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Abstract: Natural polysaccharides are important active biomolecules. However, the analysis and
structural characterization of polysaccharides are challenging tasks that often require multiple tech-
niques and maps to reflect their structural features. This study aimed to propose a new heart-cutting
two-dimensional liquid chromatography (2D–LC) method for separating and analyzing polysaccha-
rides to explore the multidimensional information of polysaccharide structure in a single map. That
is, the first-dimension liquid chromatography (1D–LC) presents molecular-weight information, and
the second-dimension liquid chromatography (2D–LC) shows the fingerprints of polysaccharides.
In this 2D–LC system, the size-exclusion chromatography–hydrophilic interaction chromatography
(SEC–HILIC) model was established. Coupling with a charged aerosol detector (CAD) eliminated the
need for the derivatization of the polysaccharide sample, allowing the whole process to be completed
within 80 min. The methods were all validated in terms of precision, linearity, stability, and repeata-
bility. The capability of the new 2D-LC method was demonstrated in determining various species of
natural polysaccharides. Our experimental data demonstrated the feasibility of the whole systematic
approach, opening the door for further applications in the field of natural polysaccharide analysis.

Keywords: heart-cutting 2D–LC; SEC–HILIC; charged aerosol detector; polysaccharides; Dendrobium;
structural characterization

1. Introduction

As significantly active biological macromolecules, polysaccharides are widely dis-
tributed in animals, plants, and microorganisms. They are biopolymers composed of
at least 10 monosaccharides connected by glycosidic bonds, with complex and diverse
structures [1]. A large number of studies have highlighted various biological activities
and functions of natural polysaccharides, making them a significant component in the
development of natural medicines [1,2]. The biological activity of polysaccharides is closely
related to their structural features. Therefore, strict quality control of the active polysac-
charide components is necessary if they are to be further developed into commercially
available drugs [3,4]. However, analyzing natural polysaccharides is challenging due to
their complex and diverse chemical structures that lack ultraviolet absorption. This necessi-
tates not only lengthy and complicated sample-preparation processes but also the use of
various analytical techniques for comprehensive speculation and analysis. For example,
the total polysaccharide content is determined by the colorimetric method; the composi-
tion of monosaccharides is analyzed by gas chromatography or high-performance liquid
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chromatography; the positions of glycosidic bonds of polysaccharides are estimated by gas
chromatography–mass spectrometry (GC–MS) or nuclear magnetic resonance (NMR); and
the relative molecular weights of polysaccharides are determined by high-performance
size-exclusion chromatography–multi-angle light-scattering–refractive index detection
(HPSEC–MALLS–RID), as well as from the fingerprints of the partial hydrolysis of acids
and enzymes to obtain the “saccharide mapping”, to carry on the quantitative and qualita-
tive analysis of polysaccharides in a comprehensive way [5–8]. Although the polysaccharide
multivariate fingerprint and saccharide mapping have developed in recent years [9–11],
they either rely on the joint analysis of multiple technologies or reflect limited polysaccha-
ride characteristics. Thus, the analysis and structural characterization of polysaccharides
are challenging. Therefore, exploring the application of novel techniques in the field of
polysaccharides to characterize richer structural features of polysaccharides or reflect the
specificity of polysaccharides from different plant sources is particularly important.

2D–LC, as a powerful analytical technique, can connect two independent chromato-
graphic columns with different separation mechanisms in series to form a separation
system, thus significantly increasing the peak capacity and selectivity of the system [12,13].
Moreover, 2D–LC is commonly categorized into comprehensive 2D-LC and heart-cutting
2D-LC, depending on whether all or selected portions of the one-dimensional (1D) eluates
are separated in 2D–LC [13]. At present, 2D–LC is mostly used for separating and analyzing
small molecules, which is important for certain difficult-to-separate components [14–17].
For example, conventional HPLC cannot completely separate them due to the extremely
similar structure of ginsenoside compounds. Yao et al. [14] isolated and quantified the
major P. notoginseng saponins such as Rg1 and Re, which are difficult to isolate, by 2D-LC.
In current macromolecule assays, 2D–LC is mainly applied to proteins [18–20], and less of
the literature deals with analyzing saccharide substances [21,22].

