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Abstract: Seasonal (temporal) variations can influence the δ13C, δ2H, δ18O, and δ15N values and
nutrient composition of organic (ORG), green (GRE), and conventional (CON) vegetables with a
short growth cycle. Stable isotope ratio mass spectrometry (IRMS) and near-infrared spectroscopy
(NIRS) combined with the partial least squares-discriminant analysis (PLS-DA) method were used to
investigate seasonal effects on the identification of ORG, GRE, and CON Brassica chinensis L. samples
(BCs). The results showed that δ15N values had significant differences among the three cultivation
methods and that δ13C, δ2H, and δ18O values were significantly higher in winter and spring and
lower in summer. The NIR spectra were relatively clustered across seasons. Neither IRMS-PLS-
DA nor NIRS-PLS-DA could effectively identify all BC cultivation methods due to seasonal effects,
while IRMS-NIRS-PLS-DA combined with Norris smoothing and derivative pretreatment had better
predictive abilities, with an 89.80% accuracy for ORG and BCs, 88.89% for ORG and GRE BCs, and
75.00% for GRE and CON BCs. The IRMS-NIRS-PLS-DA provided an effective and robust method to
identify BC cultivation methods, integrating multi-seasonal differences.

Keywords: Brassica chinensis L.; seasonal effect; stable isotope; NIRS; cultivation method; PLS-DA

1. Introduction

Organic agriculture is based on environmentally friendly, product-safe, sustainable,
and comprehensive agricultural practices, and is becoming a popular choice for global
agricultural development. Furthermore, increasing awareness of health and environmental
concerns among consumers is prompting them to pay more attention to organic products.
Global organic market sales reached 134.8 billion euros in 2022 [1]. Countries actively
promote organic farming methods while adopting relatively neutral and market-oriented
policies based on their own circumstances. For example, China was ranked the third-
highest producer of organic products in 2022, with a global market share of 9.2%. China’s
government has also proposed to improve green agricultural standard and systems by
strengthening the certification management of green food, organic products, and agricul-
tural products with geographical indication status [2], sending strong signals that green
agriculture is an important form of high-quality and sustainable development for Chinese
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agriculture. Green agriculture, defined by China National Standard GB/T 33761-2017 [3]
and Agriculture Industry Standard NY/T 391-2021 [4], is a blend of organic and conven-
tional agriculture, which primarily reduces the need for chemical fertilizers and pesticides.

As the societal demand for sustainable agriculture grows, the authenticity of organic
and green foods has become an urgent issue due to profit-driven practices such as false
advertising and misleading labels [5]. Several effective analytical methods have been
used to ensure their authenticity, primarily including stable isotope analysis [6], spectral
analysis [7], and chemical analysis [8]. In these methods, stable isotopes (δ13C, δ15N, δ2H,
and δ18O) can objectively reflect climatic conditions (temperature, humidity, light intensity,
and precipitation), soil composition, and agricultural input (fertilizers, pesticides, etc.)
information for plant agricultural products [9]. For instance, δ13C values are indicative of
photosynthesis pathways (C3, C4, or CAM) utilized by plants but are also influenced by
light intensity, humidity, and environmental pollutants (car emissions) [9]. δ15N values offer
information about plant nutrient sources and agricultural fertilization practices. Organic
fertilizers (such as animal-derived manures and plant composts formed of non-leguminous
products) typically exhibit relatively high δ15N values, distinguishing organic cultivation
methods from green or conventional farming practices [9–11]. δ2H and δ18O values are
used to identify different irrigation water sources and are influenced by rainfall, local
temperatures, latitude, altitude, and distance from the sea [9,12]. Moreover, near infrared
spectroscopy (NIRS) in spectral analysis mainly captures essential vibrational and rotational
stretching details related to the hydrogen bonds (C-H, N-H, O-H, and S-H) of nutritional
compositions of agricultural products and offers chemical-free, rapid, and non-destructive
advantages in analyzing the composition of agricultural products [13].

Both stable isotope analysis and NIRS have been employed as powerful tools for the
identification of organic, green, and conventional agricultural products based on their
growing fertilizer types, climate environment, and nutritional component variations arising
from different cultivation methods [11,14]. However, plant isotopes and NIR spectra can
be altered by interannual climatic variations and seasonal effects, potentially affecting
the accuracy of identifying cultivation methods [15,16]. This is particularly pronounced
for crops with short growth or maturation periods (<60 days). Short–growth cycle leafy
vegetables are more sensitive to changes in precipitation or temperature, causing variability
in their chemical compositions and absorption characteristics of various elements [17].
However, seasonal effects on the stable isotopes and NIR spectra of short–growth cycle
leafy vegetables need to be further investigated, along with the identification of short–
growth cycle leafy vegetables cultivation methods using stable isotopes and NIRS.

Therefore, this study aimed to investigate the influence of seasonal variations on the
δ13C, δ15N, δ2H, and δ18O values and NIR spectra of short–growth cycle and year-round
planted Brassica chinensis L. (BC) under various cultivation methods. Furthermore, IRMS
or/and NIRS data combined with chemometrics were used to ensure the authenticity of
BC cultivation methods despite seasonal variations.

