
improved endothelial function.

- Suppresses NF-κB activation, reducing
pro-inflammatory cytokines and
adhesion molecules.

- Interacts with PPARs, which regulate lipid
metabolism and inflammation.

- It may influence macrophage behavior, affecting
plaque stability and regression
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Table 1. Cont.

Lignans in
Sesame

Name of
Component Molecular Structure

Quantity/Amount of
Raw Sesame Seeds

and Sesame Oil

Biological
Characteristics Mechanism Reference

Sesamol

Foods 2024, 13, x FOR PEER REVIEW 7 of 52 
 

 

suppress programmed death-ligand 1 (PD-L1) 
overexpression and inhibit growth factor receptors. 

- Sesamin interferes with these signaling cascades by 
modulating cell survival pathways, such as the 
PI3K/Akt and MAPK pathways. This disruption 
effectively targets the prosurvival signals crucial for the 
viability of cancer cells. 

Atherosclerosis 

- It promotes NO synthesis by activating endothelial NO 
synthase (eNOS), leading to vasodilation and improved 
endothelial function. 

- Suppresses NF-κB activation, reducing pro-
inflammatory cytokines and adhesion molecules. 

- Interacts with PPARs, which regulate lipid metabolism 
and inflammation. 

- It may influence macrophage behavior, affecting plaque 
stability and regression 

Sesamol 

 
C7H6O3 

Sesame seed: 
1.20  mg/g 
Sesame oil: 

0.27–3.37 mg/g 

Cardioprotective 
Properties 

- The molecular mechanism of cardioprotection by 
sesamol is primarily attributed to the methylenedioxy 
group present in its chemical structure. It specifically 
modulates the oxidative enzyme myeloperoxidase 
(MPO) and other proteins detrimental to human well-
being. 

[66–73] 
Antioxidant Activity 

- The inhibition of peroxyl radicals and its pro-oxidative 
attack on lipid hydroperoxides and substrates. 
Additionally, the destructured triacylglycerol 
backbones influence the antioxidant activity of sesamol 
in fatty acid methyl esters. 

- Scavenging free radicals and protecting cells from 
oxidative damage. 

- It inhibits lipid peroxidation, contributing to overall 
cellular health. 

- By neutralizing ROS, it helps prevent DNA mutations 
and cellular dysfunction.  

- It is able to inhibit malic enzyme activity and NADPH 
supply, possibly resulting in cell proliferation and 
alteration in the fatty acid composition. 

Anti-Inflammatory 

- It suppresses pro-inflammatory cytokines such as IL-1β 
(interleukin-1β) and TNF-α (tumor necrosis factor-α). 

- It inhibits the NF-κB (nuclear factor kappa light chain 
enhancer of activated B cells) and ERK/p38 MAPK 

C7H6O3

Sesame seed:
1.20 mg/g
Sesame oil:

0.27–3.37 mg/g

Cardioprotective
Properties

- The molecular mechanism of cardioprotection by
sesamol is primarily attributed to the
methylenedioxy group present in its chemical
structure. It specifically modulates the oxidative
enzyme myeloperoxidase (MPO) and other
proteins detrimental to human well-being.

[66–73]
Antioxidant Activity

- The inhibition of peroxyl radicals and its
pro-oxidative attack on lipid hydroperoxides and
substrates. Additionally, the destructured
triacylglycerol backbones influence the antioxidant
activity of sesamol in fatty acid methyl esters.

- Scavenging free radicals and protecting cells from
oxidative damage.

- It inhibits lipid peroxidation, contributing to
overall cellular health.

- By neutralizing ROS, it helps prevent DNA
mutations and cellular dysfunction.

- It is able to inhibit malic enzyme activity and
NADPH supply, possibly resulting in cell
proliferation and alteration in the fatty
acid composition.

Anti-Inflammatory

- It suppresses pro-inflammatory cytokines such as
IL-1β (interleukin-1β) and TNF-α (tumor necrosis
factor-α).

- It inhibits the NF-κB (nuclear factor kappa light
chain enhancer of activated B cells) and
ERK/p38 MAPK (mitogen-activated protein
kinases) signaling pathways, which play crucial
roles in inflammation.
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Table 1. Cont.

Lignans in
Sesame

Name of
Component Molecular Structure

Quantity/Amount of
Raw Sesame Seeds

and Sesame Oil

Biological
Characteristics Mechanism Reference

Antiangiogenic

- It inhibits the formation of new blood vessels
(angiogenesis) required for tumor growth.

- By limiting blood supply to tumors, it hinders
their progression.

Apoptosis Induction

- It promotes programmed cell death (apoptosis) in
cancer cells.

- It activates caspases and disrupts mitochondrial
function, leading to cancer cell demise.

Epigenetic Regulation

- Influencing gene expression through epigenetic
modifications.

- It may alter DNA methylation patterns and
histone acetylation, affecting cancer-related genes.

- It reduces DNA damage, contributing to overall
cellular integrity.

Detoxification and
Phase II Enzyme

Induction

- It can potentially increase the body’s phase II
detoxification enzyme activity, assisting in
removing toxic chemicals and carcinogens. The
process of detoxification has the potential to
prevent the development of cancer.

Sesamolin
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- It can potentially increase the body’s phase II 
detoxification enzyme activity, assisting in removing 
toxic chemicals and carcinogens. The process of 
detoxification has the potential to prevent the 
development of cancer. 

 

Sesamolin 

 
C20H18O7 

Sesame seed: 
4.50  mg/g 
Sesame oil: 
2.45  mg/g 

Neuroprotective 
Activity 

- Reducing ROS and inhibiting apoptosis induced by 
hypoxia. These properties make it potentially beneficial 
for brain health. 

[51,59,74–76] 

Antileukemic Effects 

- Reduced leukemic cell numbers by almost 60%. 
- Hindered neoplastic cell proliferation. 
- Stimulated natural killer (NK) cell cytolytic activity 

against tumor cells. 

Antimelanogenesis in 
Skin Cancer 

- Melanin synthesis involves various enzymes; it affects 
the expression of melanogenic enzymes, leading to 
antimelanogenesis effects. 

- Influencing cellular signaling pathways by affecting 
signal transduction, it could alter the expression of 
genes associated with melanin synthesis. 

Sesaminol 

Sesame seed: 
1.40  mg/g 
Sesame oil: 
0.01  mg/g 

Anticancer Effects 

- Modulating signaling pathways related to cell survival 
and proliferation, the induction of apoptosis 
(programmed cell death), and the inhibition of 
angiogenesis (formation of new blood vessels that 
support tumor growth). 

[77,78] 

C20H18O7

Sesame seed:
4.50 mg/g
Sesame oil:
2.45 mg/g

Neuroprotective
Activity

- Reducing ROS and inhibiting apoptosis induced
by hypoxia. These properties make it potentially
beneficial for brain health.

[51,59,74–76]

Antileukemic Effects

- Reduced leukemic cell numbers by almost 60%.
- Hindered neoplastic cell proliferation.
- Stimulated natural killer (NK) cell cytolytic activity

against tumor cells.
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Table 1. Cont.

Lignans in
Sesame

Name of
Component Molecular Structure

Quantity/Amount of
Raw Sesame Seeds

and Sesame Oil

Biological
Characteristics Mechanism Reference

Antimelanogenesis in
Skin Cancer

- Melanin synthesis involves various enzymes; it
affects the expression of melanogenic enzymes,
leading to antimelanogenesis effects.

- Influencing cellular signaling pathways by
affecting signal transduction, it could alter the
expression of genes associated with
melanin synthesis.

Sesaminol
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C20H18O7 

- Impacting key cellular signaling pathways such as the 
PI3K/Akt/mTOR pathway, frequently dysregulated in 
cancer. 

- Interfering with the cell cycle, preventing the 
uncontrolled division of cancer cells, and inducing cell 
cycle arrest, it restricts the ability of cancer cells to 
replicate and spread. 

Detoxification 
Pathways 

- Activating detoxification pathways in the liver. This 
could play a role in protecting against carcinogens and 
preventing cancer initiation. 

Preventing Parkinson’s 
Disease 

- Activating the Nrf2-ARE signaling pathway. Nrf2 is a 
transcription factor that plays a key role in cellular 
defense mechanisms by regulating the expression of 
antioxidant and detoxification genes. 

- Activation of the Nrf2-ARE pathway by sesaminol 
could enhance the cellular defense against oxidative 
stress, which is implicated in the pathogenesis of 
Parkinson’s disease. 

- Dysfunction in mitochondrial activity; through its 
antioxidant and cytoprotective effects, it may contribute 
to the preservation of mitochondrial function in 
neurons. 

Sesamolinol 

 
C20H20O7 

 

Cardioprotective 
Effects  

- By influencing lipid metabolism and reducing 
inflammation 

[23,79,80] 

Hormonal Modulation 
- Modulate hormone levels, particularly estrogen. This 

hormonal influence may have implications for 
conditions such as hormone-related cancers. 

Antimicrobial 
Properties 

- Interfering with the ability of microorganisms to adhere 
to host cells or surfaces. This can prevent the 
establishment of infections by impeding the initial steps 
of microbial colonization. 

- Some antimicrobial compounds, including certain 
polyphenols, exhibit chelating properties, binding to 
essential metal ions required for microbial growth. This 
can result in nutrient deprivation for the 
microorganisms and hinder their ability to thrive. 

- Inhibiting the activity of microbial enzymes, disrupting 
vital metabolic processes, and rendering 
microorganisms unable to proliferate. 

C20H18O7

Sesame seed:
1.40 mg/g
Sesame oil:
0.01 mg/g

Anticancer Effects

- Modulating signaling pathways related to cell
survival and proliferation, the induction of
apoptosis (programmed cell death), and the
inhibition of angiogenesis (formation of new blood
vessels that support tumor growth).

- Impacting key cellular signaling pathways such as
the PI3K/Akt/mTOR pathway, frequently
dysregulated in cancer.

- Interfering with the cell cycle, preventing the
uncontrolled division of cancer cells, and inducing
cell cycle arrest, it restricts the ability of cancer
cells to replicate and spread.

[77,78]

Detoxification
Pathways

- Activating detoxification pathways in the liver.
This could play a role in protecting against
carcinogens and preventing cancer initiation.
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Table 1. Cont.

Lignans in
Sesame

Name of
Component Molecular Structure

Quantity/Amount of
Raw Sesame Seeds

and Sesame Oil

Biological
Characteristics Mechanism Reference

Preventing Parkinson’s
Disease

- Activating the Nrf2-ARE signaling pathway.
Nrf2 is a transcription factor that plays a key role
in cellular defense mechanisms by regulating the
expression of antioxidant and detoxification genes.

- Activation of the Nrf2-ARE pathway by sesaminol
could enhance the cellular defense against
oxidative stress, which is implicated in the
pathogenesis of Parkinson’s disease.

- Dysfunction in mitochondrial activity; through its
antioxidant and cytoprotective effects, it may
contribute to the preservation of mitochondrial
function in neurons.

Sesamolinol
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C20H18O7 

- Impacting key cellular signaling pathways such as the 
PI3K/Akt/mTOR pathway, frequently dysregulated in 
cancer. 

- Interfering with the cell cycle, preventing the 
uncontrolled division of cancer cells, and inducing cell 
cycle arrest, it restricts the ability of cancer cells to 
replicate and spread. 

Detoxification 
Pathways 

- Activating detoxification pathways in the liver. This 
could play a role in protecting against carcinogens and 
preventing cancer initiation. 

Preventing Parkinson’s 
Disease 

- Activating the Nrf2-ARE signaling pathway. Nrf2 is a 
transcription factor that plays a key role in cellular 
defense mechanisms by regulating the expression of 
antioxidant and detoxification genes. 

- Activation of the Nrf2-ARE pathway by sesaminol 
could enhance the cellular defense against oxidative 
stress, which is implicated in the pathogenesis of 
Parkinson’s disease. 

- Dysfunction in mitochondrial activity; through its 
antioxidant and cytoprotective effects, it may contribute 
to the preservation of mitochondrial function in 
neurons. 

Sesamolinol 

 
C20H20O7 

 

Cardioprotective 
Effects  

- By influencing lipid metabolism and reducing 
inflammation 

[23,79,80] 

Hormonal Modulation 
- Modulate hormone levels, particularly estrogen. This 

hormonal influence may have implications for 
conditions such as hormone-related cancers. 

Antimicrobial 
Properties 

- Interfering with the ability of microorganisms to adhere 
to host cells or surfaces. This can prevent the 
establishment of infections by impeding the initial steps 
of microbial colonization. 

- Some antimicrobial compounds, including certain 
polyphenols, exhibit chelating properties, binding to 
essential metal ions required for microbial growth. This 
can result in nutrient deprivation for the 
microorganisms and hinder their ability to thrive. 

- Inhibiting the activity of microbial enzymes, disrupting 
vital metabolic processes, and rendering 
microorganisms unable to proliferate. 

C20H20O7

Cardioprotective
Effects

- By influencing lipid metabolism and reducing
inflammation

[23,79,80]

Hormonal Modulation
- Modulate hormone levels, particularly estrogen.

This hormonal influence may have implications for
conditions such as hormone-related cancers.

Antimicrobial
Properties

- Interfering with the ability of microorganisms to
adhere to host cells or surfaces. This can prevent
the establishment of infections by impeding the
initial steps of microbial colonization.

- Some antimicrobial compounds, including certain
polyphenols, exhibit chelating properties, binding
to essential metal ions required for microbial
growth. This can result in nutrient deprivation for
the microorganisms and hinder their ability
to thrive.

- Inhibiting the activity of microbial enzymes,
disrupting vital metabolic processes, and
rendering microorganisms unable to proliferate.
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Table 1. Cont.