Based on the essential characteristics of polysaccharides, the column combination for
the 2D–LC analysis mode in this study was SEC–HILIC. First, the molecular weight and
distribution are important characteristics of polysaccharides. They have a close relationship
with the activity, which is a key indicator for controlling product quality [23]. SEC is widely
used in characterizing biomolecules, and the use of SEC to characterize the molecular
weight of polysaccharides is well documented [24–26]. Meanwhile, HILIC can retain and
separate polar compounds and is now widely used in the analysis of saccharides sub-
stances [27–30]. In summary, SEC (1D) separates the polysaccharide samples based on their
molecular weight from large to small, and then selects the corresponding retention time
components to enter HILIC (2D) for separation and analysis. In this case, the combination
of SEC–HILIC to establish a novel method for analyzing polysaccharides would be a very
promising alternative.

Second, in selecting the detectors for 2D-LC, most of the current coupled detectors
include MS, the Diode array detector (DAD), RID, and other detectors. However, they
have certain shortcomings: most polysaccharides lack ultraviolet (UV) absorption, are
hard to ionize, and have a wide range of isomers, making their identification by MS more
difficult [31]. DAD is difficult to detect in the absence of chromophores, whereas RID
is incompatible with gradient elution and is susceptible to the interference of external
factors [14,32,33]. In recent years, CAD, as a new general-purpose detector, has shown
wide applicability in the field of analysis, especially for analyzing and detecting saponins,
saccharides, and alkaloids with no or weak UV absorption [34–36]. CAD is based on
the atomization–aerosol principle, which is less affected by the volume flow rate and
temperature; it is suitable for gradient elution. CAD is particularly effective in analyzing
and determining oligosaccharides without derivatization and is two to six times more
sensitive than an evaporative light-scattering detector [37,38]. Therefore, the combination
of 2D–LC with CAD is applied to analyze polysaccharides without derivatization, which is
easier and more efficient.
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Currently, the depolymerization of polysaccharides into oligosaccharides is a common
and important strategy used for the qualitative and quantitative analysis of polysaccharides.
In this study, treating polysaccharide samples using partial acid hydrolysis could simplify
their complex structures and degrade them into oligosaccharides or monosaccharides with
different degrees of polymerization. Then, it was combined with 2D–LC, along with a
CAD detector, to realize an in-depth study on the structural analysis and quality control
of polysaccharides (See Figure 1 for a summary of the ideas in this paper). First of all, we
selected three plants with the same source of food and medicine, including Dendrobium
huoshanense, Astragalus membranaceus (Fisch.) Ege., and Pleuropterus multiflorus (Thunb.)
Nakai., which are all traditional Chinese medicines and can be used as nutraceuticals or
tea beverages. And, it has been confirmed by our team that polysaccharides are the main
ingredient contained. Then, the polysaccharide components were extracted from them,
and their 2D-LC analysis was established. In this way, we aimed to study the applicability
of different polysaccharide components in 2D–LC. Additionally, we also attempted to
apply 2D-LC to the identification of traditional Chinese medicine (TCM). For example, we
specifically selected six different species of Dendrobium, such as D. huoshanense, D. officinale,
D. nobile, and so on. Then, we judged whether the newly established 2D–LC method
could distinguish them effectively and reflect their exclusivity. Ultimately, this was used to
comprehensively determine whether the method could be widely applied to the analysis
and characterization of natural polysaccharides.
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2. Materials and Methods
2.1. Chemicals and Materials

Reference substances (dextran, D1–D7) were obtained from the National Institute
for Food and Drug Control (NIFDC, Beijing, China). Chromatography-grade acetonitrile
and ammonium formate were obtained from Tedia Company Inc. (Fairfield, OH, USA).
Ultrapure water was prepared using a Millipore Milli-Q purification system (Millipore,
St. Louis, MA, USA). Other reagents were of analytical grade, except where noted. All
solutions were prepared daily. The mobile phases used for HPLC were filtered (0.45 µm)
and ultrasonically degassed before use.