2. Materials and Methods
2.1. Sample Collection and Preparation

In this study, 175 BC samples comprising 63 organic (ORG) samples (defined by China
National Standard GB/T 19630-2019) [18], 44 green (GRE) samples, and 68 conventional
(CON) samples were collected between September 2020 and September 2021 from Shanghai
vegetable farms. Samples collected from September 2020 to November 2020 were classified
as autumn (mean temperature 19.6 ◦C), from December 2020 to February 2021 as winter
(mean temperature 7.4 ◦C), from March 2021 to May 2021 as spring (mean temperature
16.9 ◦C), from June 2021 to August 2021 as summer (mean temperature 27.5 ◦C), and
from September 2021 as autumn-repeat (autumn-re) (mean temperature 26.7 ◦C) (Table 1).
Autumn-re samples were used as interannual samples to verify seasonal effects and identi-
fication models.
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Table 1. Number of BC samples collected for each season and cultivation method.

Seasons No. of Samples ORG GRE CON

Autumn (September–November 2020) 22 9 4 9
Winter (December 2020–February 2021) 35 11 11 13

Spring (March–May 2021) 52 23 12 18
Summer (June–August 2021) 55 18 13 24
Autumn-re (September 2021) 11 3 4 4

Total 175 63 44 68
ORG: organic; GRE: green; CON: conventional.

BC samples were prepared as reported in our previous paper [16]. Briefly, about 2.5 kg
of each vegetable was collected, rinsed with deionized water to remove soil or dust, pulped
using a blender, frozen at −18 ◦C for 6 h, and freeze-dried at −54 ◦C for at least 72 h.
The dried samples were ground into a fine and uniform powder with a particle size less
than 0.15 mm. The powder was stored in a desiccator to prevent the absorption of local
atmospheric water and preserve the weakly reflected exchangeable and non-exchangeable
δ2H and δ18O signatures from the different cultivation methods and seasonal effects.

2.2. Stable Isotope Analysis

The δ13C, δ15N, δ2H, and δ18O values of samples were determined using a Flash
IRMS elemental analyzer (EA) interfaced to a DELTA V Advantage isotope ratio mass
spectrometry system (IRMS, Thermo Fisher Scientific Inc., Bremen, Germany) using similar
methods outlined in Liu et al. [19]. In C/N mode, the oxidation and reduction furnace
temperatures of the EA were set at 980 ◦C. High purity helium was used as the carrier
gas with a flow rate of 180 mL/min. High purity CO2 and N2 were used as the reference
gases with flow rates of 60 mL/min. About 1.6 mg samples were weighed into tin capsules
for δ13C and δ15N analysis with an 80% dilution ratio of CO2 produced by these samples
during analysis. In H/O mode, the EA pyrolysis temperature was set at 1380 ◦C. High
purity helium was used as the carrier gas with a flow rate of 100 mL/min. High purity CO
and H2 were used as the reference gases, also at a flow rate of 100 mL/min. About 0.3 mg
samples were weighed into silver capsules for δ2H and δ18O analysis with a 40% dilution
ratio of H2 and a 60% dilution ratio of CO produced by these samples during analysis.
Isotope ratios were calculated using the following Equation (1):

X(‰) =

( Rsample

Rstandard
− 1

)
(1)

where X represents δ13C, δ15N, δ2H, or δ18O; Rsample denotes the abundance ratio of heavy
isotope against light isotope, e.g., 13C/12C, 15N/14N, 18O/16O, or 2H/1H; Rstandard is the refer-
ence standard isotope ratio. Reference materials included USGS40 (δ13C = −26.389 ± 0.042‰,
δ15N = −4.5 ± 0.1‰), USGS90 (δ13C = −13.75 ± 0.06‰, δ15N = +8.84 ± 0.17‰), and
USGS91 (δ13C = −28.28 ± 0.08‰, δ15N = +1.78 ± 0.12‰) for δ13C and δ15N values;
IAEA-603 (δ18O = −2.37‰ ± 0.04‰), USGS90 (δ18O = 35.90 ± 0.29‰), and USGS91
(δ18O = 21.13 ± 0.44‰) for δ18O values; and USGS54 (δ2H = −150.4 ± 1.1‰), USGS90
(δ2H = −13.9 ± 2.4‰), and USGS91 (δ2H = −45.7 ± 7.4‰) for δ2H values. A sample of BC
was chosen as a quality control measure and included as a working standard; it was added
after every 10 unknown samples. Instrumental precision was lower than ±0.1‰ for δ13C,
±0.2‰ for δ15N, ±2.0‰ for δ2H, and ±0.5‰ for δ18O.

2.3. NIRS Analysis

NIR spectra were collected using a Nicolet iS50 Fourier transform near-infrared spec-
trometer (Thermo Fisher Scientific, Waltham, MA, USA) with an integrating sphere mode
and an InGaAs detector. The spectral range was from 10,000 cm−1 to 4000 cm−1, spectral
resolution was set at 8 cm−1, scan time was 32, and an internal blank was used as the
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reference for the measurements. The powdered samples were thoroughly mixed before
each scan and then placed in a rotating sample cup and scanned three times. NIR spec-
tral data were captured using OMNIC 9 software and stored in absorbance format. An
averaged spectrum, generated from the three replicate analyses, contained 1557 variables
and was used for both the calibration and validation sets. The laboratory temperature was
maintained at a constant 25 ◦C throughout the analysis period.