Lignans in
Sesame

Name of
Component Molecular Structure

Quantity/Amount of
Raw Sesame Seeds

and Sesame Oil

Biological
Characteristics Mechanism Reference

Pinoresinol

Foods 2024, 13, x FOR PEER REVIEW 10 of 52 
 

 

Pinoresinol 

 
C20H22O6 

Sesame seed: 
0.29–0.47 mg/g 

Sesame oil: 
- 

Hypoglycemic agent 

- Inhibition of α-Glucosidase: α-Glucosidase is an 
enzyme that breaks down complex carbohydrates into 
simple sugars (glucose). Pinoresinol inhibits α-
glucosidase activity in vitro. Slowing down 
carbohydrate digestion reduces the rate of glucose 
release into the bloodstream after meals. This effect 
helps prevent rapid spikes in blood sugar levels. 

- Improving insulin sensitivity in peripheral tissues (such 
as muscle and fat cells). Enhanced insulin sensitivity 
allows cells to take up glucose more efficiently, 
reducing hyperglycemia. 

- Activating AMPK, leading to increased glucose uptake 
by cells. AMPK activation also promotes fatty acid 
oxidation and overall metabolic balance. 

[31,81–85] Hepatoprotective 

- Down-regulates the expression of CCl₄ hitherto and 
TNF-α inflammatory molecules and inhibits the 
production of cytotoxic cytokines by activated Kupffer 
cells. 

- Inhibiting the NF-κB and phosphorylation of c-Jun (a 
component of AP-1). This action suppresses the 
inflammatory response in liver tissue. 

Chemoprevention - Increasing apoptosis and cell cycle arrest. 

Enterolignan 
Formation 

- Pinoresinol and other plant lignans are converted into 
enterolignans by intestinal microflora in the human 
body. 

Autophagy Induction 

- Inducing autophagy, as evidenced by increased 
expression of LC3 II and Beclin and decreased 
expression of p62. Autophagy helps maintain cellular 
health. 

Interaction with Gut 
Microbiota 

- Pinoresinol, along with other plant lignans, is 
metabolized by intestinal microflora. These microbial 
transformations yield enterolignans, which may have 
additional health benefits. Enterolignans could 
influence glucose metabolism through gut–brain 
communication. 

C20H22O6

Sesame seed:
0.29–0.47 mg/g

Sesame oil:
-

Hypoglycemic agent

- Inhibition of α-Glucosidase: α-Glucosidase is an
enzyme that breaks down complex carbohydrates
into simple sugars (glucose). Pinoresinol inhibits
α-glucosidase activity in vitro. Slowing down
carbohydrate digestion reduces the rate of glucose
release into the bloodstream after meals. This effect
helps prevent rapid spikes in blood sugar levels.

- Improving insulin sensitivity in peripheral tissues
(such as muscle and fat cells). Enhanced insulin
sensitivity allows cells to take up glucose more
efficiently, reducing hyperglycemia.

- Activating AMPK, leading to increased glucose
uptake by cells. AMPK activation also promotes
fatty acid oxidation and overall metabolic balance.

[31,81–85]

Hepatoprotective

- Down-regulates the expression of CCl4 hitherto
and TNF-α inflammatory molecules and inhibits
the production of cytotoxic cytokines by activated
Kupffer cells.

- Inhibiting the NF-κB and phosphorylation of c-Jun
(a component of AP-1). This action suppresses the
inflammatory response in liver tissue.

Chemoprevention - Increasing apoptosis and cell cycle arrest.

Enterolignan
Formation

- Pinoresinol and other plant lignans are converted
into enterolignans by intestinal microflora in the
human body.

Autophagy Induction

- Inducing autophagy, as evidenced by increased
expression of LC3 II and Beclin and decreased
expression of p62. Autophagy helps maintain
cellular health.
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Table 1. Cont.

Lignans in
Sesame

Name of
Component Molecular Structure

Quantity/Amount of
Raw Sesame Seeds

and Sesame Oil

Biological
Characteristics Mechanism Reference

Interaction with Gut
Microbiota

- Pinoresinol, along with other plant lignans, is
metabolized by intestinal microflora. These
microbial transformations yield enterolignans,
which may have additional health benefits.
Enterolignans could influence glucose metabolism
through gut–brain communication.

Glycosylated
water-soluble

lignans

Sesaminol
Triglucoside (STG)
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Glycosylated 
water-soluble 

lignans 

Sesaminol 
Triglucoside (STG) 

C38H48O22 

Sesame seed: 
0.36–15.60  mg/g 

Glucoside Hydrolysis 

- Researchers discovered a novel enzyme capable of 
efficiently hydrolyzing STG. This enzyme, called PSTG, 
is produced by a strain (KB0549) of the genus 
Paenibacillus. 

- PSTG is a tetrameric protein composed of identical 
subunits with an approximate molecular mass of 80 
kDa. 

- The PSTG gene was cloned based on partial amino acid 
sequences of the purified enzyme. 

- Sequence comparison revealed that PSTG belongs to the 
glycoside hydrolase family 3 and shares significant 
similarities with Paenibacillus glucocerebrosidase and 
Bgl3B of Thermotoga neapolitana. 

- The recombinant enzyme (rPSTG) is highly specific for 
β-glucosidic linkage. 

- The kcat (catalytic rate constant) and kcat / Km 
(specificity constant) values for the rPSTG-catalyzed 
hydrolysis of p-nitrophenyl-β-glucopyraniside at 37 °C 
and pH 6.5 are 44 s⁻¹ and 426 s⁻¹ mM⁻¹, respectively. 

- Interestingly, rPSTG exhibits higher reactivity for β-1,2-
glucosidic linkage than for β-1,4- and β-1,6-glucosidic 
linkages. 

- This unique specificity allows rPSTG to efficiently 
decompose STG, making it the first example of such a β-
glucosidase 

[86,87] 

Pinoresinol 
Triglucoside (PTG) 

 
C34H42O18 

Not explicitly 
documented 

Autophagy Induction 
PTG induces autophagy in ovarian cancer cells (SKOV-3). 
This is associated with increased expression of LC3 II and 
Beclin and decreased expression of p62. 

[84,88] 

Mitochondrial 
Membrane Potential 

(MMP) Loss 

It reduces the MMP of SKOV-3 cells, affecting their 
mitochondrial function. 

Inhibition of Cell 
Invasion 

It inhibits the invasion capacity of SKOV-3 cells. 

Raf/MEK/ERK 
Signaling Pathway 

Inhibition 

PTG concentration-dependently inhibits the expression of 
phospho-MEK and phospho-ERK, key signaling pathway 
components.  

Tumor Growth 
Inhibition 

In xenografted tumor models in mice, PTG significantly 
inhibits tumor growth, demonstrating its potential as an 
ovarian cancer treatment. 

Sesaminol Antioxidant Activity - Protecting cells from oxidative stress. [5,89] 

C38H48O22

Sesame seed:
0.36–15.60 mg/g Glucoside Hydrolysis

- Researchers discovered a novel enzyme capable of
efficiently hydrolyzing STG. This enzyme, called
PSTG, is produced by a strain (KB0549) of the
genus Paenibacillus.

- PSTG is a tetrameric protein composed of identical
subunits with an approximate molecular mass of
80 kDa.

- The PSTG gene was cloned based on partial amino
acid sequences of the purified enzyme.

- Sequence comparison revealed that PSTG belongs
to the glycoside hydrolase family 3 and shares
significant similarities with Paenibacillus
glucocerebrosidase and Bgl3B of Thermotoga
neapolitana.

- The recombinant enzyme (rPSTG) is highly specific
for β-glucosidic linkage.

- The kcat (catalytic rate constant) and kcat / Km
(specificity constant) values for the
rPSTG-catalyzed hydrolysis of
p-nitrophenyl-β-glucopyraniside at 37 ◦C and pH
6.5 are 44 s−1 and 426 s−1 mM−1, respectively.

- Interestingly, rPSTG exhibits higher reactivity for
β-1,2-glucosidic linkage than for β-1,4- and
β-1,6-glucosidic linkages.

- This unique specificity allows rPSTG to efficiently
decompose STG, making it the first example of
such a β-glucosidase

[86,87]
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Table 1. Cont.

Lignans in
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Component Molecular Structure

Quantity/Amount of
Raw Sesame Seeds

and Sesame Oil

Biological
Characteristics Mechanism Reference

Pinoresinol
Triglucoside (PTG)
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Glycosylated 
water-soluble 

lignans 

Sesaminol 
Triglucoside (STG) 

C38H48O22 

Sesame seed: 
0.36–15.60  mg/g 

Glucoside Hydrolysis 

- Researchers discovered a novel enzyme capable of 
efficiently hydrolyzing STG. This enzyme, called PSTG, 
is produced by a strain (KB0549) of the genus 
Paenibacillus. 

- PSTG is a tetrameric protein composed of identical 
subunits with an approximate molecular mass of 80 
kDa. 

- The PSTG gene was cloned based on partial amino acid 
sequences of the purified enzyme. 

- Sequence comparison revealed that PSTG belongs to the 
glycoside hydrolase family 3 and shares significant 
similarities with Paenibacillus glucocerebrosidase and 
Bgl3B of Thermotoga neapolitana. 

- The recombinant enzyme (rPSTG) is highly specific for 
β-glucosidic linkage. 

- The kcat (catalytic rate constant) and kcat / Km 
(specificity constant) values for the rPSTG-catalyzed 
hydrolysis of p-nitrophenyl-β-glucopyraniside at 37 °C 
and pH 6.5 are 44 s⁻¹ and 426 s⁻¹ mM⁻¹, respectively. 

- Interestingly, rPSTG exhibits higher reactivity for β-1,2-
glucosidic linkage than for β-1,4- and β-1,6-glucosidic 
linkages. 

- This unique specificity allows rPSTG to efficiently 
decompose STG, making it the first example of such a β-
glucosidase 

[86,87] 

Pinoresinol 
Triglucoside (PTG) 

 
C34H42O18 

Not explicitly 
documented 

Autophagy Induction 
PTG induces autophagy in ovarian cancer cells (SKOV-3). 
This is associated with increased expression of LC3 II and 
Beclin and decreased expression of p62. 

[84,88] 

Mitochondrial 
Membrane Potential 

(MMP) Loss 

It reduces the MMP of SKOV-3 cells, affecting their 
mitochondrial function. 

Inhibition of Cell 
Invasion 

It inhibits the invasion capacity of SKOV-3 cells. 

Raf/MEK/ERK 
Signaling Pathway 

Inhibition 

PTG concentration-dependently inhibits the expression of 
phospho-MEK and phospho-ERK, key signaling pathway 
components.  

Tumor Growth 
Inhibition 

In xenografted tumor models in mice, PTG significantly 
inhibits tumor growth, demonstrating its potential as an 
ovarian cancer treatment. 

Sesaminol Antioxidant Activity - Protecting cells from oxidative stress. [5,89] C34H42O18

Not explicitly
documented

Autophagy Induction
PTG induces autophagy in ovarian cancer cells
(SKOV-3). This is associated with increased expression
of LC3 II and Beclin and decreased expression of p62.

[84,88]

Mitochondrial
Membrane Potential

(MMP) Loss

It reduces the MMP of SKOV-3 cells, affecting their
mitochondrial function.

Inhibition of Cell
Invasion It inhibits the invasion capacity of SKOV-3 cells.

Raf/MEK/ERK
Signaling Pathway

Inhibition

PTG concentration-dependently inhibits the expression
of phospho-MEK and phospho-ERK, key signaling
pathway components.

Tumor Growth
Inhibition

In xenografted tumor models in mice, PTG significantly
inhibits tumor growth, demonstrating its potential as an
ovarian cancer treatment.

Sesaminol
Monoglucoside

(SMG)

Foods 2024, 13, x FOR PEER REVIEW 12 of 52 
 

 

Monoglucoside 
(SMG) 

 
C26H28O12 

Not explicitly 
documented 

- SMG undergoes enzymatic hydrolysis in the gut to 
release sesaminol. 

- Its bioavailability depends on gut microbiota, food 
matrix, and individual variations. 

Anti-Inflammatory 
Effects 

Modulating inflammatory pathways by inhibiting pro-
inflammatory cytokines. 

Cardiovascular Health 
Contributing to cardiovascular health by reducing oxidative 
damage and inflammation. 

Metabolic Regulation It is impacting lipid metabolism and glucose homeostasis. 

Cancer Prevention 
Some studies suggest that SMG may have anticancer 
potential, although further research is needed. 

Cell Signaling 
Influencing cell signaling pathways related to cell growth and 
differentiation. 

Pinoresinol 
Monoglucoside 

(PMG) 

 
C26H32O11 

Not explicitly 
documented 

Metabolism and 
Bioavailability 

PMG would undergo metabolic processes, potentially in the 
digestive system or the liver, leading to the release of 
pinoresinol and glucose. The bioavailability of pinoresinol 
and its metabolites would influence their distribution and 
effects in the body. 

[48,90] 

Antioxidant Effects scavenging free radicals and reducing oxidative stress in cells. 

Impact on Lipid 
Metabolism 

Modulating cholesterol levels and the promotion of 
cardiovascular health. 

Pinoresinol 
Diglucoside 

(PDG) 

Sesame seed: 
<5 to 232 mg/100 g 

Sesame oil: 
Not explicitly 
documented 

Glucoside Hydrolysis 

The glucoside structure of PDG may be hydrolyzed in vivo, 
leading to the release of pinoresinol. Enzymes often mediate 
this process, and the liberated pinoresinol can exert its 
biological effects. 