D. huoshanense, D. officinale, D. nobile, D. aphyllum, D. devonianum Paxton, D. pierardii,
Astragalus membranaceus (Fisch.) Ege., and Pleuropterus multiflorus (Thunb.) Nakai were
purchased from various collection areas in China. The polysaccharides extracted from
Dendrobium species (1–6) were named in the following order: DHP, DOP, DNP, DAP, DDP,
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and DPP; other polysaccharides (7–9) included AMP, PMP, and dextran. Additionally, all
Chinese medicinal materials had been identified by NIFDC botanists.

2.2. Sample Preparation

Referring to the extraction method (water extraction and alcohol precipitation) of
Dendrobium polysaccharides in Chinese pharmacopoeia [23], the herbs were first crushed
into a powder and passed through a No. 3 sieve. Then, 3 g of the powder was weighed
precisely, mixed with 200 mL of water, heated at 100 ◦C and refluxed for 2 h. The mixture
was filtered and concentrated to a certain volume, and then anhydrous ethanol was added
to reach the concentration of 80% to precipitate the polysaccharides. The concentrate was
kept in the refrigerator at 4 ◦C, and, after 12 h, taken out, and centrifuged for 10 min
(5000 rpm). The supernatant was discarded, and the precipitate was evaporated, then
dissolved in water. Then, the proteins in the crude polysaccharides were removed by
adding one-fifth of the volume of Sevage reagent (trichloromethane:n-butanol, 4:1, v/v),
shaken well for 30 min, and centrifuged at 5000 rpm for 10 min. The supernatant was
collected, and the process was repeated several times until no denatured protein remained
at the junction. The deproteinized polysaccharide extract was repeatedly evaporated
on a water bath to remove organic reagents from the polysaccharide solution to obtain
crude polysaccharide.

Each sample (6 mg/mL) was hydrolyzed with trifluoroacetic acid (TFA, 1 mol/L) at
80 ◦C for 90 min. The sample was blow-dried under nitrogen, mixed with an appropriate
amount of methanol, and blow-dried again. The process was repeated three times to
remove the remaining TFA, and, further, 500 µL of water was added for complete the
dissolution [39].

2.3. Preparation of Standard Solutions
1D-LC: a molecular-weight reference substance (dextran) was prepared by dissolving

it in ultrapure water at a concentration of about 5 mg/mL. The relative molecular masses
(molecular weight, Mw) of the seven controls (D1–D7) were 180, 505, 2700, 5250, 9750,
21,000, and 44,100 Da, respectively.

2D-LC: Dextran (Mw 44100) was used as a reference substance in 2D–LC. It was accu-
rately weighed and added to ultrapure water to bring its concentration to approximately
12 mg/mL. Then, partial acid hydrolysis was performed following the sample treatment
steps described in Section 2.2 on sample preparation.

2.4. Instrumentation

All experiments in this study were performed using a Vanquish 2D liquid chromatog-
raphy system (Thermo Fisher Scientific, Waltham, MA, USA), the configuration of which
is shown in Figure 2. The system consisted of a system base, a binary pump (acting
as a 1D pump only), a dual pump (left pump: 2D pump; right pump: compensation
pump), an autosampler (connected to the 1D pump), a CAD detector (VH-D20-A, Thermo
Fisher Scientific, Waltham, MA, USA), two column compartments (each configured with
a 2-Position/6-Port column switching valve and a 6-Position/7-Port column switching
valve), and three viper loops. The OHpak SB-803 HQ (8.0 mm × 300 mm, 6 µm; Shodex,
Yokohama, Japan) gel column was selected for 1D–LC analysis based on the molecular-
weight range. For 2D–LC analysis, an HILIC chromatography column, Acclaim Trinity P2
(3.0 mm × 50 mm, 3 µm; Thermo Fisher Scientific Inc., Waltham, MA, USA), was used.
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2.5. First-Dimension Separation

In the 1D separation, an OHpak SB-803 HQ column (8.0 mm × 300 mm, 6 µm; Shodex)
was used with the flow rate of 1 mL/min. The mobile phase consisted of ultrapure water
with an isocratic elution, and the column temperature was maintained at 40 ◦C. The injection
volume for both the standard mixture and the sample was 10 µL. The signal evaluation
was based on the peak area, and each sample or standard was injected in triplicate.