2.4. Statistical Analysis and Chemometrics Methods

One-way analysis of variance (ANOVA) was applied to evaluate and compare differ-
ences in the δ13C, δ15N, δ2H, and δ18O values of BCs attributed to seasonal effects using
Matlab R2020a software (MathWorks, Natick, MA, USA). Boxplots created in Microsoft
Office Excel 365 (Microsoft, Redmond, WA, USA) were employed to visually represent the
differences between the four isotopes across different BC cultivation methods or seasons.

The spectral data underwent Norris smoothing and derivative (NSD) treatment prior
to modeling, which aimed to reduce or eliminate random baseline shifts, light scattering,
and noise interferences, ensuring that only useful information was incorporated into the
spectral signal [20]. NSD pretreatment consists of smoothing involving parameters ‘s’ and
‘g’, where ‘s’ represents the number of data in one segment and ‘g’ is the number of data
in one gap, and a derivative containing the first or second derivative. Before building the
models, the Kennard–Stone (KS) algorithm was used to divide the samples into calibration
set (75%) and validation set (25%) [21]. That is, the samples were selected one by one based
on the furthest distance from each other using Euclidean distance, thus dispersing them
across the multivariate space. Partial least squares-discriminant analysis (PLS-DA) [22]
was utilized to identify the BC cultivation methods using Matlab R2020a software and
SIMCA 14.1 software (Umetrics, Umeå, Sweden). K-fold cross validation (CV) was applied
to determine the optimal number of latent variables (optLVs). The optLVs were used to
build a calibration model of PLS-DA by sensitivity (SE), specificity (SP), area under curve
(AUC), and classification accuracy for evaluation (see Supplementary Materials S1 for the
equations of SE, SP, and classification accuracy) [23], and then a validation model was
employed to predict the remaining samples (25%). The predictive ability of the model was
assessed by an accuracy.

3. Results and Discussion
3.1. Overall and Seasonal Isotopes of Different BC Cultivation Methods

There were differences in the BC stable isotopes determined for different cultivation
methods (Figure 1). ORG BC had the highest overall mean δ15N (10.50 ± 6.20‰) and δ18O
(21.42 ± 2.85‰) values, coupled with the lowest overall mean δ13C (−29.17 ± 1.36‰)
and δ2H (−80.46 ± 9.68‰) values. Conversely, CON BC exhibited the highest overall
mean δ13C (−28.78 ± 1.48‰) and the lowest overall mean δ15N (3.58 ± 5.33‰) and δ18O
(20.73 ± 2.29‰) values, and GRE BC had the highest overall mean δ2H (−78.61 ± 9.60‰)
values. Only the δ15N values showed a significant difference (p < 0.05) resulting from all
the study samples collecting from Shanghai farms within a radius of around 40 km and
experiencing similar climatic influences throughout the year. ORG, GRE, and CON BCs
have different fertilization requirements. Specifically, ORG BC exclusively uses organic
fertilizers (GB/T 19630-2019) [18], GRE BC is permitted to use chemical fertilizers in
appropriate amounts (GB/T 33761-2017 and NY/T 391-2021) [3,4], and CON BC does not
have significant restrictions on the use of chemical fertilizers.
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Commonly, the organic fertilizers used in the cultivation of ORG and GRE BCs are
animal manures or plant composts which undergo denitrification, promoting the volatiliza-
tion of the light stable isotope 14N fraction, enhancing residual 15N in the fertilizer [24] and
resulting in higher ORG and GRE BCs δ15N values compared to CON BC. However, if the
storage and fermentation time of organic fertilizer, especially for animal manures, is short
and denitrification has not occurred, or if the organic fertilizer is plant-based (legume), the
δ15N values of organic vegetables may not be so high [25]. This effect might explain the low
δ15N values (around 0‰) of some ORG BC samples (Figure 1). The study also found three
CON BC samples with δ15N values exceeding 20‰ (Figure 1, blue circle), possibly due
to the fact that these samples were from farms transitioning from conventional to organic
cultivation. Slight δ13C, δ2H, and δ18O variations among BC cultivation methods were most
likely due to the different fertilizer types and seasonal effects (temperature, light intensity,
and precipitation), resulting in differences in carbon cycling, photosynthetic efficiency, and
water use efficiency [9,26,27].

The δ13C, δ15N, δ2H, and δ18O values among ORG, GRE, and CON BC varied across
different seasons (Table 2). There were no significant differences in seasonal mean δ13C
and δ2H values among the three cultivation methods of BC, possibly indicating that the
photosynthetic efficiency and water use efficiency of BC under different cultivation methods
were similar in each season, given their similar growing locality in Shanghai. Seasonal mean
δ15N values of BC also varied similarly among the three cultivation methods, following
the sequence ORG > GRE > CON. Significant differences in δ15N values were observed
between ORG and CON BCs during winter, summer, and autumn-re (p < 0.05). CON BCs
exhibited significant differences compared to ORG and GRE BCs (p < 0.05) in spring. No
significant differences were observed in autumn, possibly due to fertilizer type variations
and the two outlier values (20.20‰ and 22.53‰) of CON BCs in autumn. ORG BCs had the
highest seasonal mean δ18O value (23.37 ± 2.61‰) in spring and were significantly different
from CON BCs (21.65 ± 1.50‰) (p < 0.05). This possibly arose from the enhancement of
soil permeability and water retention caused by organic fertilizer application and the
improvement of metabolic activity due to higher daily temperatures in late spring, leading
to more positive 18O enrichment in BC tissue from H2

18O and C18O2 [9,27,28].
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Table 2. Stable isotope values of BC under different cultivation methods and seasons.