[5,47,80] 

Antioxidant and 
Cytoprotective Effects 

- PDG can directly neutralize free radicals by donating 
electrons. Free radicals are highly reactive molecules 
that can cause damage by stealing electrons from 
cellular components. By acting as electron donors, 
antioxidants like PDG help stabilize free radicals, 
preventing them from causing cellular damage. 

C26H28O12

Not explicitly
documented

Antioxidant Activity

- Protecting cells from oxidative stress.
- SMG undergoes enzymatic hydrolysis in the gut to

release sesaminol.
- Its bioavailability depends on gut microbiota, food

matrix, and individual variations.

[5,89]

Anti-Inflammatory
Effects

Modulating inflammatory pathways by inhibiting
pro-inflammatory cytokines.

Cardiovascular Health Contributing to cardiovascular health by reducing
oxidative damage and inflammation.

Metabolic Regulation It is impacting lipid metabolism and glucose
homeostasis.

Cancer Prevention Some studies suggest that SMG may have anticancer
potential, although further research is needed.

Cell Signaling Influencing cell signaling pathways related to cell
growth and differentiation.
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Monoglucoside

(PMG)

Foods 2024, 13, x FOR PEER REVIEW 12 of 52 
 

 

Monoglucoside 
(SMG) 

 
C26H28O12 

Not explicitly 
documented 

- SMG undergoes enzymatic hydrolysis in the gut to 
release sesaminol. 

- Its bioavailability depends on gut microbiota, food 
matrix, and individual variations. 

Anti-Inflammatory 
Effects 

Modulating inflammatory pathways by inhibiting pro-
inflammatory cytokines. 

Cardiovascular Health 
Contributing to cardiovascular health by reducing oxidative 
damage and inflammation. 

Metabolic Regulation It is impacting lipid metabolism and glucose homeostasis. 

Cancer Prevention 
Some studies suggest that SMG may have anticancer 
potential, although further research is needed. 

Cell Signaling 
Influencing cell signaling pathways related to cell growth and 
differentiation. 

Pinoresinol 
Monoglucoside 

(PMG) 

 
C26H32O11 

Not explicitly 
documented 

Metabolism and 
Bioavailability 

PMG would undergo metabolic processes, potentially in the 
digestive system or the liver, leading to the release of 
pinoresinol and glucose. The bioavailability of pinoresinol 
and its metabolites would influence their distribution and 
effects in the body. 

[48,90] 

Antioxidant Effects scavenging free radicals and reducing oxidative stress in cells. 

Impact on Lipid 
Metabolism 

Modulating cholesterol levels and the promotion of 
cardiovascular health. 

Pinoresinol 
Diglucoside 

(PDG) 

Sesame seed: 
<5 to 232 mg/100 g 

Sesame oil: 
Not explicitly 
documented 

Glucoside Hydrolysis 

The glucoside structure of PDG may be hydrolyzed in vivo, 
leading to the release of pinoresinol. Enzymes often mediate 
this process, and the liberated pinoresinol can exert its 
biological effects. 

[5,47,80] 

Antioxidant and 
Cytoprotective Effects 

- PDG can directly neutralize free radicals by donating 
electrons. Free radicals are highly reactive molecules 
that can cause damage by stealing electrons from 
cellular components. By acting as electron donors, 
antioxidants like PDG help stabilize free radicals, 
preventing them from causing cellular damage. 

C26H32O11

Not explicitly
documented

Metabolism and
Bioavailability

PMG would undergo metabolic processes, potentially in
the digestive system or the liver, leading to the release of
pinoresinol and glucose. The bioavailability of
pinoresinol and its metabolites would influence their
distribution and effects in the body.

[48,90]

Antioxidant Effects scavenging free radicals and reducing oxidative stress
in cells.

Impact on Lipid
Metabolism

Modulating cholesterol levels and the promotion of
cardiovascular health.

Pinoresinol
Diglucoside

(PDG)
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C32H42O16 

- Stimulating the activity of endogenous antioxidant 
enzymes within cells. These enzymes, such as SOD, 
catalase, and glutathione peroxidase, work to neutralize 
ROS and maintain cellular redox balance. 

- Preserving mitochondrial function, reducing the 
likelihood of further ROS production. 

Impact on Lipid 
Metabolism 

- Enhancing insulin sensitivity, potentially benefiting 
lipid metabolism. 

- Modulating inflammatory pathways and indirectly 
affecting lipid metabolism. 

Sesaminol 
Diglucoside 

(SDG) 

 
C32H38O17 

Sesame seeds: 
98 mg/100 g 

Not explicitly 
documented 

Anti-Inflammatory 
Properties 

- Modulating the production of pro-inflammatory 
mediators, such as cytokines (e.g., interleukins, tumor 
necrosis factor-alpha) and prostaglandins.  

- Inhibiting enzymes involved in the inflammatory 
process, such as COX-2 and lipoxygenase (LOX). These 
enzymes are responsible for synthesizing inflammatory 
mediators, and their inhibition can contribute to anti-
inflammatory effects. 

- Interfering with the NF-κB signaling pathway, 
suppressing the transcription of pro-inflammatory 
genes. 

[5,41,91] 

Cellular Signaling 
Pathways 

- Influencing estrogen receptor signaling pathways, 
potentially impacting cellular processes associated with 
estrogen signaling. 

- Interacting with components of apoptotic signaling 
pathways, leading to either the promotion or inhibition 
of apoptosis depending on the cellular context. 

- Modulating MAPK/ERK pathway in regulating cell 
growth and differentiation. 

C32H42O16

Sesame seed:
<5 to 232 mg/100 g

Sesame oil:
Not explicitly
documented

Glucoside Hydrolysis

The glucoside structure of PDG may be hydrolyzed
in vivo, leading to the release of pinoresinol. Enzymes
often mediate this process, and the liberated pinoresinol
can exert its biological effects.

[5,47,80]
Antioxidant and

Cytoprotective Effects

- PDG can directly neutralize free radicals by
donating electrons. Free radicals are highly
reactive molecules that can cause damage by
stealing electrons from cellular components. By
acting as electron donors, antioxidants like PDG
help stabilize free radicals, preventing them from
causing cellular damage.

- Stimulating the activity of endogenous antioxidant
enzymes within cells. These enzymes, such as
SOD, catalase, and glutathione peroxidase, work to
neutralize ROS and maintain cellular
redox balance.

- Preserving mitochondrial function, reducing the
likelihood of further ROS production.

Impact on Lipid
Metabolism

- Enhancing insulin sensitivity, potentially
benefiting lipid metabolism.

- Modulating inflammatory pathways and indirectly
affecting lipid metabolism.



Foods 2024, 13, 1153 16 of 53

Table 1. Cont.

Lignans in
Sesame

Name of
Component Molecular Structure
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C32H38O17

Sesame seeds:
98 mg/100 g
Not explicitly
documented

Anti-Inflammatory
Properties

- Modulating the production of pro-inflammatory
mediators, such as cytokines (e.g., interleukins,
tumor necrosis factor-alpha) and prostaglandins.

- Inhibiting enzymes involved in the inflammatory
process, such as COX-2 and lipoxygenase (LOX).
These enzymes are responsible for synthesizing
inflammatory mediators, and their inhibition can
contribute to anti-inflammatory effects.

- Interfering with the NF-κB signaling pathway,
suppressing the transcription of
pro-inflammatory genes. [5,41,91]

Cellular Signaling
Pathways

- Influencing estrogen receptor signaling pathways,
potentially impacting cellular processes associated
with estrogen signaling.

- Interacting with components of apoptotic
signaling pathways, leading to either the
promotion or inhibition of apoptosis depending on
the cellular context.

- Modulating MAPK/ERK pathway in regulating
cell growth and differentiation.



Foods 2024, 13, 1153 17 of 53

2.1.1. Sesamol

Sesamol is a nutritional constituent and degradation byproduct of lignan derived
from sesame. Identifying a novel antioxidative substance in sesame oil has highlighted its
significance as a quality stabilizer and crucial aroma component [21,66,92]. Sesamol is a
very-low-molecular-weight compound that is sufficiently volatile to be removed by deodor-
ization. Consequently, it should be added to the fat after deodorization [93]. Sesamol has
been documented as having various applications, including antioxidant, lipid-lowering,
antidepressant, and therapeutic effects for diabetic nephropathy and neuropathy, among
others [67,68]. Moreover, it has been extensively researched as an anti-inflammatory, an-
tiatherosclerotic, and cardioprotective agent. Another research investigation has examined
the potential of sesamol to enhance cognitive function and mitigate inflammation in elderly
mice. The research has discovered that sesamol exhibited anti-inflammatory properties and
diminished oxidative stress markers in mice, resulting in improved cognitive performance
in diverse behavioral assessments. The results have indicated that sesamol could serve
as a safeguard against mental deterioration and inflammatory processes associated with
aging [66,69]. The study by Liu et al. [94] investigated the effects of sesamol on cognitive
function in a mouse model with a high-fat- and high-fructose-diet-induced cognitive defect.
They evaluated the potential of sesamol in ameliorating cognitive defects induced by the
diet and investigated the insulin signaling pathways in the central nervous system. Sesamol
administration significantly improved cognitive function, as confirmed by enhanced perfor-
mance in the Morris water maze and novel object recognition tests. Sesamol also restored
insulin signaling pathway activity in the central nervous system by increasing the expres-
sion of key proteins involved in insulin signaling. Sesamol can mitigate the production
of amyloid and cognitive impairment caused by systemic inflammation by preventing
neuronal injury. According to their study, sesamol has the potential to serve as a viable
nutritional supplement for the prevention and treatment of obesity [94,95]. Chu et al. [70]
conducted a study to investigate the potential protective effect of sesamol on endotoxemia-
induced lung inflammation and injury in rats. They administered sesamol to rats and
assessed its impact on endotoxemia-induced lung injury. Results indicated that sesamol
administration significantly attenuated lung inflammation and injury, as demonstrated
by reduced lung wet-to-dry weight ratio, decreased levels of proinflammatory cytokines,
and reduced leukocyte infiltration in lung tissue. Sesamol was also found to inhibit the
activation of nuclear factor-kappa B (NF-κB) and its downstream inflammatory mediators,
including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These
findings have suggested that sesamol has the potential to protect against endotoxemia-
induced lung inflammation and injury in rats, potentially through its inhibitory effect
on NF-κB activation and downstream inflammatory mediators. According to Thushara
et al. [96], sesamol can effectively impede platelet aggregation, exhibiting antithrombotic
and cardioprotective properties. Wang et al. [97] conducted a study to explore the potential
of sesamol in preventing atherosclerosis that is mediated by renal injury. According to the
research, sesamol could mitigate oxidative stress and inflammation, resulting in a decline
in atherosclerosis among mice suffering from renal impairment. The inhibitory effect of
Sesamol on IKKα and p53 activation, both implicated in atherosclerosis pathogenesis, has
been reported. The results have indicated that sesamol could potentially serve as a ther-
apeutic agent for preventing or treating atherosclerosis linked to renal damage [98]. The
research has offered a potential mechanism through which sesamol can exert its protective
impact, thereby providing a basis for further investigation into the development of focused
treatments for atherosclerosis.

Chronic nephritis induces an irreversible decline in the glomerular filtration rate and
the development of renal fibrosis, ultimately resulting in chronic kidney disease (CKD)
and end-stage renal disease (ESRD) [99–101]. The infiltration of glomerular and intersti-
tial macrophages is a hallmark of CKD, playing a pivotal role in renal injury [101,102].
Following kidney injury, damaged cells release cytokines or chemokines that recruit mono-
cytes to inflammatory lesions, where they undergo activation and differentiation into



Foods 2024, 13, 1153 18 of 53

macrophages [103,104]. Macrophages, functioning as crucial immunological regulators and
inflammation mediators, are implicated in kidney damage and inflammation by secretion of
inflammatory cytokines, such as interleukin (IL)-1 and IL-6 [71,105–107]. On-site activation
and differentiation of inflammatory macrophages result in the release of IL-1, thereby trig-
gering immune responses from Th1-type cells that contribute to tissue damage [108–110].
In CKD, immune cells infiltrating the kidneys play a deleterious role, actively participat-
ing in the progression of the disease and leading to nephron loss and fibrosis [111–113].
Tseng et al. [114] investigated the potential therapeutic effects of sesamol in addressing
renal inflammation and reactive oxygen species (ROS)-mediated interleukin-1 beta (IL-1β)
secretion. The study, in vivo and in vitro, focuses on the role of heme oxygenase-1 (HO-1)
in inhibiting the IKKα/NFκB pathway. The findings indicated a protective role of sesamol,
which revealed mitigation of renal inflammation and suppression of IL-1β secretion. The
proposed mechanism involved the activation of HO-1, leading to the inhibition of the
IKKα/NFκB pathway, recognized for its involvement in inflammatory processes. The
study suggests the potential of sesamol as a therapeutic agent for addressing inflammatory
conditions associated with renal disorders [114].

Sallam et al. [30] investigated the impact of incorporating sesame oil and sesamol as
natural antimicrobial and antioxidant agents on the safety and shelf-life of meatballs. The
findings of their research indicated that the incorporation of sesame oil and sesamol into
meatballs resulted in a noteworthy antimicrobial impact on both Gram-positive and Gram-
negative bacteria, encompassing Staphylococcus aureus, Escherichia coli, and Salmonella
typhimurium. Moreover, the incorporation of sesame oil and sesamol enhanced the an-
tioxidant potential of meatballs through the mitigation of lipid oxidation and elevation
of the concentration of overall phenolic compounds. Furthermore, the sensory analysis
conducted on meatballs incorporating sesame oil and sesamol indicated no statistically
significant variation in flavor, appearance, and consistency compared to the control samples.
The study’s results have suggested that sesame oil and sesamol possess the potential as
natural preservatives for enhancing the safety and shelf-life of meat products due to their
antimicrobial and antioxidant properties.