2.6. Two-Dimensional Liquid Chromatography

In the 2D separation, an Acclaim Trinity P2 column (3.0 mm × 50 mm, 3 µm; Thermo
Fisher Scientific) was used with a flow rate of 0.4 mL/min. The mobile phases consisted
of acetonitrile (A), water (B), and 100 mM ammonium formate (C). The compensation
pump was set to a flow rate of 0.1 mL/min, and the mobile phase consisted of solvent
A–acetonitrile: solvent C–ammonium formate (95:5, v/v). The specific elution conditions
are depicted in Table 1. The column temperature was maintained at 40 ◦C, and the injection
volume of the standard mixture or sample was 10 µL. The detection conditions of CAD
were set as follows: data-collection rate, 5 Hz; filter constant, 3.6 s; evaporator tempera-
ture, 40 ◦C; and power function value, 1.0. The nitrogen pressure of CAD was adjusted
to 60 psi, and the response range was set to 100 pA. The data were recorded and pro-
cessed using Chromeleon 7.2 software (Thermo Fisher Scientific, Waltham, MA, USA). The
2D–LC system switched between 1-2 and 6-1 modes. The details of the gradient program
used are provided in Table 2. Here, it is worth mentioning that the 1D–LC analysis time
was 15 min, after which the flow rate of the 1D pump was adjusted to a lower flow rate
(0.1 mL/min) into the waste stream in order to protect the one-dimensional column and
save the mobile phase. Overall, three-time heart-cutting actions took place within 80 min for
one chromatographic analysis. Data were processed by Chempattern 2017 and Chameleon
7.2 software.
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Table 1. Optimization of gradient elution procedure for 2D-LC determination method.

1D Separation (1D Pump) 2D Separation (Left Pump)

Time (min) Flow
(mL/min)

B (%)
H2O Time (min) Flow

(mL/min)
A(%)

CH3CN
B(%)
H2O

0 1.0 100 0.00 0.400 80 20
15.00 1.0 100 12.00 0.400 80 20
15.10 0.1 100 27.90 0.400 50 50
80.00 0.1 100 28.00 0.400 80 20

Auxiliary Pump (Right Pump) 40.00 0.400 80 20

Time (min) Flow
(mL/min)

A (%)
CH3CN

C (%)
NH4COOH

54.90 0.400 50 50
55.00 0.400 80 20

0 0.1 95 5 65.00 0.400 80 20
80.00 0.1 95 5 80.00 0.400 50 50

Table 2. Description of valve switching.

Time (min)
Valve-Switching Position

Valve-Position Description
L1 L2 R1 R2

0 1_2 6 6_1 6 Start 1D analysis; re-equilibrate 2D chromatographic column
8.80 1_2 1 1_2 1 Loop 1 is collecting the substance
9.00 1_2 1 1_2 1
9.01 1_2 6 6_1 6 Loop 1 terminates the collection
9.10 1_2 2 1_2 2 Loop 2 is collecting the substance
9.30 1_2 2 1_2 2
9.31 1_2 6 6_1 6 Loop 2 terminates the collection
9.50 1_2 3 1_2 3 Loop 3 is collecting the substance
9.70 1_2 3 1_2 3
9.71 1_2 6 6_1 6 Loop 3 terminates the collection