Seasons Stable Isotopes
Cultivation Methods

ORG GRE CON

Autumn

δ13C −28.53 ± 1.32 a −28.17 ± 1.44 a −28.12 ± 1.18 a
δ15N 9.58 ± 6.05 a 7.13 ± 5.78 a 6.80 ± 8.79 a
δ2H −87.20 ± 9.04 a −86.02 ± 8.91 a −87.19 ± 9.78 a
δ18O 19.13 ± 3.27 a 19.31 ± 2.35 a 17.98 ± 3.20 a

Winter

δ13C −28.48 ± 1.34 a −28.34 ± 1.54 a −27.88 ± 1.60 a
δ15N 10.24 ± 4.16 a 6.90 ± 4.76 ab 4.84 ± 7.46 b
δ2H −72.86 ± 8.01 a −70.16 ± 8.12 a −68.63 ± 5.73 a
δ18O 21.63 ± 2.49 a 22.57 ± 1.62 a 21.75 ± 1.72 a

Spring

δ13C −28.75 ± 0.81 a −29.17 ± 0.54 a −28.53 ± 0.86 a
δ15N 11.82 ± 7.89 a 6.35 ± 4.43 a 1.50 ± 3.08 b
δ2H −74.17 ± 4.70 a −74.87 ± 4.21 a −72.80 ± 5.52 a
δ18O 23.37 ± 2.61 a 21.51 ± 2.26 ab 21.65 ± 1.50 b

Summer

δ13C −30.28 ± 1.35 a −29.76 ± 0.65 a −29.42 ± 1.54 a
δ15N 9.11 ± 5.17 a 6.64 ± 5.51 ab 3.17 ± 3.33 b
δ2H −89.10 ± 6.47 a −85.25 ± 8.51 a −88.13 ± 9.71 a
δ18O 20.28 ± 1.74 a 21.22 ± 1.33 a 20.71 ± 2.02 a

Autumn-re

δ13C −30.14 ± 0.05 a −29.98 ± 0.44 a −30.45 ± 0.56 a
δ15N 12.94 ± 5.46 a 7.29 ± 8.75 a 4.01 ± 0.31 a
δ2H −82.49 ± 6.02 a −84.03 ± 6.86 a −89.00 ± 3.55 a
δ18O 20.14 ± 0.99 a 20.21 ± 0.79 a 19.61 ± 0.66 a

Different letters within a row indicate a significant difference for each cultivation method (p < 0.05). ORG: organic;
GRE: green; CON: conventional.

The results confirmed that the δ15N values, mainly influenced by fertilizer type,
characterized the three cultivation methods of BC. There were significant differences in
some δ15N and δ18O values among different BC cultivation methods in a single season,
indicating that different fertilizers were used for BCs grown under the same cultivation
method. Moreover, BCs were also influenced by seasonal factors, such as temperature, light
intensity, and precipitation, and required further investigation.

3.2. Seasonal Isotopes for Each BC Cultivation Method

The stable isotopes of different BC cultivation methods showed distinct variations
based on seasonal time series (Figure 2). Mean δ13C values for each season of organic
(δ13COrganic), green (δ13CGreen), and conventional (δ13CConventional) BCs were higher in
winter. A significant difference between winter and summer (p < 0.05) was noted, due
to seasonal variations in temperature and light intensity influencing photosynthetic effi-
ciency [9,27]. In summer, BCs exhibited vigorous photosynthesis, preferentially absorbing
a higher proportion of lighter 12CO2 from the atmosphere, leading to lower δ13C values in
BC tissue. Mean δ15N values for different BC cultivation methods showed no significant
seasonal differences, as each cultivation method had specific fertilizer treatments. Each
seasonal mean δ2H and δ18O value of different BC cultivation methods exhibited a similar
trend across seasons (Figure 2). In winter and spring, the three cultivation methods of BCs
had more positive mean δ2H and δ18O values compared to summer and autumn. There
were significant δ2H and δ18O value differences between winter and/or spring and autumn,
as well as between summer and autumn-re (p < 0.05). This trend was contrary to the usual
expectations for precipitation, where δ2H and δ18O values are more positive in summer
and more negative in winter [12,29]. However, it was consistent with the seasonal δ2H and
δ18O variation in local atmospheric precipitation and the irrigation water source from the
Yangtze River [30], which are significantly influenced by the distinct monsoon system and
local topography around Shanghai [31–33]. In summer, precipitation in Shanghai, originat-
ing from the ocean, undergoes isotopic fractionation due to evaporation and condensation
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during a long transport process, leading to 2H and 18O depletion. In winter, the vapor
from nearby water bodies, serving as a primary source of humidity, moisture content, and
precipitation for Shanghai, typically shows relatively higher isotopic ratios [31,32].