2.1.2. Sesamin

Sesamin is the most prominent lignan compound found in sesame seeds, one of
the two highest sources of lignans (the other being flax) in the human diet. Sesamin is
catered to be a nutritional supplement that is believed to possess various properties such
as anti-inflammatory, pro-apoptotic, pro-angiogenic, antimetastatic, antiproliferative, and
ant-oxidant effects, as well as pro-antiphagocytic activities (if touting its health properties)
or possibly being an estrogen receptor modulator and fat burner (if targeting athletes or
persons wishing to lose weight) [56,60]. Sesamin has several processes, which, when consid-
ered comprehensively, may be succinctly described as a modulator of fatty acid metabolism.
It seems to hinder an enzyme called ∆5-desaturase, a key enzyme in the metabolism of fatty
acids. By inhibiting this enzyme, it leads to decreased levels of eicosapentaenoic acid (EPA)
and arachidonic acid, two types of fatty acids found in fish oil. This effect is observed when
the substance is taken orally. Sesamin inhibits the process of tocopherol-ω-hydroxylation,
which is the step that limits the metabolism of vitamin E. By inhibiting this enzyme, sesamin
increases the levels of vitamin E in the body, especially the γ subset (γ-tocopherol and
γ-tocotrienol). This mechanism has been confirmed to be active when sesamin is taken
orally [61,115–117].

Although there are some potentially beneficial mechanisms at play, such as protec-
tion against Parkinson’s disease and promotion of bone mass, most of the mechanisms,
including estrogen receptor modulation, fat burning from the liver, and activation of the
antioxidant response element (ARE), have not been verified in humans. There are reasons
to doubt their occurrence, such as the possibility of the concentration being too high to
have an impact through oral supplementation or the fact that fat burning appears limited
to rats. Ultimately, sesamin significantly enhances the metabolism of γ-tocopherol and
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γ-tocotrienol by inhibiting their degradation. This leads to increased levels of these vitamin
E variants, which offer numerous therapeutic advantages. Given that these vitamin E
supplements are costly, sesamin could serve as a cost-effective alternative or a means to
dilute the vitamin E [62,118–121].

Episesamin, an isomer of sesamin, is produced during the refining of sesame oil.
Additionally, it exerts a protective influence on the levels of lipid oxidation, blood glucose,
and blood pressure [62,118,122]. According to Watanabe et al. [123], the consumption of
sesamin is associated with reduced blood pressure. The impact of pure sesamin epimer on
serum lipids was investigated by Peñalvo et al. [124]. The study findings demonstrated
that administering stanol ester alone or combined with sesamin effectively mitigated the in-
crease in cholesterol levels. The potential has been observed in sesamin as a phytochemical
agent capable of effectively impeding the differentiation and function of osteoclasts [63].
Sesamin has been documented as a protective agent against acute lung injury induced by
LPS. Research has investigated the potential of sesamin to suppress microglial activation
induced by LPS. According to research findings, sesamin has demonstrated the ability to
decrease the expression of TLR4, a receptor that plays a role in microglia activation. This
results in decreased production of pro-inflammatory cytokines and nitric oxide. The results
indicate that sesamin could potentially serve as a therapeutic agent for preventing or treat-
ing neuroinflammatory conditions linked to microglial activation. The research elucidates
the mechanism through which sesamin confers its protective effect, thereby providing a
potential direction for further investigation in developing precise therapeutic interven-
tions for neuroinflammatory disorders [119,125]. Zhang et al. [126] found that sesamin
administration in animal models and humans was associated with a reduction in serum
levels of total cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglycerides,
as well as an increase in high-density lipoprotein cholesterol (HDL-C). Moreover, sesamin
was observed to inhibit the activity of key enzymes involved in cholesterol synthesis and
fatty acid metabolism, such as 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA
reductase) and acetyl-CoA carboxylase (ACC). Zhang et al. [127] conducted a study to
examine the potential beneficial effects of sesamin on high-fat-diet-induced dyslipidemia
and kidney injury in rats. They investigated the role of oxidative stress in developing these
conditions and assessed the impact of sesamin on oxidative stress markers. The results
showed that rats fed a high-fat diet exhibited significant dyslipidemia, characterized by
elevated levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol
(LDL-C), as well as reduced levels of high-density lipoprotein cholesterol (HDL-C). In
addition, these rats exhibited kidney injury, as evidenced by increased serum creatinine
levels and blood urea nitrogen (BUN). However, supplementation with sesamin at both
low and high doses was observed to ameliorate these effects. They have found that sesamin
administration significantly reduced serum levels of total cholesterol, triglycerides, and
LDL-C, as well as increased HDL-C. Furthermore, sesamin was found to decrease ox-
idative stress markers, including malondialdehyde (MDA) and reactive oxygen species
(ROS), and increase the activity of antioxidant enzymes, such as superoxide dismutase
(SOD) and glutathione peroxidase (GSH-Px). In another study, the results showed that
sesamin increased the expression of key proteins involved in cholesterol efflux, such as
ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-
BI), while decreasing the expression of proteins involved in cholesterol uptake, such as
CD36 and scavenger receptor class A (SR-A) [128]. A study was conducted in HepG2 cells,
a human liver cell line, and used various techniques to determine the effect of sesamin on
lipid metabolism and gene expression. The results showed that sesamin inhibited lipid
accumulation in HepG2 cells by downregulating the expression of key lipogenic genes,
such as sterol regulatory element-binding protein 1c (SREBP-1c) and fatty acid synthase
(FAS), through interaction with LXRα and PXR. The findings suggest that sesamin has the
potential to be used as a therapeutic agent for preventing or treating lipogenesis-associated
diseases such as steatosis [129]. Various studies have recognized Sesamin as a potent agent
with promising immunomodulatory and anti-inflammatory effects. It has been shown
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to have the potential to modulate the immune response by regulating the production of
cytokines, which are key players in the inflammatory response. Sesamin has been ob-
served to inhibit the production of pro-inflammatory cytokines, such as interleukin-1β
(IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), while promoting the
production of anti-inflammatory cytokines, such as interleukin-10 (IL-10). This suggests
that sesamin may have therapeutic potential in treating various inflammatory disorders.
Moreover, sesamin has been reported to have potent antioxidant properties, which may
contribute to its anti-inflammatory effects. The ability of sesamin to reduce oxidative stress
and inflammation may make it a potential therapeutic candidate for conditions associated
with chronic inflammation, such as cardiovascular disease, cancer, and neurodegenerative
disorders [118]. Sesamin is effective as an adjuvant therapeutic agent in treating cardiovas-
cular diseases (CVD) [62]. The anticancer potential of sesamin against non-small cell lung
cancer (NSCLC) cells has been investigated by Chen et al. [130]. According to the study,
sesamin has demonstrated the ability to impede the proliferation of NSCLC cells and trigger
apoptosis, or programmed cell death, through the Akt/p53 pathway. The researchers em-
ployed various experimental techniques, including the MTT assay, flow cytometry, Western
blotting, and immunofluorescence staining, to examine the mechanisms underlying the
impact of sesamin on NSCLC cells. The results indicated that sesamin exhibits promise
as a viable therapeutic intervention for treating non-small cell lung cancer. In summary,
the research has presented compelling data regarding the potential antineoplastic effects of
sesamin, indicating the need for additional exploration of this substance in the context of
novel cancer treatments. Sesamin exhibited a significant inhibitory effect on tumor growth
in vivo.

2.1.3. Sesamolin

Sesamolin is a well-known lignan in sesame oil that exhibits noteworthy antimuta-
genic, antiaging, and antioxidant characteristics. The results of a study by Nagarajan and
Lee [74] have suggested that sesamolin could be a promising antileukemic agent in vivo
based on its efficacy in a wehi-3B-induced leukemia model. According to Tsai et al. [131]
research, it has been demonstrated that the antioxidant activity of related derivatives of
sesame lignans may surpass that of endogenous lignans present in sesame oil. In another
research, the effectiveness of sesamolin in reducing serum and liver lipid levels, along with
a simultaneous increase in liver fatty acid oxidation, was observed [132]. Yu et al. [133]
conducted a study investigating the therapeutic effects of sesamolin on nonalcoholic fatty
liver disease (NAFLD) in mice fed a diet high in fat and fructose. The research aimed
to investigate sesamolin’s capacity to regulate the gut microbiota and metabolites in in-
dividuals with NAFLD. The study involved the partitioning of 40 C57BL/6J mice into
four distinct groups, namely, normal chow diet (NCD), high-fat and high-fructose diet
(HFD), HFD with low-dose sesamolin (HFD+L-SES), and HFD with high-dose sesamolin
(HFD+H-SES). The experimental subjects were mice that underwent a 16-week treatment
regimen involving sesamolin. The study findings indicate that administering sesamolin
resulted in a decrease in body weight, liver weight, and serum levels of alanine transami-
nase (ALT) and aspartate transaminase (AST) in the HFD+H-SES group as compared to
the HFD group. Sesamolin exhibited a mitigating effect on hepatic lipid accumulation and
inflammation induced by a high-fat diet. Moreover, the examination of gut microbiota
demonstrated that administering sesamolin augmented the prevalence of advantageous
bacteria, such as Akkermansia, and reduced the prevalence of detrimental bacteria, such
as Desulfovibrio. According to the results of the metabolic analysis, the administration
of sesamolin resulted in an elevation of short-chain fatty acids (SCFAs), bile acids, and
amino acids, alongside a decrease in branched-chain amino acids (BCAAs) and lipids. The
research findings suggest that administering sesamolin may have a beneficial effect on
NAFLD in mice subjected to a diet high in fat and fructose. This effect is believed to be
achieved by regulating gut microbiota and metabolites. The research presents a novel thera-
peutic strategy for managing NAFLD using sesamolin as a dietary adjunct. The potential of
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Sesamolin as a therapeutic agent for tumors lies in its ability to regulate the differentiation
and activation of dendritic cells, leading to the efficient activation of natural killer cells [134].
According to Lee and Lee’s findings [135], it was observed that the cytolytic activity of
natural killer cells is stimulated by sesamolin. The objective of the research conducted by
Mohamed et al. [136] was to examine the potential neuroprotective properties of sesame oil
in Alzheimer’s disease (AD) and explore the molecular mechanisms that may be involved
in this protective effect. The AD rat model was created by administering amyloid-β (Aβ)
1–42 through intracerebroventricular injection, a recognized feature of AD pathogenesis.
The study’s findings indicate that the administration of sesame oil had a notable effect in
reducing memory impairment caused by Aβ, as demonstrated by the Morris water maze
test results. In addition, the administration of sesame oil demonstrated a reduction in
oxidative stress within the brain, as indicated by a decrease in malondialdehyde (MDA)
levels and an increase in reduced glutathione levels. (GSH). The study found that using
sesame oil resulted in a neuroprotective effect linked to suppressing the nuclear factor
kappa B (NF-κB)/p38 mitogen-activated protein kinase (MAPK) signaling pathway. The
observed reduction in the levels of p-NF-κB and p-p38 MAPK supported this. In addition,
the administration of sesame oil increased brain-derived neurotrophic factor (BDNF) and
peroxisome proliferator-activated receptor gamma (PPAR-γ) levels. These neurotrophic
factors play a crucial role in neuroprotection and neuronal plasticity. The study’s results
suggest that sesame oil can be utilized as a therapeutic intervention for AD. This may
be due to its ability to regulate the NF-κB/p38MAPK/BDNF/PPAR-γ pathways [136].
Sesamolin has the potential to effectively stop the death of primary cortical cells brought
on by hypoxia [137]. Sesamolin exhibits potential as a bioactive compound in vivo and
may serve as a viable therapeutic agent for various diseases [59,89]. Katayama et al. [138]
have investigated the impact of sesaminol, a substance obtained from sesame seeds, on
the buildup of amyloid beta (Aβ) in the brains of senescence-accelerated mouse-prone 8
(SAMP8) mice, which serve as a model for Alzheimer’s disease. The study involved admin-
istering a diet containing sesaminol or a control diet to mice for 10 weeks. The researchers
subsequently assessed the levels of Aβ in the brain and the activity of enzymes responsible
for its production and degradation. The findings have indicated that the sesamol regimen
had a notable impact on the reduction of Aβ buildup in the murine brain, as well as a
concomitant decrease in the enzymatic activity responsible for Aβ production and an
increase in the enzymatic activity that facilitates its degradation. Furthermore, consuming
a sesamol-enriched diet resulted in elevated levels of BDNF. This protein plays a crucial
role in supporting the survival and proliferation of neurons while concurrently decreasing
the levels of oxidative stress markers in the brain. The results of this study indicated that
sesaminol could serve as a viable therapeutic option for the prevention or treatment of
Alzheimer’s disease. This is due to its ability to decrease the accumulation of Aβ and
enhance the survival of neurons. Keowkase et al. [139] conducted a study to examine
the impact of sesamin and sesamolin, two primary lignans found in sesame seeds, on the
toxicity of amyloid-β (Aβ) in a transgenic Caenorhabditis elegans model of Alzheimer’s
disease. The investigation was carried out by evaluating the paralysis of worms, their
lifespan, markers of oxidative stress, and accumulation of Aβ. The findings indicate that
sesamin and sesamolin can mitigate the toxicity induced by Aβ, prolong the lifespan of
nematodes, and delay paralysis. Furthermore, the two lignans exhibited a reduction in
the accumulation of Aβ in transgenic nematodes and a decline in oxidative stress markers,
including reactive oxygen species (ROS) and malondialdehyde (MDA) levels. The authors
suggested that the observed outcomes could be attributed to sesamin and sesamolin’s
antioxidative and neuroprotective characteristics. Hence, it is probable that sesamin and
sesamolin possess therapeutic properties that could be employed in treating Alzheimer’s
disease. Nevertheless, additional research is necessary to ascertain their precise mechanism
of operation and clinical effectiveness.
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2.2. Tocopherols

Tocochromanols exhibit amphipathic characteristics, possessing both hydrophobic and
hydrophilic components. Typically, these biomolecules comprise a lipophilic isoprenoid
side chain attached to the membrane lipids and a polar chromanol ring oriented towards the
membrane surface. Tocochromanols can impede the membrane lipid peroxidation process
and function as scavengers of reactive oxygen species. Antioxidants have been widely
recognized for their ability to counteract the harmful effects of free radicals, which helps
mitigate DNA damage. Tocopherols function as scavengers of reactive oxygen species,
thereby mitigating the impact of free radical attack and disrupting lipid peroxidation.
These molecules safeguard cell membranes, facilitate lipid restoration and substitution,
and exhibit utility in preventing cancer and cardiovascular ailments [140–144]. Tocopherols
have been identified as having a significant function in plant metabolism, specifically in
transporting sugar from leaves to phloem [145–147].