12.00 6_1 1 1_2 1 Starting 2D analysis of substance in Ring 1
37.00 6_1 2 1_2 2 Starting 2D analysis of substance in Ring 2
62.00 6_1 3 1_2 3 Starting 2D analysis of substance in Ring 3
80.00 6_1 3 1_2 3 Termination analysis

2.7. Method Validation

Five batches of D. huoshanensis from different origins were extracted and examined
as described in Section 2.2 on sample preparation and Section 2.6 on 2D–LC. Then, the
obtained profile files were imported into the 2012 version of the similarity evaluation
system for the chromatographic fingerprint of TCM to evaluate the reproducibility of the
samples [40,41]. According to the proposed chromatographic conditions, the reference
substance (dextran, Mw 44100) with a known concentration was subjected to an acid
hydrolysis treatment and was injected six times continuously. Six peaks were selected,
the peak areas were measured, and the relative standard deviation (RSD) was calculated
to measure the precision. Six parallel experimental solutions were prepared to assess
the reproducibility. Meanwhile, the test solutions were maintained at room temperature
for 0, 2, 4, 6, 8, 12, and 24 h to analyze the stability of the solutions. The linearity was
evaluated by setting six different concentration gradients of dextran control solutions, with
concentrations set at 6, 8, 12, 16, 18, and 20 mg/mL. A linear regression analysis was
performed with concentration as the independent variable and chromatographic peak area
as the dependent variable. The regression equation was then employed for further analysis.
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3. Results and Discussion
3.1. Optimization of Sample-Preparation Procedures

The sequential degradation of a polysaccharide structure can be realized by controlling
the acid concentration, hydrolysis temperature, and time. The less stable branched chains
and ends are generally hydrolyzed first during partial acid hydrolysis. This study explored
the conditions for the acid hydrolysis of polysaccharide samples: (1) temperature: 60 ◦C,
80 ◦C, and 100 ◦C; (2) time: 60, 90, and 120 min; and (3) TFA concentration: 0.5, 1, 2, and
4 mol/mL. After the experimental analysis, if the temperature was too low, the process
would take longer, and when the temperature was too high or the acid concentration was
too large, the hydrolysis tended to be violent. On the contrary, when the acid concentration
was low, the reaction tended to be mild, which was conducive to the hydrolysis of polysac-
charides. Ultimately, the optimal acid hydrolysis conditions were selected as follows:
80 ◦C, 90 min, and TFA (1 mol/mL).

3.2. 1D Separation

3.2.1. 1D Optimization

The 1D column used a water-soluble gel column with polymer-matrix packing, which
was suitable for separating various water-soluble macromolecules, proteins, and oligomers
as well as for determining molecular-weight distribution. The samples and dextran controls
involved in this study were predetermined for the molecular-weight range of 1.0 × 103 to
2.6 × 105 Da. Therefore, the most suitable gel chromatography column, OHpak SB-803 HQ,
was selected for a more efficient separation.

Further, the 1D separation conditions, such as the mobile phase, flow rate, and column
temperature, were explored using an OHpak SB-803 HQ column. A comparative analy-
sis revealed that the retention time was shortened when the flow rate was increased to
1.0 mL/min; however, the separation was still well maintained. In addition, given the
compatibility of the 2D mobile phases and the CAD detector’s requirement for salt concen-
tration, the mobile phase was mostly analyzed in 100% ultrapure water. Although higher
temperatures could shorten and improve the separation better, too high temperatures could
lead to lower column efficiency and reduced separation. Therefore, based on the overall
consideration of the 2D system, the final liquid-phase conditions were determined as fol-
lows: flow rate, 1.0 mL/min; column temperature, 40 ◦C; mobile phase, 100% ultrapure
water; injection volume, 10 µL; and time, 15 min.

3.2.2. 2D Optimization

For the 2D analysis, the first-dimension experimental conditions were the final condi-
tions as determined in Section 3.2.1 on the choice of 1D liquid-phase conditions. Acclaim
Trinity P2 (3.0 × 50 mm2, 3 µm; Thermo Fisher Scientific) was selected as the second-
dimension column. This unique high-efficiency silica-based column provided HILIC
interactions besides anion- and cation-exchange properties. Adequate retention and sepa-
ration could be achieved with Acclaim Trinity P2, and the analysis time was subsequently
reduced because of the shorter column length, with the analysis time required for a single
cut being 25 min.