These results suggest that seasonal changes can affect the δ13C and δ15N values of
short–growth cycle BC under each cultivation method due to variable temperatures, light
intensity, and fertilizer types. Additionally, seasonal effects can impact the δ2H and δ18O
values through changes in precipitation and/or irrigation water sources. Therefore, when
identifying cultivation methods for short–growth cycle vegetables, it is essential to investi-
gate these seasonal effects to ensure that the developed model exhibits high applicability
and accuracy across different seasons.
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3.3. PLS-DA Isotope Models to Identify BC Cultivation Methods

Among the overall stable isotopes of different BC cultivation methods, only the δ15N
values were significantly different among ORG, GRE, and CON BCs (Figure 1). The three
CON BC outliers with high δ15N values (Figure 1, blue circle) came from farms transitioning
from conventional to organic cultivation and could not represent the typical values of CON
BC. After excluding these outliers, 80.95% of ORG BC had δ15N values above 6‰, while
43.18% of GRE BC and 81.54% of CON BC were below 6‰. The ORG and CON BCs could
be well distinguished, but GRE BC overlapped both ORG and CON BCs due to the use of
both fertilization methods. There were no significant differences in the overall mean δ13C,
δ2H, and δ18O values of BC among different cultivation methods, as well as their seasonal
mean δ13C and δ2H values. However, stable isotopes of individual BCs still exhibited
variations within cultivation method classes due to seasonal variations in temperature,
light intensity, and precipitation. A supervised PLS-DA method (IRMS-PLS-DA) was used
to investigate these differences and attempt to improve the identification accuracy for ORG,
GRE, and CON BCs (Table 3 and Table S1), especially for GRE BC. Moreover, the three
outliers were included in the modeling data in order to ensure the universality of PLS-DA
identification models.

The first two principal component score plots of PLS-DA (Figure 3) revealed that
most ORG BCs could be effectively distinguished from CON BCs, but GRE BCs exhibited
significant overlap with both ORG and CON BCs. Therefore, the discriminant model of
the three cultivation methods was established in pairs. The calibration model accuracy for
ORG and CON BCs was 77.55%, and the validation accuracy was 75.76%, with 24 ORG
BCs being misclassified as CON BCs and six CON BCs as ORG BCs, possibly due to
variations in fertilizer types and the comprehensive effects of seasonal variations and
fertilizer types. For instance, some ORG BCs (n = 11) with δ15N values below 5‰ might
have utilized plant-based (legume) organic fertilizers or the inadequate fermentation of
manures [25], while some transitioning CON BCs only utilized organic manures. Moreover,
some misclassified ORG BCs with δ15N values higher than 5‰ might have been influenced
by seasonal variations in temperature, light intensity, and precipitation [9,26,27], and
some misclassified CON BCs might be attributed to increased environmental protection
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by farmers, resulting in higher organic fertilizer use [34]. The highest misclassification
rate occurred in summer (n = 10), probably due to higher levels of photosynthesis, water
evaporation, and transpiration decreasing the differences between ORG and CON BCs
during the summer [9,27] (Figure 2 and Table 3). The variable importance in projection
(VIP) order used in the PLS-DA model was δ15N > δ13C > δ18O > δ2H, consistent with the
stable isotope variations observed between ORG and CON BCs (Figure 1).

Table 3. Model methods and accuracies of PLS-DA models for BC cultivation methods using IRMS
and/or NIRS.

Instruments Cultivation Methods Models Calibration Accuracy (%) Validation Accuracy (%)

IRMS
ORG vs. CON PLS-DA 77.55 (76/98) 75.76 (25/33)
ORG vs. GRE PLS-DA 71.25 (57/80) 51.85 (14/27)
GRE vs. CON PLS-DA 73.81 (62/84) 53.57 (15/28)

NIR

ORG vs. CON
PLS-DA 87.76 (86/98) 78.79 (26/33)

NSD(5,5,2) a-PLS-DA 91.84 (90/98) 81.82 (27/33)

ORG vs. GRE
PLS-DA 100 (80/80) 62.96 (17/27)

NSD(9,9,2)-PLS-DA 100 (80/80) 70.37 (19/27)

GRE vs. CON
PLS-DA 96.43 (81/84) 71.43 (20/28)

NSD(9,9,1)-PLS-DA 100 (84/84) 67.86 (19/28)

IRMS-NIR

ORG vs. CON
PLS-DA 83.67 (82/98) 87.88 (29/33)

NSD(5,5,2)-PLS-DA 89.80 (88/98) 87.88 (29/33)

ORG vs. GRE
PLS-DA 98.75 (79/80) 81.48 (22/27)

NSD(3,3,2)-PLS-DA 100 (80/80) 88.89 (24/27)

GRE vs. CON
PLS-DA 90.48 (76/84) 75.00 (21/28)

NSD(3,3,1)-PLS-DA 100 (84/84) 71.43 (20/28)
a The parameters (s, g, and n) in NSD were defined by: s, the number of data in one segment; g, the number of data
in one gap; n, 1 or 2 is the first derivative or second derivative. ORG: organic; GRE: green; CON: conventional;
NSD: Norris smoothing and derivative.
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The accuracy of the PLS-DA for the calibration model of ORG and GRE BCs was
71.25%, and for the validation model it was 51.85%, with 30 GRE BCs being misclassified as
ORG BCs and six ORG BCs as GRE BCs, possibly attributed to smaller differences in δ15N
values between ORG and GRE BCs (Figure 1), as ORG BCs used only organic fertilizers
while GRE BCs could use both organic and chemical fertilizers (GB/T 33761-2017 and NY/T
391-2021). Summer BCs (n = 12) still demonstrated the highest misclassification rate, which
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may also be due to a combination of different fertilizer effects and seasonal variations [24,26].
The VIP order of the ORG and GRE BCs PLS-DA model was δ15N > δ2H > 1 > δ13C > δ18O,
highlighting the significance of δ15N and δ2H values in distinguishing between GRE and
ORG BCs. This order aligned with the overall stable isotope variations observed between
ORG and GRE BCs (Figure 1). Specifically, ORG BCs showed the highest overall mean δ15N
values (10.50 ± 6.20‰) and the lowest overall mean δ2H values (−80.46 ± 9.68‰), while
GRE BCs demonstrated the highest overall mean δ2H values (−78.61 ± 9.60‰).