Tocopherols are a significant plant phenolic compound class that possesses both an-
tioxidative properties and nutritional benefits. The molecules in question pertain to a
family characterized by the presence of a chromanol ring, which is a type of chroman ring
featuring an alcoholic hydroxyl group, as well as a 12-carbon aliphatic side chain that
includes two methyl groups located centrally and two additional methyl groups situated
at the terminus [148,149]. Plants can produce eight distinct forms of vitamin E, which
encompass α-, β-, γ-, and δ-tocopherols and α-, β-, γ-, and δ-tocotrienols. Both tocopherols
and tocotrienols comprise a chromanol ring and a variable quantity of methyl groups on the
chromanol ring. Tocols have two main components: the chromanol ring and the hydropho-
bic side chain. Tocopherols and tocotrienols differ based on the acyl side chain they possess.
The tocopherols have hydrophobic side chains that consist of saturated isoprenoid chains,
whereas the tocotrienols have hydrophobic side chains that consist of isoprenyl chains
with three double bonds. The chromanol ring can provide a hydrogen atom to reduce free
radicals, while the hydrophobic side chain enables the molecule to permeate biological
membranes [138,139] effectively. Tools’ metabolic outcomes and physiological effects are
contingent upon their inherent structural characteristics. All the isoforms function as lipid
antioxidants, with α-tocopherol exhibiting the greatest vitamin E activity [150–153]. Toco-
pherols are present in various plant organs of dicotyledonous species, encompassing roots,
stems, leaves, flowers, fruits, and seeds. Nevertheless, a significant disparity exists in the
overall tocopherol concentration and various tocopherol forms present in these biological
tissues. The prevailing tocopherol variant in photosynthetic tissues, such as stems and
leaves, is α-tocopherol. The prevalence of γ- and δ-tocopherols is typically higher than that
of α-tocopherol in most seed crops [154–156]. The α-tocopherol content in sesame seeds
varies but is usually present in trace amounts. Studies have reported levels ranging from
18.51 mg/100g to 49.63 mg/100g [157]. While sesame seeds contain other beneficial com-
pounds, such as γ-tocopherol and δ-tocopherol, α-tocopherol is not the predominant form
in seeds. The α-tocopherol content in sesame oil also varies depending on the extraction
process and purity. Sesame oil may sometimes contain higher levels of α-tocopherol than
the seeds. However, the exact amount can differ significantly. One study found that sesame
seed oil extracts had a higher total phenolic content (TPC) than α-tocopherol. Specifically,
the TPC in sesame oil was 26.00 mg GAE/g of extract, while α-tocopherol was 18.00 mg
GAE/g [158].

Another study detected α-tocopherol concentrations in vegetable oils, including
sesame oil, expressed as mg/kg. The values for α-tocopherol in sesame oil ranged from
71.3 ± 6.4 mg/kg to 432.3 ± 86.6 mg/kg [159]. The primary function of α-tocopherol as
an antioxidant disrupts radical chains in lipoproteins and membranes. Its antioxidant
potential and molecular functions help to mitigate the possibility of cardiovascular disease
and cancer. Although in smaller amounts, other tools also have antioxidative and biological
activity [160]. γ-tocopherol, for example, is more effective than α-tocopherol in reducing
platelet aggregation, LDL oxidation, and intra-arterial thrombus formation. Tocotrienols
can inhibit cholesterol biosynthesis and lower the risk of breast cancer. Tocopherols have
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been found to possess significant potential as antitumor agents, antioxidants, and hypoc-
holesterolemic agents. The antiallergic properties of α-tocopherol were examined in one
study using a mouse model of allergic rhinitis. α-tocopherol was administered to mice
after they had been exposed to ovalbumin to create a sensitized state for the experiment.
As seen by a drop in serum IgE levels and nasal symptom ratings, the findings demon-
strated that α-tocopherol inhibited allergic reactions in the mice. The PI3K-PKB signaling
pathway, which is essential for mast cell activation and degranulation, was shown to be
blocked by α-tocopherol in in vitro tests using mouse mast cells. According to the research,
α-tocopherol, a crucial receptor implicated in the allergic response, was also shown to
reduce the expression of FcεRI on the surface of mast cells. The research indicated that
α-tocopherol may have a therapeutic benefit for allergic rhinitis, presumably via inhibiting
the mast cell PI3K-PKB signaling pathway [161–164].

Sesame seeds contain a combination of tocopherols and tocotrienols, with α-tocopherol
and γ-tocopherol being the primary contributors to their beneficial properties (Table 2).

Tocotrienols are compounds belonging to the vitamin E group. Tocotrienols are less
prevalent in nature compared to other types of vitamin E. The majority of our dietary
intake consists of tocopherols rather than tocotrienols. Tocotrienols bioavailability varies,
and they are often found in lower concentrations in the bloodstream. Tocotrienols have
a similar basic structure to tocopherols, consisting of a chromanol ring and a phytyl tail.
However, tocotrienols have three double bonds in their phytyl tail, distinguishing them
from tocopherols. The four main tocotrienols are α, β, γ, and δ. γ -tocotrienol is the most
abundant and studied form. Tocotrienols are found in certain plant-based oils, seeds, and
grains. Notable sources include palm oil, rice bran oil, barley, wheat germ, and sesame
seeds. However, some vegetable oils, such as palm oil, are rich in tocotrienols. The majority
of vitamin E supplements often include tocopherols rather than tocotrienols. Research also
indicates that tocotrienol is a more potent source of vitamin E than tocopherol. Research
shows that tocotrienol has several health advantages [140,150]. Tocotrienols are known for
their unique antioxidant properties that hinder plasma cholesterol levels and are linked
with the prevention of cardiovascular disease [165]. Tocopherols were found to have the
potential to mitigate stress-induced pathological alterations [166,167]. Dietary sesame seeds
have been shown to increase both α-tocotrienol and γ-tocotrienol concentrations in specific
tissues of rats. The research found that rats with a diet containing sesame seeds observed
higher amounts of tocotrienols in their adipose tissue and skin. Nevertheless, these effects
were not seen in plasma or any other tissue in the body. Remarkably, sesame seeds also
increased the level of γ-tocopherol in different tissues despite its initial scarcity [168,169].
The combined application of tocotrienol and sesame lignans has been observed to exhibit a
preventive effect against oxidative damage caused by UVB irradiation [170]. The tocopherol
concentration in sesame oil ranges from 530 mg/kg to 1000 mg/kg. The predominant form
of tocopherol found in sesame oil is γ-tocopherol, with concentrations ranging from 521 to
990 mg/kg. Additional tocopherols include δ (4 mg to 20 mg/kg) and α (up to 3 mg /kg). In
addition, sesame oil may consist of a maximum of 20 mg /kg of γ-tocotrienol [157,171,172].
Morris et al. [173] have suggested that functional health foods can benefit from using
δ- and γ-tocopherols within the concentration range of 214 to 239 µg/g. In addition to
tocopherols and lignans, sesame has been found to contain small amounts of phenolic
acids and naphthoquinone, which are also phenolic compounds with potential health
benefits [5].
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Table 2. Structures, quantities, biological activities, and mechanisms of different tools detected from Sesamum indicum.

Tocols in
Sesame

Name of
Component Molecular Structure

Quantity/Amount of
Raw Sesame Seeds and

Sesame Oil

Biological
Characteristics Mechanism Reference

Tocopherols

α-Tocopherol
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C28H48O2 

Sesame seeds: 
169–577 mg/kg 

Sesmae oil: 
329–1114 mg/L 

Antioxidant 
properties 

Guards against lipid oxidation. 

[175] 
Potential Cancer 

Prevention 
Maintains cell integrity 

Immune Support Modulates gene expression 

δ-Tocopherol 

 
C27H46O2 

Sesame seeds: 
0.1–1.5 mg/100 g 

Sesame oil:  
5–10 mg/100 g 

Antioxidant 
Properties 

- It scavenges ROS and 
prevents lipid 
peroxidation, maintaining 
the quality of sesame oil. 

- Modulating gene 
expression related to 
inflammation and cell 
survival. 

[29,167] 

Health benefits 
- Cardiovascular health: δ-

Tocopherol contributes to 
heart health by reducing 

C29H50O2

Sesame seeds:
18.51–49.63 mg/100 g

Sesame oil:
71.3 ± 6.4–432.3 ±

86.6 mg/kg

Antioxidant Action

- Act as lipophilic antioxidants.
- It scavenges lipid peroxy radicals and

quenchs singlet oxygen.
- The antioxidant action involves the

formation of tocopherol quinone.
- It plays a crucial role in protecting

photosynthetic organisms by combating
oxidative stress and maintaining
cellular health12.

[157–159,174]

γ-Tocopherol
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C27H46O2 

Sesame seeds: 
0.1–1.5 mg/100 g 

Sesame oil:  
5–10 mg/100 g 

Antioxidant 
Properties 

- It scavenges ROS and 
prevents lipid 
peroxidation, maintaining 
the quality of sesame oil. 

- Modulating gene 
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survival. 

[29,167] 

Health benefits 
- Cardiovascular health: δ-

Tocopherol contributes to 
heart health by reducing 

C27H46O2

Sesame seeds:
0.1–1.5 mg/100 g

Sesame oil:
5–10 mg/100 g

Antioxidant Properties

- It scavenges ROS and prevents lipid
peroxidation, maintaining the quality of
sesame oil.

- Modulating gene expression related to
inflammation and cell survival.

[29,167]

Health benefits

- Cardiovascular health: δ-Tocopherol
contributes to heart health by reducing
oxidative stress and inflammation.

- Cancer prevention: its antioxidant properties
may help prevent cancer development.

- Immune system support: it supports immune
function by neutralizing harmful radicals.
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C29H44O2

Sesame seeds:
0.134 mg/100 g

Sesame oil:
Not detected

Antioxidant Properties

- It is a potent fat-soluble antioxidant that
inhibits lipid peroxidation in biological
membranes.

- It has higher antioxidative activity than
α-tocopherol.

[169]

Gene Modulation

- Inhibitory effects on cell growth and
differentiation in tumor cell lines.

- Supplementation with tocotrienol-rich
fractions affects genes involved in cell cycle
regulation and tumor cell growth.

γ-Tocotrienol
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oxidative damage caused 
by free radicals. 

 

C28H42O2

Sesame seeds:
0.415 mg/100 g

Sesame oil:
Up to 20 mg/kg

Specific Properties

- Unlike α-tocopherol, γ-tocotrienol exhibits
distinct biological activities that are not solely
related to its antioxidant capacity. It binds to
ERβ, which may contribute to its unique
effects.

[157]

Neuroprotection - It protects cells from oxidative damage
caused by free radicals.
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2.3. Phytosterols

Phytosterols, which encompass sterols and stanols, are triterpenes derived from plants.
They serve as crucial constituents of cell membranes and exhibit preventive properties
against various diseases, notably cancer. Research has demonstrated that these enti-
ties exhibit characteristics of being antioxidants and anti-inflammatory and antibacterial
agents [176–179]. Phytosterols, possessing an additional methyl group at the C-24 posi-
tion, show a structural resemblance to cholesterol. Upon digestion, these plant sterols
effectively compete with cholesterol for absorption in the small intestine, thereby reduc-
ing cholesterol levels in the bloodstream. Functional foods commonly recommended for
their cholesterol-lowering properties often incorporate phytosterols derived from plant
sources. Devaraj and Jialal [180], as well as Weingärtner et al. [168], have suggested that
the incorporation of phytosterols in functional foods has been employed as a therapeutic
measure for hypercholesterolemia and the mitigation of plasma cholesterol concentrations.
Numerous studies have indicated that phytosterols can reduce blood cholesterol levels,
enhance immune system function, and lower the incidence of particular cancers [181–184].
Alternatively, processed foods may be fortified with phytosterols and marketed as supple-
ments for cholesterol management [185–187]. Phytosterols have the potential to serve as
health-promoting constituents that may mitigate low-density lipoprotein and cholesterol
levels, thereby averting the onset of cardiovascular disease [188,189]. Phytosterols have
been shown to provide protection against prostate, breast, and colon cancer, as demon-
strated in previous studies [190–192]. Meanwhile, Llop-Talaveron et al. [193] have recently
published findings suggesting that phytosterolemia may protect against liver complications
commonly associated with parenteral nutrition. In contrast, Nzekoue et al. [194] have
observed that phytosterol oxidation products may form phytosterol oxidation products,
which possess pro-inflammatory and pro-atherogenic properties. While phytosterols can
be extracted from corn and legumes, it is noteworthy that sesame seeds contain the highest
concentration of phytosterols, with a range of 400–413 mg per 100 g. Table 3 shows different
classes of phytosterols that could be detected in sesamum indicum.