First, the mobile phase of solvent A, acetonitrile, and solvent B, water, was selected
for gradient elution, and the proportional changes of different mobile phases (acetonitrile
concentration: 90–60%, 80–50%, and 80–40%) were analyzed sequentially. According to
the nature of HILIC columns [27,28], ionic additives such as ammonium formate to the
mobile phase could be used to control the pH and ionic strength of the mobile phase, which
affected the polarity of the analytes and led to differential retention changes. The addition
of a certain percentage of 5% ammonium formate solution (100 mM, pH 3.65) to the mobile
phase improved the separation of chromatographic peaks. Similarly, as a compensation
flow path, the organic phase (95% acetonitrile) was added to maintain the stability of the
2D–LC system. Due to the different polymerization degrees of the components in the three-
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time heart-cutting, the length of each analysis period needs to be adjusted according to the
actual analysis situation. The mobile phase for each heart-cutting analysis was equilibrated
from 80% acetonitrile to 50% acetonitrile and back to 80% acetonitrile for about 10 min.
Among them, the third heart-cutting fraction has a lower degree of polymerization and
can be better analyzed without equilibration. The column temperature at 40 ◦C separated
better than at other temperatures (30 ◦C). Since the components collected from the 2D for
further analysis have undergone some degree of dilution, the peak signal is significantly
reduced in the 2D. Given that the mobile phase in the 2D to the 1D is excessive from the
aqueous phase to the organic phase. Hence, adding a certain percentage of acetonitrile to
the auxiliary pump can result in an increased signal response in 2D–LC. Final compensation
pump conditions: the acetonitrile compensation ratio was controlled at 5% and the flow
rate was 0.1 mL/min.

3.3. Precision, Linearity, Stability, and Repeatability

The 2D analysis results of five batches of D. huoshanensis polysaccharides with dif-
ferent origins were matched using the similarity evaluation system for chromatographic
fingerprint of TCM, and the similarities were calculated to be 0.915−0.994. This indicated
that the consistency between the samples was good, proving that the method had good
reproducibility. Table 3 presents the precision data and other data for the 2D analytes from
the working solution. The RSD values for the precision data were less than 2%. Meanwhile,
the RSD values for the analytes in the repeatability assay were <2%. The RSD values of the
analytical results of the working solutions stored at room temperature for 0, 2, 4, 6, 8, 12,
and 24 h were less than 2%, indicating the good stability of the method. The peak areas at
six concentration levels were used as a linear standard curve. In this study, good linearity
was observed for each analyte (with the coefficient of determination [R2] > 0.999 for each
analyte). These results confirmed that the proposed method had good precision, linearity,
repeatability, and stability.

Table 3. Linearity, precision, repeatability, and stability of the established 2D method.

Retention Time
Linearity

(Regression Equation)
R2 Precision (n = 6) Repeatability (n = 6) Stability (n = 6)

RSD (%) RSD (%) RSD (%)

26.697 Y = 0.1395X + 0.3452 0.9990 1.78% 1.76% 1.76%
27.930 Y = 0.1414X + 0.4475 0.9990 1.15% 1.27% 1.75%
29.000 Y = 0.0955X + 0.2788 0.9990 1.30% 1.48% 1.83%
50.900 Y = 0.1203X + 0.1517 0.9996 1.06% 1.47% 1.75%
52.730 Y = 0.0659X + 0.0282 0.9993 1.34% 1.86% 1.85%
54.177 Y = 0.0234X + 0.0495 0.9990 1.34% 1.68% 1.81%