The calibration model of the GRE and CON BCs PLS-DA achieved an accuracy of
73.81%, with a validation accuracy of 53.57%. The number of misclassifications for GRE
BCs (n = 30) was six times higher than that for CON BCs (n = 5), and misclassifications
remained most pronounced during the summer, primarily due to the distinctive fertil-
ization strategies employed by GRE BCs coupled with seasonal effects on the physiolog-
ical and biochemical reactions of BCs [24,26]. The VIP order of the PLS-DA model was
δ15N > δ2H > 1 > δ18O > δ13C, suggesting that fertilizer type and the irrigation water source
influenced by seasonal precipitation were important modeling variables [8], and aligning
well with the overall stable isotope variations between GRE and CON BCs (Figure 1).
Specifically, GRE BCs exhibited significantly higher δ15N values and the highest δ2H values
compared to CON BCs.

The results indicated that, despite incorporating the differences in four stable isotopes
of individual BCs, the BC cultivation methods’ identification rates using PLS-DA models
were not superior to those achieved by using only δ15N values, due to the influence of
variations in fertilizer types and seasonal effects. Furthermore, the accuracy of identifying
GRE BCs still needed to be improved. Overall, the study showed that BCs exhibited the
highest misclassification rate in summer, resulting from the combination of high temper-
atures, intense sunlight, and frequent precipitation, leading to vigorous growth and the
blurring of stable isotope differences among ORG, GRE, and CON BCs. We confirmed that
seasonal factors had important impacts on the stable isotopes of BCs grown using different
cultivation methods, consequently impacting the ability to clearly distinguish different BCs’
cultivation methods by isotopes alone.

3.4. NIR Spectra to Identify BC Cultivation Methods

The rapid identification of agricultural product cultivation methods using NIRS mainly
depends on distinctive nutritional composition signals in the spectra from different cul-
tivation methods. Hydrogen-containing BC nutritional components primarily consist of
dietary fiber, small amounts of sugars, proteins, and fats. Raw spectra of the ORG, GRE,
and CON BCs had a similar spectral shape with significant wavenumber peaks observed at
4010 cm−1, 4250 cm−1, 4330 cm−1, 4670 cm−1, 5050 cm−1, 5170 cm−1, 5780 cm−1, 6350 cm−1,
6780 cm−1, and 8370 cm−1, corresponding to characteristic groups of the main nutrients in
BC (Figure 4a) [23,35]. The peak at 4010 cm−1 corresponds to the combined frequency of
C-H stretching and C-C stretching, indicating the presence of cellulose; both the peaks at
4250 cm−1 and 4330 cm−1 represent a second-order frequency doubling of C-H bending
vibration in C-H groups, potentially indicating the presence of polysaccharides and lipids,
respectively; the peak at 4670 cm−1 denotes the combination frequency of C-H stretching
and C-H deformation, suggesting the presence of fats; the peak of 5050 cm−1 may indicate
the combination frequency of N-H antisymmetric stretching and N-H in-plane bending
in CONH2 groups of amide II, hinting at the presence of proteins; the peak at 5170 cm−1

represents the combination frequency of O-H stretching and HOH deformation in OH and
HOH groups, indicating the existence of polysaccharides; the peak at 5780 cm−1 indicates
the first-order frequency doubling of C-H stretching vibration in methylene groups of
hydrocarbon structures; the peaks at 6350 cm−1 and 6780 cm−1 are the first-order frequency
doubling of N-H stretching vibration in amide groups, indicating the presence of proteins;
and the peak at 8370 cm−1 might be the second-order frequency doubling of C-H stretching
vibration in methyl groups [23,35]. Deviations in peak positions occurred for individual
BCs due to the influences of cultivation methods and seasons.
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Overall, the BC raw spectra overlapped significantly (Figure 4a), as did the spectra
of the three cultivation methods under each season (Figure S1). However, BC spectra
tended to cluster under different seasons (Figure 4b), suggesting that seasons played an
important role in the accumulation of nutrients in BC. The raw spectra of BCs displayed
baseline drifts, band overlapping, and weak characteristic peaks (Figure 4a,b), making it
challenging to directly distinguish the three cultivation methods based on their spectra.
Therefore, NSD was used to reduce interferences and enhance feature signals in the NIR
spectra (Figure 4c,d) [20], and the PLS-DA was utilized to build identification models for
BC cultivation methods (Table 3).