Gharby et al. [195] reported that β-sitosterol is a major component of phytosterols
in sesame seed and oil, accompanied by campesterol and stigmasterol. β-sitosterol is the
primary phytosterol present in sesame oil. A group of researchers discovered that the
level of phytosterols present in brown sesame cultivars was comparatively greater than
in white sesame cultivars [196,197]. β-Sitosterol has been studied extensively and shown
to have significant potential for promoting human health. It exhibits cholesterol-lowering
effects, boosts immunity, and exhibits anti-inflammatory properties [198–201]. Campesterol,
another major sterol found in sesame oil, constitutes approximately 17.8% of total sterols,
while ∆5-avenasterol and stigmasterol are present at around 10.2% and 6.4%, respectively.
The minor sterols ∆7-stigmasterol and ∆7-avenasterol are also present. Sesame seed oil
contains a total sterol content of about 540 mg/100 g oil [31,202].
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Table 3. Structures, quantities, biological activities, and mechanisms of different phytosterols detected from Sesamum indicum.

Phytosterols in
Sesame Molecular Structure

Quantity/Amount of Raw
Sesame Seeds and Sesame

Oil

Biological
Characteristics Mechanism Reference
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Antitumor Effects 

- Reducing cell proliferation by 
interfering with cell cycle 
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- Suppressing tumor cell 
migration and invasion, crucial 
steps in metastasis. It modulates 
signaling pathways involved in 
cell movement and tissue 
invasion. 

- Enhancing the sensitivity of 
tumor cells to chemotherapy 
drugs. It can make cancer cells 
more susceptible to treatment, 
improving therapeutic outcomes 

[29,179,203–205] 

Anti-Inflammatory 
Properties 

- Reducing the production of 
inflammatory mediators such as 
IL-6, iNOS, TNF-α, and COX-2. 

- Modulating NF-κB signaling. 
- Inhibiting inflammatory 

pathways in adipose tissue and 
liver. 

Antidiabetic 

- Improves insulin sensitivity by 
enhancing receptor signaling 
pathways in target tissues (such 
as muscle and adipose tissue). It 
promotes glucose uptake and 
utilization. 

C29H50O

Sesame seed:
3.35 mg/g

Sesame oil: 2.63 mg/g

Antitumor Effects

- Reducing cell proliferation by interfering with
cell cycle progression. It can arrest tumor cells
in specific cell cycle phases, preventing
uncontrolled growth.

- Suppressing tumor cell migration and invasion,
crucial steps in metastasis. It modulates
signaling pathways involved in cell movement
and tissue invasion.

- Enhancing the sensitivity of tumor cells to
chemotherapy drugs. It can make cancer cells
more susceptible to treatment, improving
therapeutic outcomes

[29,179,203–205]Anti-Inflammatory
Properties

- Reducing the production of inflammatory
mediators such as IL-6, iNOS, TNF-α,
and COX-2.

- Modulating NF-κB signaling.
- Inhibiting inflammatory pathways in adipose

tissue and liver.

Antidiabetic

- Improves insulin sensitivity by enhancing
receptor signaling pathways in target tissues
(such as muscle and adipose tissue). It promotes
glucose uptake and utilization.

- Activates AMPK, a key regulator of energy
metabolism. AMPK activation enhances glucose
uptake and utilization, leading to improved
glycemic control.

- Competes with cholesterol for absorption in the
intestine, reducing cholesterol levels. Lower
cholesterol levels positively impact
insulin sensitivity.

- May reduce elevated triglyceride levels
associated with insulin resistance.
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Table 3. Cont.

Phytosterols in
Sesame Molecular Structure

Quantity/Amount of Raw
Sesame Seeds and Sesame

Oil

Biological
Characteristics Mechanism Reference

Ameliorative Effects
on Prostatic
Hyperplasia

- It is associated with increased
dihydrotestosterone (DHT) levels, a
potent androgen.

- Inhibiting the enzyme 5α-reductase, which
converts testosterone to DHT.

- Reducing DHT levels helps prevent
prostate enlargement.

- Supplementation improves urinary flow rate,
reduces residual urine volume, and alleviates
symptoms like frequent urination, nocturia, and
weak stream in BPH patients.

Hepatoprotective

- Scavenging free radicals reduces lipid
peroxidation and maintains cellular
redox balance.

- Normalizing liver enzymes (such as alanine
aminotransferase, ALT, aspartate
aminotransferase, and AST) that are elevated
during liver damage.

- Mitigating liver injury induced by hepatotoxic
agents such as carbon tetrachloride (CCl4)
or alcohol.

- Helps normalize lipid levels in the liver by
reducing excessive accumulation of
triglycerides and cholesterol, preventing fatty
liver disease.
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Sesame seed: 
1.00 mg/g 

Sesame oil: 1.35 mg/g 

Antioxidant 
Properties 

- Scavenging free radicals. It 
donates electrons to stabilize 
these radicals, preventing them 
from causing cellular harm. 

- Reducing lipid peroxidation by 
neutralizing free radicals and 
protecting cell membranes from 
damage. 

[29,206,207] 

Cardiovascular Health 

- Decreasing LDL cholesterol 
levels overall. Elevated LDL 
cholesterol is a risk factor for 
cardiovascular diseases, 
including atherosclerosis and 
heart disease. 

- Reducing the production of pro-
inflammatory cytokines (such as 
TNF-α and IL-6) in blood vessels 
and tissues. 

- Enhancing nitric oxide 
production promotes 
vasodilation and maintains 
healthy blood flow. 

C28H48O

Sesame seed:
1.00 mg/g

Sesame oil: 1.35 mg/g

Antioxidant
Properties

- Scavenging free radicals. It donates electrons to
stabilize these radicals, preventing them from
causing cellular harm.

- Reducing lipid peroxidation by neutralizing free
radicals and protecting cell membranes
from damage.

[29,206,207]Cardiovascular
Health

- Decreasing LDL cholesterol levels overall.
Elevated LDL cholesterol is a risk factor for
cardiovascular diseases, including
atherosclerosis and heart disease.

- Reducing the production of pro-inflammatory
cytokines (such as TNF-α and IL-6) in blood
vessels and tissues.

- Enhancing nitric oxide production promotes
vasodilation and maintains healthy blood flow.

- By maintaining cholesterol homeostasis,
campesterol contributes to cardiovascular
health.

Cholesterol
Regulation

- By modulating biosynthesis, it helps prevent
excessive cholesterol buildup.

- It localizes to cell membranes, interacting with
adjacent lipids, and helps regulate membrane
rigidity, fluidity, and permeability. By binding
to transmembrane proteins, campesterol can
alter their conformations.
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Antiproliferative 
Activity 

- Modulating cyclin proteins and 
cyclin-dependent kinases 
(CDKs). 

[29,208] 

Mitochondrial 
Regulation  

and 
ROS Generation 

- Regulating the PI3K/Akt 
signaling pathway. 

- Generating mitochondrial ROS. 
- Disrupting mitochondrial 

function, leading to cell death. 

Autophagy Induction 

- Activating AMPK, a key cellular 
energy sensor. AMPK activation 
is associated with the induction 
of autophagy, promoting energy 
homeostasis under nutrient 
stress. 

- Inhibiting the mechanistic target 
of the rapamycin (mTOR) 
pathway. 

C29H48O

Sesame seed:
0.37 mg/g

Sesame oil: 0.47 mg/g

Antiproliferative
Activity

- Modulating cyclin proteins and
cyclin-dependent kinases (CDKs).

[29,208]

Mitochondrial
Regulation

and
ROS Generation

- Regulating the PI3K/Akt signaling pathway.
- Generating mitochondrial ROS.
- Disrupting mitochondrial function, leading to

cell death.

Autophagy Induction

- Activating AMPK, a key cellular energy sensor.
AMPK activation is associated with the
induction of autophagy, promoting energy
homeostasis under nutrient stress.

- Inhibiting the mechanistic target of the
rapamycin (mTOR) pathway.

- Activating extracellular signal-regulated kinase
1/2 (ERK1/2) and JNK

- Inducing endoplasmic reticulum (ER) stress. ER
stress can activate autophagy as a cellular
adaptive response to restore ER homeostasis.

- Upregulating Beclin-1 expression. Beclin-1 is a
crucial autophagy-related protein involved in
the nucleation of autophagosomes, promoting
autophagy initiation.
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- Activating extracellular signal-
regulated kinase 1/2 (ERK1/2) 
and JNK 

- Inducing endoplasmic reticulum 
(ER) stress. ER stress can activate 
autophagy as a cellular adaptive 
response to restore ER 
homeostasis. 

- Upregulating Beclin-1 
expression. Beclin-1 is a crucial 
autophagy-related protein 
involved in the nucleation of 
autophagosomes, promoting 
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Sitostanol 
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Sesame oil: 0.04 mg/g 

Mitochondrial 
Respiration 

- In human brown adipocytes, 
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sitostanol’s impact on 
mitochondrial function was 
investigated. 

- In HepG2 human hepatocytes, 
maximal mitochondrial function 
was decreased following 
sitostanol incubation, 
particularly when assessed in 
low glucose-containing medium 

[29,184,209] 

Cholesterol 
Regulation 

- Reducing cholesterol absorption 
from the diet by interfering with 
its incorporation into mixed 
micelles. This decreases 
cholesterol uptake by 
enterocytes and subsequently 
lowers circulating cholesterol 
levels. 

C29H52O

Sesame oil: 0.04 mg/g

Mitochondrial
Respiration

- In human brown adipocytes, myotubes, and
hepatocytes, sitostanol’s impact on
mitochondrial function was investigated.

- In HepG2 human hepatocytes, maximal
mitochondrial function was decreased following
sitostanol incubation, particularly when
assessed in low glucose-containing medium

[29,184,209]

Cholesterol
Regulation

- Reducing cholesterol absorption from the diet
by interfering with its incorporation into mixed
micelles. This decreases cholesterol uptake by
enterocytes and subsequently lowers circulating
cholesterol levels.

- Influencing cholesterol homeostasis by
modulating the expression of genes involved in
cholesterol synthesis, uptake, and excretion.

- Enhancing the excretion of cholesterol via the
feces. By reducing cholesterol absorption,
unabsorbed cholesterol accumulates in the
intestine, which is then excreted in the feces.
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expression of genes involved in 
cholesterol synthesis, uptake, 
and excretion. 

- Enhancing the excretion of 
cholesterol via the feces. By 
reducing cholesterol absorption, 
unabsorbed cholesterol 
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Enzyme Inhibition 

- Inhibiting key enzymes involved 
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particularly HMG-CoA 
reductase, in vitro. Inhibition of 
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endogenous cholesterol 
production within cells. 
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Antiatherogenic 
Effects 

- Lecithin: cholesterol 
acyltransferase (LCAT) activity: 
influences cholesterol 
metabolism. 

- Bile acid synthesis: affects 
cholesterol homeostasis. 

- Oxidation and uptake of 
lipoproteins: impacts lipid 
balance. 

- Hepatic and lipoprotein lipase 
activities: regulation of lipid 
processing. 

- Coagulation system: this may 
contribute to overall 
cardiovascular health. 

C28H50O

Sesame oil: 0.02 mg/g

Enzyme Inhibition

- Inhibiting key enzymes involved in cholesterol
synthesis, particularly HMG-CoA reductase,
in vitro. Inhibition of these enzymes reduces
endogenous cholesterol production within cells.

[187,210]

Antiatherogenic
Effects

- Lecithin: cholesterol acyltransferase (LCAT)
activity: influences cholesterol metabolism.

- Bile acid synthesis: affects cholesterol
homeostasis.

- Oxidation and uptake of lipoproteins: impacts
lipid balance.

- Hepatic and lipoprotein lipase activities:
regulation of lipid processing.

- Coagulation system: this may contribute to
overall cardiovascular health.

∆5-avenasterol
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Sesame oil: 0.82 mg/g

Neutralization
Stoichiometry

- Impact on viral entry and infectivity is typically
assessed through in vitro neutralization assays.

- These assays measure the ability of antibodies
(including ∆5-Avenasterol) to block viral entry
into target cells.

- Neutralization is crucial for predicting antiviral
efficacy.

[211,212]

Antiviral Functions

- Neutralization: blocking viral entry into host
cells.

- Antibody effector functions: these include
interactions with immune cells and complement
systems.

- The relative contributions of these mechanisms
to ∆5-Avenasterol’s overall antiviral efficacy
vary depending on the specific antibody–virus
interactions.
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Table 3. Cont.

Phytosterols in
Sesame Molecular Structure

Quantity/Amount of Raw
Sesame Seeds and Sesame

Oil

Biological
Characteristics Mechanism Reference
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Antitumor Activity

- Regulating the PI3K/Akt signaling pathway.
- Generating mitochondrial reactive

oxygen species.
- Modulating cyclin proteins and -CDK
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Neuroprotection
Against Oxidative

Stress

- Reducing ROS: ∆5-Stigmasterol maintains ROS
levels inside cells, preventing oxidative
stress-induced cell death.

- Upregulation of neuroprotective proteins.
- Forkhead box O (FoxO) 3a: associated with

cell survival.
- Catalase: an antioxidant enzyme.
- B-cell lymphoma 2 (Bcl-2):

antiapoptotic protein.
- Activation of Sirtuin 1 (SIRT1): ∆5-Stigmasterol

stimulates SIRT1 activity, similar to the known
SIRT1 activator, resveratrol.
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Protection Against
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- Modulating the host immune response against
Leishmania. Influencing immune cells and
cytokine production might contribute to an
environment that is less conducive to the
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- It directly interacts with the parasites, affecting
their membrane integrity or interfering with
essential cellular processes.
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structures and compromising the viability of
the parasites.



Foods 2024, 13, 1153 34 of 53

Table 3. Cont.

Phytosterols in
Sesame Molecular Structure

Quantity/Amount of Raw
Sesame Seeds and Sesame

Oil

Biological
Characteristics Mechanism Reference

Improving Learning
and Memory Ability

- Protecting neurons from damage and
supporting their health is fundamental to
maintaining cognitive function.

- Modulating neurotransmitter systems.
Neurotransmitters play a key role in learning
and memory; any substance affecting their
release or function could influence
cognitive abilities.

- Substances that effectively cross the blood–brain
barrier (BBB) may have a more direct influence
on cognitive processes.

Potential Antioxidant
Function

- Modulating the activity of endogenous
antioxidant enzymes. It may enhance the
expression and activity of enzymes such as SOD,
CAT, and GPx, contributing to the cellular
antioxidant defense system.

- Preserving endogenous antioxidants like
glutathione. By maintaining the levels of these
antioxidants, it reinforces the cellular defense
mechanisms against oxidative stress.

- Preventing an imbalance between oxidants and
antioxidants, ensuring cells function optimally
without succumbing to oxidative stress.
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2.4. Phytates

Phytic acid is a bioactive compound commonly present in various plant-based food
sources. The molecular configuration of the substance enables it to form a complex with
polyvalent cations, including minerals and trace elements. Phytic acid serves as a vital
reservoir of phosphorus in plant seeds, with sesame seeds exhibiting a greater concentration
of phytate than legumes [215]. Oil seeds, including linseed, rapeseed, sesame, soybean, and
sunflower, display a phytic acid content that varies between 1% and 5.4%, whereas legumes
typically contain 0.2% and 2.9%. The phytate concentration in sesame meal is higher than
in soybean meal [216]. According to Touma et al. [217], the phytic acid content in sesame
seeds is 5.36%. Phytates have also been discovered to possess hypocholesterolemic and
anticancer characteristics.

2.5. Polyunsaturated Fatty Acids

Fatty acids are a type of organic molecule characterized by a lengthy hydrocarbon
chain that is linked to a carboxyl group. Lipids, including fats, oils, and waxes, sourced
from various organisms such as plants, animals, and microbes, exhibit a diverse range
of carbon chain lengths from 1 to 30 [218–220]. Polyunsaturated fatty acids (PUFAs),
which contain two or more double bonds in their carbon chain, are synthesized by spe-
cific desaturase enzymes. The health benefits of PUFAs have been extensively studied,
including their potential to reduce the risk of chronic diseases such as heart disease, can-
cer, anti-inflammatory, hypolipidemic, vasodilatory, antithrombotic, and antiarrhythmic
activities [196,221–224]. Vegetable oils abundant in PUFAs have garnered biomedical
importance as potential dietary components for promoting normal human growth and
development. LC-x-3-PUFAs are essential in regulating cholesterol synthesis, transporta-
tion, and eicosanoid synthesis, which is vital for maintaining cellular membrane integrity
and overall human health. Namiki [225] proposed that combining sesamin and conjugated
linoleic acid may have the potential as a weight-reducing agent. In sesame, linear acid
formation and oleic desaturation ratio are limited [226].

Sesame seeds are a food source with high energy and oil content, constituting roughly
50% of the seed. Sesame oil shows a highly favorable fatty acid profile, comprising ap-
proximately 80–85% unsaturated and merely 15–20% saturated fatty acids. Sesame oil
primarily contains linoleic (35–50%) and oleic (35–50%) acids, alongside minor quantities of
palmitic (7–12%) and stearic (3.5–6%) acids and negligible levels of linolenic acid [227,228].
Recent scientific studies have shown that an excessive intake of n-6 fatty acids might cause
a physiological condition that heightens platelet aggregation and blood clotting. Higher
blood viscosity, vasospasm, vasoconstriction, and slower bleeding are all symptoms of
this illness [229–231]. In contrast, it has been discovered that n-3 fatty acids offer several
advantageous qualities, such as anti-inflammatory, antithrombotic, hypolipidemic, and
vasodilatory actions. According to these results, a balanced diet with n-3 and n-6 fatty
acids is essential for achieving and sustaining good cardiovascular health [232–235]. The
concurrent usage of sesame and soybean oil can potentially enhance the vitamin E activity
and nutritional efficacy of the lipid. Sesame oil predominantly comprises oleic and linoleic
acids, constituting over 80% of the total fatty acid content [236,237]. A study was conducted
by Uzun et al. [238] to investigate the variability in oil content, oil yield, and fatty acid com-
position among 77 sesame accessions that were gathered from various regions of Turkey.
The findings indicate a significant disparity in the lipid composition of sesame accessions,
with values ranging from 44.1% to 58.2%. The accession from Şanlıurfa exhibited the
highest oil content, whereas the accession from Konya demonstrated the lowest. The fatty
acid composition of sesame oil showed significant variability, with oleic acid being the
predominant fatty acid, ranging from 32.3% to 48.2%. The results indicate that linoleic acid
constituted the second most prevalent fatty acid, with a range of 36.6% to 47.4%, while
palmitic acid was the most abundant, with a range of 8.3% to 9.9%. The investigation also
found fluctuating quantities of additional marginal fatty acids, including stearic, arachidic,
and behenic acid. The study found that the oil yield of various sesame accessions exhibited
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a range of 0.96 to 2.55 g per 100 seeds. Notably, the accession sourced from the Karaman
region demonstrated the highest yield, while the accession obtained from the Kayseri region
displayed the lowest yield. The research has identified certain favorable accessions, includ-
ing a well-balanced fatty acid composition and high oil content. These accessions could be
effectively employed in breeding programs to develop novel sesame cultivars with superior
oil yield and quality. Therefore, based on this study, differences in the fatty acid profile of
sesame seeds have been noted across various sesame cultivars. The acquired knowledge
has the potential to facilitate the production of superior-grade edible oil in the forthcoming
times. The germplasms of sesame originating from India exhibit a reduced concentration
of saturated fatty acids, with palmitic acid being the most predominant [226]. C18:1 and
C18:2 characterize Indian varieties as the primary unsaturated fatty acids. Sesame oil
exhibits a considerable proportion of C18:1 and C18:2, comprising approximately 38% to
49% and 17% to 43%, respectively. Conversely, the content of C18:3 is comparatively low,
measuring less than 1% [239]. A thorough evaluation of various cultivars is imperative to
enhance the nutritional value of oil via manipulating the fatty acid biosynthesis pathway.

2.6. Short-Chain Peptides, Protein Hydrolysates, and Their Functional Properties

Bioactive polypeptides refer to chains of amino acids connected by peptide or amide
bonds and have a molecular weight that does not exceed 20 kDa. Protein fragments exhibit
distinct functional roles in diverse biological, physiological, or cellular activities. Unlike
naturally occurring peptides, a wide range of peptides with varying composition and func-
tion are commonly utilized using synthetically derived protein hydrolysates. According
to the literature, proteins can undergo digestion by proteases, or specific fragments can
be generated through bio-fermenters utilizing microbes [240,241]. According to research,
sesame food preparations are a noteworthy protein source. Protein hydrolysates have exten-
sive applications as nutritional supplements, functional ingredients, food flavor enhancers,
pharmaceuticals, and cosmetics. The substances in question exhibit characteristics similar to
hormones or drugs and can be categorized according to their method of operation, includ-
ing but not limited to antihypertensive, antioxidative, immunomodulatory, antithrombotic,
opioid, mineral binding, and antimicrobial properties [242–244]. Sesame seeds are rich in
oil, with a content ranging from 48–55%, but they are also a significant source of protein,
with the seed coat accounting for approximately 20–25% of the total dry mass [245]. Dench
et al. [246] reported that defatted sesame meal, containing 40–50% protein, can serve as an
appropriate source of short-chain peptides that humans can easily digest. This is attributed
to the presence of sulfur-containing amino acids [247]. Defatted sesame meal has been uti-
lized in various food products, such as biscuits containing mixed grains and fortified table
bread. Bandyopadhyay and Ghosh [248] investigated using papain to produce sesame
protein hydrolysates with improved functional properties, longer shelf life, and better
emulsifying properties than the original sesame protein lysate. A study was conducted
by Aondona et al. [249] to investigate the antioxidant and antihypertensive properties of
enzymatic protein hydrolysates and ultrafiltration peptide fractions obtained from sesame
seeds. The research aimed to assess the prospective application of protein hydrolysates and
peptides in the mitigation and control of oxidative stress and hypertension, both of which
have been associated with cardiovascular ailments. They employed enzymatic hydrolysis
and ultrafiltration methodologies to produce protein hydrolysates and peptide fractions,
which were subsequently subjected to in vitro assays to evaluate their antioxidant and
antihypertensive characteristics. The conducted assays encompassed the determination of
total phenolic content, DPPH, and ABTS radical scavenging activities and ACE and renin
inhibitory activities. The study’s findings have indicated that the hydrolysates and peptide
fractions of sesame seed protein exhibited noteworthy antioxidant and antihypertensive
properties [249]. The hydrolysates and peptides had a total phenolic content that varied
between 10.56 and 31.12 mg GAE/g protein. Additionally, their DPPH and ABTS radical
scavenging activities ranged from 17.31% to 63.82% and 20.26% to 68.96%, respectively. The
hydrolysates and peptides exhibited ACE and renin inhibitory activities within the range
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of 23.56% to 69.83% and 28.64% to 76.44%, respectively. The investigation additionally
recognized the peptide fractions exhibiting the most noteworthy levels of antioxidant
and antihypertensive properties. These fractions could be used as potential functional
ingredients in developing nutraceuticals and functional foods [249]. They proposed that
the biological functionalities of sesame seed protein hydrolysates and peptide fractions are
potentially attributed to bioactive peptides, including angiotensin-converting enzyme in-
hibitors and antioxidants, that exhibit advantageous impacts on cardiovascular well-being.
Generally, the study’s results have offered significant insights into the potential application
of sesame seed protein hydrolysates and peptide fractions as functional ingredients that
possess antioxidant and antihypertensive properties [249].

3. Processing Technology of Sesame

Different processing techniques have been found to have varying effects on the bioac-
tive compounds of sesame seeds. Roasting the seeds has been shown to increase the oil yield
and improve the antioxidant properties of the oil extract [12]. However, it has also been
observed that roasting and dehulling seeds can reduce the lignan and phenolic compounds
content, which are important for the antioxidant activity of sesame extracts [250]. On the
other hand, processing treatments such as soaking, cooking, germination, fermentation,
and microwave heating have been found to reduce the phenolic compounds and tannins
content in oilseeds, including sesame seeds [251]. Overall, the processing methods used
for sesame seeds can have both positive and negative effects on the bioactive compounds,
and further research is needed to optimize processing techniques to maximize the retention
of these beneficial compounds [252]. The conventional technology for processing sesame
primarily involves mechanical pressing, aqueous extraction, and solvent methods. On
the other hand, the new processing and extraction techniques for sesame encompass su-
percritical (subcritical) CO2 extraction, microwave-assisted extraction, and water enzyme
extraction [253–255]. The biochemical characteristics of proteins can be altered through
various food processing techniques, including high pressure, thermal, radiation treatments,
and ultrasound. This can lead to structural changes, such as aggregation, denaturation,
loss of secondary and tertiary structures, formation/disruption of different types of bonds,
and chemical reactions like glycation (Maillard reactions) [256–259].

3.1. Heating Method

Various heating techniques, such as blanching, boiling, autoclaving, roasting, and fry-
ing, are frequently employed in processing sesame-based food products. Heat application
elicits various structural modifications in proteins, including but not limited to cleavage and
reconfiguration of protein aggregation, disulfide bonds, and chemical reactions with other
constituents such as carbohydrates and lipids. The modifications above lead to alterations
in the epitopes of sesame, which can decrease or increase its allergenicity [260–263]. Ac-
cording to research findings, boiling sesame seeds at a temperature of 100 ◦C for a duration
of 5 min resulted in an elevation of their antigenicity. However, subsequent boiling did
not exhibit any further increase in antigenicity. The study found that subjecting sesame
seeds to dry roasting at 150 ◦C for 7.5 min increased antigenicity. Furthermore, a greater
increase in antigenicity was observed when the roasting time was extended to 15 min. The
application of microwave heating at 1000 W for 3 min resulted in a significant reduction in
the antigenicity of sesame seeds. However, no significant alterations in antigenicity were
observed when microwave heating was administered for 1 min. Studies have shown that
alterations in the antigenicity of sesame seeds are associated with the method of heating
employed, as well as the duration and temperature of the process [264]. This is consistent
with findings from research on the thermal treatment of soybeans [261]. The protein profile
of various sesame proteins undergoes distinct alterations after heat treatment [264,265].
Further investigation is required to understand the mechanism underlying alterations in
antigenicity. The heat treatment process can potentially lead to the creation of advanced
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glycation end products, thereby augmenting the IgE binding capacity. It is imperative to
consider other constituents’ influence on sesame’s allergenicity [266].

3.2. Mechanical Pressing

The mechanical pressing technique is a commonly employed method for extracting oil
from seeds with a high oil concentration, producing exceptional quality oil. This method
is characterized by simplicity, safety, and cost-effectiveness [267]. Martínez et al. [268]
employed Box–Behnken designs to optimize the screw-pressing process for sesame oil
extraction, resulting in a maximum oil recovery of 71.1%. The optimal conditions were
achieved with a seed moisture content of 12.3%, a 4 mm restriction die, and a pressing speed
of 20 r/min. The study conducted by Yin et al. [269] revealed that the volatile compounds of
mechanically pressed sesame oil exhibited elevated levels of sulfur heterocyclic compounds
compared to those extracted through aqueous means.