Based on the BC raw spectra, the calibration model for ORG and CON BCs achieved
an accuracy of 87.76%, and the validation accuracy was 78.79%. It was hard to visually
distinguish between different BC cultivation methods from the first two principal compo-
nent score plots of PLS-DA (Figure S2a) due to the NIR spectral data having 1557 variables
and a high number of optLVs in modeling (generally more than 10, Table S2). More ORG
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BCs (n = 13) were wrongly classified compared to CON BCs (n = 7). In addition, summer
(n = 7) and winter BCs (n = 5) accounted for a higher proportion of misclassified samples,
suggesting possible similarities in nutritional components between ORG and CON BCs
during these seasons. The NSD (5,5,2) pretreatment improved the model accuracies, reach-
ing 91.84% for the calibration model and 81.82% for the validation model (Tables 3 and S2).
Misclassified samples still occurred more frequently in winter (n = 7) and summer (n = 4),
possibly due to slower or faster growth in winter or summer, respectively, leading to
similar accumulation rates of nutritional components and lowering cultivation methods
differences. The PLS-DA model for ORG and GRE BCs achieved 100% calibration model
accuracy and 62.96% validation model accuracy, and 60% (6/10) misclassification samples
occurred in summer (n = 4) and winter (n = 2). NSD(9,9,2) preprocessing improved the
validation accuracy to 70.37%. The highest number of misclassifications occurred in spring
(n = 4), possibly indicating that NSD optimized BCs spectra during summer while reducing
spectral information differences in spring. The PLS-DA model for GRE and CON BCs
achieved a calibration accuracy of 96.43% and a validation accuracy of 71.43%. Overall,
81.82% (9/11) of misclassified BCs were from summer (n = 7) and winter (n = 2). However,
the NSD preprocessing did not improve the predictive abilities of the model, with a 67.86%
accuracy for the validation model, suggesting that useful spectral information might be
removed when reducing disturbing signals.

Therefore, the optimal PLS-DA model for ORG and CON BCs showed a favorable
predictive performance with an accuracy of 81.82% due to differences in their nutritional
composition, while the predictive accuracies for ORG and GRE BCs (70.37%) and GRE and
CON BCs (75.00%) did not achieve such good results, mainly due to the special cultivation
requirements of GRE BCs. In general, higher BC misclassification rates occurred in summer
and winter, possibly attributed to the dynamic physiological and biochemical responses
of BC during these seasons. These responses were influenced by temperature and light
intensity, leading to similar nutrient compositions and, thus, similar NIR spectral signals.
The results confirm the importance of investigating seasonal effects on NIR spectra to
build a higher-accuracy and more widely adaptable model for identifying different BC
cultivation methods.

3.5. Combined IRMS and NIRS to Identify BC Cultivation Methods

Individual IRMS or NIRS PLS-DA models could not effectively identify BCs under
different cultivation methods from the same geological origin due to the influence of
fertilizer types and seasonal variations. The stable isotopic and NIR spectral differences
in ORG, GRE, and CON BCs were comprehensively evaluated to build the identification
models of IRMS combined with NIRS (IRMS-NIRS-PLS-DA) (Tables 3, S3 and S4).

The IRMS-NIRS-PLS-DA model for ORG and CON BCs showed a higher predictive ac-
curacy of 87.88% compared to the optimal IRMS-PLS-DA (75.76%) or NIRS-PLS-DA model
(81.82%). Furthermore, the NSD(5,5,2) pretreatment optimized the calibration model, fur-
ther improving the accuracy to 89.80%, although the accuracy of the new validation model
remained unchanged, indicating the combined PLS-DA model exhibited a more robust
and predictive ability. However, the first two principal component score plots showed an
overlap between ORG and CON BCs (Figure S2b). The number of misclassifications in the
optimal NSD-PLS-DA model for ORG BCs (n = 9) was higher than for CON BCs (n = 5),
possibly due to fertilizer types and seasonal effects [8,26]. The misclassified BCs mainly
came from winter (n = 6) and summer (n = 4), possibly attributed to relative weak (winter)
or strong (summer) photosynthesis, water evaporation, and transpiration, decreasing the
differences in stable isotopes and nutritional compositions between ORG and CON BCs
during these two seasons (Figure 2 and Table 3). The δ15N values still remained the most
important variable for identifying between ORG and CON BCs according to the VIP of the
NSD-PLS-DA model.

The IRMS-NIRS-PLS-DA model significantly improved the predictive performance
for distinguishing between ORG and GRE BCs with an 81.48% accuracy, surpassing the



Foods 2024, 13, 1165 13 of 15

individual IRMS or NIRS PLS-DA models (Table 3). The NSD(3,3,2) pretreatment further
enhanced the accuracies of the calculation (100%) and validation (88.89%) models. Only
three BCs (one ORG and two GRE) were misclassified, consisting of two samples from
spring and one sample from winter, indicating that the combination of the two techniques
effectively utilized the differential information from the four stable isotopes and NIR spectra
between ORG and GRE BCs. The δ15N values remained the most important indicator of
identifying between ORG and GRE BCs, as indicated by the VIP order of the optimal
NSD-PLS-DA model.

For GRE and CON BCs, the PLS-DA model achieved calibration and validation accura-
cies of 90.48% and 75.00%, respectively. GRE BCs had a higher number of misclassifications
(n = 13) compared to CON BCs (n = 2), mainly due to different fertilizer options available
for GRE BC. Summer BCs (n = 8) were more prone to misclassification, further indicating
relatively minor differences in stable isotopes and nutritional components between GRE
and CON BCs in summer. After NSD(3,3,1) preprocessing of the spectra, the calibration
accuracy increased to 100%, while the predictive accuracy decreased to 71.43%, indicating
possible overfitting. Therefore, the optimal PLS-DA model for GRE and CON BCs was
built using raw NIR spectra combined with IRMS. The δ2H value influenced by seasonal
precipitation was the most important variable for identifying GRE and CON BCs based on
the VIP order of the optimal PLS-DA model.

The results demonstrated that the optimal IRMS-NIRS-PLS-DA models showed better
predictive abilities than individual IRMS-PLS-DA or NIRS-PLS-DA models. They could
effectively identify ORG and CON BCs with an 87.88% predictive accuracy and the ORG
and GRE BCs with an 88.89% predictive accuracy. However, the model for GRE and CON
BCs with a 75.00% predictive accuracy was lower because of the fertilizer overlap between
these two cultivation methods.

4. Conclusions

The study investigated the differences in overall and seasonal mean δ13C, δ15N, δ2H,
and δ18O values among ORG, GRE, and CON BCs. Only overall δ15N values showed
significant differences among different BC cultivation methods. Significant differences
were observed for seasonal mean δ15N values among ORG and/or GRE and CON BCs
during winter, spring, and summer, as well as in seasonal mean δ18O values between ORG
and CON BCs in spring, which were primarily attributed to variations in fertilizer type,
light intensity, temperature, and precipitation during different seasons. Furthermore, BC
isotopes exhibited varying trends across seasons. Winter and spring showed relatively
positive δ13C, δ2H, and δ18O values, significantly differing from those of summer, while
there were no significant differences in the mean δ15N values of individual BC cultivation
methods across seasons. These variations were most likely due to the δ13C, δ2H, and δ18O
values primarily being influenced by light intensity, temperature, and precipitation, while
the δ15N values were mainly affected by fertilizer type.

The IRMS-PLS-DA models could not effectively differentiate among ORG, GRE, and
CON BCs, mainly due to similar seasonal effects and a range of different fertilizer options
available for GRE BCs. The optimal NIRS-PLS-DA models, specifically for ORG and CON
BCs, showed good performance, with an 81.82% predictive accuracy. The IRMS-NIRS-PLS-
DA models with NSD pretreatment improved the predictive performances of ORG and
CON BCs, with an 89.80% accuracy, and ORG and GRE BCs, with an 88.89% accuracy.
Stable isotopes were the most useful variables for distinguishing ORG, GRE, and CON
BCs. Although the predictive accuracy for GRE and CON BCs (75.00%) was lower than
other groups, the results confirm that the combination of IRMS with NIRS is a robust
and predictive method to identify different BC cultivation methods across season and
interannual variations.

The results indicate that seasonal effects vary the distribution of δ13C, δ2H, and δ18O
values in short-growth BCs, influenced by light intensity, temperature, and precipitation.
However, the impact on δ15N value is less significant, as it is primarily influenced by
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fertilizer type. It is challenging for individual IRMS or NIRS models to effectively identify
different BC cultivation methods across seasons, especially for GRE BC. Combining IRMS
and NIRS data proves to be a more feasible method to identify the three cultivation methods
of BCs. Further studies, including seasonal and annual effects, will further validate the
models’ robustness and predictive ability.

Supplementary Materials: The following supporting information can be downloaded at:
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specificity (SP), classification accuracy, and area under curve (AUC); Figure S1: BC raw spectra under
different seasons; Figure S2: the first two principal component score plots of PLS-DA for different BC
cultivation methods using NIR (a) and IRMS-NIR (b); Table S1: PLS-DA models of BC different culti-
vation methods using IRMS; Table S2: comparison of parameters in the NIRS-PLS-DA models with
NSD preprocessing method for different BCs cultivation methods; Table S3: the δ13C, δ15N, δ2H, and
δ18O values of different BC cultivation methods divided as the calibration and validation sets of the
optimal IRMS-NIRS-PLS-DA models; Table S4: comparison of parameters in the IRMS-NIRS-PLS-DA
models with NSD preprocessing method for different BCs cultivation methods.

Author Contributions: Conceptualization, W.S. and X.L.; methodology, K.F., Y.L., H.Z., Y.C. and H.G.;
software, X.L. and K.F.; validation, X.L., W.S. and K.M.R.; formal analysis, K.F. and Q.R.; investigation,
H.Z. and Q.R.; resources, W.S. and K.M.R.; data curation, X.L., K.F. and Y.L.; writing—original draft
preparation, X.L. and K.F.; writing—review and editing, X.L., W.S. and K.M.R.; visualization, H.Z.;
supervision, W.S. and K.M.R.; project administration, X.L., W.S. and Q.R.; funding acquisition, W.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Shanghai Agriculture Applied Technology Development
Program (No. X2021-02-08-00-12-F00747) and Shanghai Academy of Agricultural Sciences Program
for Excellent Research Team (No. 2022-10).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article/Supplementary Material, further inquiries can be directed to the corresponding authors.

Acknowledgments: The authors acknowledge Bo Deng (Shanghai Center of Agri-Products Quality
and Safety, Shanghai 201599, China) for his assistance in sample collection.

Conflicts of Interest: The authors declare no conflicts of interest.

References
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