3.3. Aqueous Extraction

The method of aqueous extraction can extract both protein and oil simultaneously.
According to Xu et al. [270] and Lv and Wu [271], this approach presents numerous benefits,
such as producing superior quality oil, utilizing uncomplicated equipment and production
procedures, low initial investment, and adjusting production scale. The optimal conditions
for sesame oil extraction have been determined by Hou et al. [272] to include a solid-to-
water ratio of 0.8 g/mL (V/m), a temperature of 70 ◦C, and a pH of 5.0. The circumstances
mentioned earlier have led to an extraction efficiency of 82.49%. The optimization of the
method by Fasuan et al. [273] resulted in improved outcomes, with oil and protein recover-
ies of 73.60% and 75.12%, respectively. This was achieved using a solid-to-solvent ratio of
1:3 (m/V), a pH of 11, an extraction temperature of 47 ◦C, and a surfactant concentration of
0.1 mol/L NaCl.

3.4. Aqueous Enzymatic Extraction

High oil yield and good-quality oil can be obtained through enzymatic extraction,
as indicated by Liu et al. [274]. Optimal conditions for the process included a liquid-to-
material ratio of 7:1 (mL/g), a microwave power of 400 W, a treatment time of 4 min,
the addition of alkaline protease at 0.1% (black sesame powder), a pH of 8.0, enzymatic
hydrolysis temperature of 50 ◦C, and a hydrolysis time of 2 h. Furthermore, de Aquino
et al. [275] demonstrated that adding a certain amount of water and a suitable temperature
and enzyme dosage can also promote oil production.

3.5. Microwave/Ultrasonic-Assisted Extraction

Microwave-assisted extraction is a technique that uses electromagnetic waves to
extract substances from cells. As the temperature increases, the solvent molecules inside
the cell evaporate quickly, causing pressure to build up and eventually breaking the cell
wall. This leads to the rapid outflow of cell contents. Lertbuaban and Muangrat [276]
used microwave-assisted extraction to extract sesamin from black sesame seeds. They
identified the optimal conditions as 90% ethanol as the extractant, a solid–liquid ratio of
1:8 (g/L), a microwave power of 700 W for 9 min, and a sesamin yield of 55.48 mg. On the
other hand, Sarma et al. [277] focused on the effects of solvent-based microwave-assisted
extraction of sesame phenolic compounds. They found that the highest total phenolic
content was 206.14 mg GAE/100 g. These studies demonstrate that the effectiveness of
microwave-assisted extraction varies depending on the target substance and extraction
conditions.

3.6. Irradiation

The antigenicity of sesame seeds and protein solutions has been the subject of numer-
ous research studies investigating the effects of γ-irradiation and high hydrostatic pressure.
The survey conducted by Zoumpoulakis et al. [278] revealed that there were no statistically
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significant alterations in the antigenicity of sesame proteins when white sesame seeds
were subjected to irradiation at 2.5, 5.0, and 10.0 kGy, with a p-value of less than 0.05. The
acceptable level of irradiation for food items typically falls below 10 kGy [279]. Hence,
the irradiation process aimed at mitigating the allergenic properties of sesame ought to
concentrate on its protein solution instead of its seeds. Increasing doses of γ-irradiation
lead to a decrease in antigenicity in solutions containing Ara h 2 and Ara h 6 [280].

3.7. High Hydrostatic Pressure

High hydrostatic pressure is a novel technological approach that impacts non-covalent
bonds, such as hydrophobic, hydrogen, ionic bonds, and salt bridges, instead of covalent
bonds. This results in the denaturation of proteins and consequential structural modifi-
cations, ultimately leading to the masking or destruction of epitopes and a decrease in
allergenicity. Achouri and Boye [264] observed a reduction in the antigenicity of sesame
protein solutions after exposure to high hydrostatic pressure (ranging from 100 to 500 MPa)
across all pH levels tested over 10 min. The decrease in antigenicity observed can be
attributed to the impact of high hydrostatic pressure on the protein’s conformation, which
resulted in a compact and densely packed structure that obscured the allergen epitopes.
The potential decrease in antigenicity of sesame protein solution may be attributed to the
diminished allergenicity of certain sesame allergens, excluding Sei i 1 and Sei 2, which
could be resistant to high hydrostatic pressure owing to their disulfide bonds.

3.8. Supercritical (Subcritical) Extraction

Supercritical carbon dioxide extraction is a technique that demonstrates efficacy in pre-
serving oil’s nutritional and physiological properties while circumventing the deleterious
effects of high-temperature oxidation [281,282]. Shi et al. [283] conducted a comparative
analysis of sesame oil’s chemical properties, antioxidant capacity, and oxidative stability
obtained through supercritical and subcritical techniques. The results of the study indi-
cated that the processing methodologies had a negligible impact on the oil’s fatty acid
and triacylglycerol composition. The suitability of compressed propane as a solvent for
sesame oil extraction was demonstrated by Corso et al. [91], who found that this method
required less time and pressure than carbon dioxide extraction. Liu et al. [284] optimized
the extraction conditions, resulting in a 95.56% yield of sesame oil while maintaining the
nutrient content.

4. Conclusions and Future Perspective

The comprehensive findings from recent studies highlight the numerous health advan-
tages associated with the intake of sesame seeds, which are notably abundant in bioactive
components. Lignans derived from sesame seeds offer various potential therapeutic appli-
cations, ranging from cognitive health to cardiovascular disease, cancer, and inflammation-
related disorders. Functional health foods can also benefit from including tocopherols
derived from sesame seeds because of their great antioxidant properties. These compounds
function as antioxidants and can counteract the effects of reactive oxygen species, play-
ing a role in safeguarding cell membranes and preventing conditions such as cancer and
cardiovascular diseases. Phytosterols are also commonly incorporated into functional
foods aimed at managing cholesterol levels. Numerous studies have demonstrated their
ability to reduce blood cholesterol, enhance the immune system, and lower the risk of
specific cancers. Although phytates are known to hinder mineral absorption, they also
have potential hypocholesterolemic and anticancer properties. Numerous studies also
indicate the richness of unsaturated fatty acids, mainly linoleic and oleic acid, in sesame
oil, increasing its health-promoting potential. Sesame seeds, rich in oil and protein, are a
valuable source of protein hydrolysates with diverse applications, including their potential
as functional ingredients in nutraceuticals and functional foods, thanks to their antioxidant
and antihypertensive properties as bioactive peptides. These findings underscore the
significance of incorporating sesame seeds into diet and the potential for their utilization in
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developing dietary supplements and functional food products. Encouraging the adoption
of sesame usage among consumers and food manufacturers is crucial. Additional research
is essential to delve deeper into the beneficial health effects of the phytochemicals present
in sesame, to understand how they work thoroughly, and to assess their clinical efficacy in
treating various health conditions.
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ABCA1 Binding cassette transporter A1
ABTS 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), radical cation
ACC Acetyl-CoA carboxylase
ACE Antioxidant capacity equivalent
AD Alzheimer’s disease
ALT Alanine transaminase
AMPK AMP-activated protein kinase
ARE Antioxidant response element
AST Aspartate transaminase
Aβ Amyloid-β
BBB Blood–brain barrier
BCAAs Branched-chain amino acids
Bcl-2 B-cell lymphoma 2
BDNF Brain-derived neurotrophic factor
BUN Blood urea nitrogen
CAT Catalase
C57BL/6J Strain of mice used as a universal model for studying diet-induced obesity
CD36 Scavenger receptor involved in cholesterol uptake
CDKs Cyclin-dependent kinases
CKD In chronic kidney disease
COX-2 Cyclooxygenase-2
DHT Dihydrotestosterone
DNA Deoxyribonucleic acid
DPPH 2,2-diphenyl-1-picrylhydrazyl, radical
ESRD End-stage renal disease
ERK1/2 Extracellular signal-regulated kinase 1/2
ER Endoplasmic reticulum
FAO Food and Agriculture Organization
FAS Fatty acid synthase
FcεRI The high-affinity receptor for the Fc region of immunoglobulin E
FoxO Forkhead box O
GAE Gallic acid equivalent
GSH-Px Glutathione peroxidase
HDL-C High-density lipoprotein cholesterol
HepG2 Human liver cell line
HMG-CoA reductase 3-hydroxy-3-methylglutaryl-CoA reductase
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HO-1 Heme oxygenase-1
IgE Immunoglobulin E
IKKα Kinase α

IL-1 Interleukin 1
IL-1β Interleukin-1 beta
IL-10 Interleukin-10
IL-6 Interleukin 6
iNOS Nitric oxide synthase
JNK c-Jun N-terminal kinase
LCAT Lecithin:cholesterol acyltransferase
LDL Low-density lipoprotein
LDL-C Low-density lipoprotein cholesterol
LOX Lipoxygenase
LPS Lipopolysaccharides
LXRα Liver X receptor alpha
MAPK p38 mitogen-activated protein kinase
MDA Malondialdehyde
MMP Mitochondrial membrane potential
mTOR Mechanistic target of rapamycin
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide
NAFLD Non-alcoholic fatty liver disease
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
Nrf2 Nuclear factor erythroid 2-related factor 2
NSCLC Non-small cell lung cancer
p53 Tumor protein, regulatory protein that is often mutated in human cancers
PI3K-PKB Signaling pathway
PPAR-γ Peroxisome proliferator-activated receptor gamma
PUFAs Polyunsaturated fatty acids
PXR Pregnane X receptor
ROS Reactive oxygen species
SAMP8 Senescence-accelerated mouse-prone 8
SCFAs Short-chain fatty acids
SOD Superoxide dismutase
SR-A Scavenger receptor class A
SR-BI Scavenger receptor class B type I
SREBP-1c Sterol regulatory element-binding protein 1c
SIRT1 Sirtuin 1
TLR4 S gene-encoding Toll-like receptor 4 in humans
TNF-α Tumor necrosis factor-alpha
UVB Ultraviolet B

References
1. Anilakumar, K.R.; Pal, A.; Khanum, F.; Bawa, A.S. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.)

seeds-an overview. Agric. Conspec. Sci. 2010, 75, 159–168.
2. Nagar, P.; Agrawal, M.A.K. Sesame (Sesamum indicum L.) seed as a functional food: A review. Pharma Innov. 2022, 519, 507–565.
3. Yaseen, G.; Ahmad, M.; Zafar, M.; Akram, A.; Sultana, S.; Ahmed, S.N.; Kilic, O. Sesame (Sesamum indicum L.). In Green Sustainable

Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 253–269.
[CrossRef]

4. Elleuch, M.; Bedigian, D.; Zitoun, A. Sesame (Sesamum indicum L.) seeds in food, nutrition, and health. In Nuts and Seeds in Health
and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1029–1036. [CrossRef]

5. Sharma, L.; Saini, C.S.; Punia, S.; Nain, V.; Sandhu, K.S. Sesame (Sesamum indicum) seed. In Oilseeds: Health Attributes and Food
Applications; Tanwar, B., Goyal, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 305–330.

6. Shah, N. Sesamum indicum (Sesame or Til): Seeds and Oil-A Historical and Scientific Evaluation from Indian Perspective. Asian
Agri-History 2016, 20, 3–19.

7. FAO. Special Report 2022 FAO Crop and Food Supply Assesment Mission (CFSAM) to the Republic of the Sudan; FAO: Rome, Italy, 2022.
8. FAOSTAT. Statistical Data on Crops, Sesame Seeds, Area, Production Quantity of Tanzania, Africa and the World; FAOSTAT: Rome,

Italy, 2022.

https://doi.org/10.1016/B978-0-12-821886-0.00005-1
https://doi.org/10.1016/B978-0-12-375688-6.10122-7


Foods 2024, 13, 1153 43 of 53

9. Lukurugu, G.A.; Nzunda, J.; Kidunda, B.R.; Chilala, R.; Ngamba, Z.S.; Minja, A.; Kapinga, F.A. Sesame production constraints,
variety traits preference in the Southeastern Tanzania: Implication for genetic improvement. J. Agric. Food Res. 2023, 14, 100665.
[CrossRef]

10. Weldemichael, M.Y.; Gebremedhn, H.M. Research advances and prospects of molecular markers in sesame: A review. Plant
Biotechnol. Rep. 2023, 17, 585–603. [CrossRef]

11. Rahman, A.; Akbar, D.; Trotter, T.; Thomson, M.; Timilsina, S.; Bhattarai, S. The prospect of developing sesame industry in
Northern Australia through analysing market opportunity. Aust. J. Reg. Stud. 2020, 26, 347–378.

12. Ma, X.; Wang, Z.; Zheng, C.; Liu, C. A comprehensive review of bioactive compounds and processing technology of sesame seed.
Oil Crop Sci. 2022, 7, 88–94. [CrossRef]

13. Torricelli, M.; Pierboni, E.; Rondini, C.; Altissimi, S.; Haouet, N. Sesame, pistachio, and macadamia nut: Development and
validation of new allergenic systems for fast real-time PCR application. Foods 2020, 9, 1085. [CrossRef] [PubMed]

14. Zhang, H.; Langham, D.R.; Miao, H. Economic and academic importance of sesame. In The Sesame Genome. Compendium of Plant
Genomes; Miao, H., Zhang, H., Kole, C., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–18. [CrossRef]

15. Myint, D.; Gilani, S.A.; Kawase, M.; Watanabe, K.N. Sustainable sesame (Sesamum indicum L.) production through improved
technology: An overview of production, challenges, and opportunities in Myanmar. Sustainability 2020, 12, 3515. [CrossRef]
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