3.4. 1D Analysis Results

First, some polysaccharides would be degraded to oligosaccharides or monosaccharides
with different degrees of polymerization after partial acid hydrolysis. Therefore, the molecular-
weight control series (D1–D7) was selected, with molecular weights covering hundreds to tens
of thousands. The results of the molecular-weight localization of the controls are illustrated
in Figure 3A. The cubic standard curve equation was fitted with the LgMw of the control as
the vertical coordinate and the retention time T/min as the horizontal coordinate (Figure 3B),
which yielded LgMw = 0.0377T 3 − 0.9323T 2 + 6.8949T − 11.0345 (R2 = 0.9988), and the linear
ranges of the control were in accordance with the experimental requirements. Upon
comparison of the standards (D1–D7), it was found that the molecular-weight distribution
of all treated samples was mainly in the range of a few hundreds to tens of thousands
(Table 4), which was consistent with previous speculations.
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Table 4. Comparison of the molecular weights of samples before and after partial acid hydrolysis
(1D–LC).

Polysaccharide Samples Stock Solution (Mw/Da) (n = 2) Solution after Partial Acid Hydrolysis (Mw/Da) (n = 2)

1. DHP 1.426 × 105 9.775 × 103

2. DOP 1.998 × 105 7.854 × 103

3. DNP 1.774 × 105 1.141 × 104

4. DAP 1.932 × 105 7.445 × 103

5. DDP 1.891 × 105 7.839 × 103

6. DPP 2.270 × 105 6.636 × 103

7. AMP 8.098 × 104 1.049 × 104

8. PMP 2.560 × 105 4.781 × 103

9. Dextran 4.410 × 104 2.273 × 104

It was hypothesized based on the standard curve equation that the oligosaccharides
might be distributed between 8.7 min and 9.7 min. However, the retention time of the
monosaccharides was 10.4 min, but some samples still showed peaks in some of the samples
after that period. This did not exclude the possibility that the extracted polysaccharides
contained other small-molecule impurities. At the same time, this was good proof that the
selection of SEC as a 1D system served the purpose of separating other impurities based on
molecular weight. Moreover, some unhydrolyzed polysaccharides could remain after the
partial acid hydrolysis treatment of the samples, so the peaks also appeared before 8.7 min.
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Subsequently, the molecular weight and distribution of these nine different polysac-
charides were analyzed, and the molecular weights of the samples were calculated based
on calibration curves obtained from a series of dextran standards to compare the molecular-
weight differences before and after sample treatment. Significant differences were found in
the molecular-weight distributions of samples by combining 1D-LC mapping (Figure 4A)
and molecular-weight data, which might be related to the different actual polysaccha-
ride contents and structures of different varieties of TCM. Meanwhile, under the same
controlled-degradation conditions, the molecular weight of the sample decreased compared
with that earlier. The degree of molecular-weight reduction varied among different samples,
with a reduction range of approximately one to two orders of magnitude. This difference
stemmed from the quality of the TCM itself, which was expected to be beneficial for further
analysis in 2D-LC.
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3.5. 2D Analysis Results

Oligosaccharides are low-molecular-weight polymers with 2−10 monosaccharides
linked by glycosidic bonds [34]. The partial acid hydrolysis of polysaccharides to oligosac-
charides decreases the molecular weight. Therefore, the oligosaccharides were first eluted
and aggregated using SEC chromatography and then separated from the samples using
the heart-cutting method. Next, they were transferred to HILIC (2D-LC) for analysis to
obtain the oligosaccharide information profile. The analysis time of the first dimension
was 15 min in the 2D–LC system constructed in this experiment. The retention time of the
molecular-weight distribution of the 1D-LC chromatogram suggested that the oligosac-
charides might be distributed in the range of 8.7–9.7 min. Ultimately, three consecutive
heart-cuttings were performed on the sample fractions eluted from the 1D–LC based on
the loop specification and the retention-time distribution of oligosaccharides, reducing the
complexity of sample analysis. Among these, the heart-cutting time was selected to be t1
(8.8–9.0 min), t2 (9.1–9.3 min), and t3 (9.5–9.7 min). The results of the 1D–LC and 2D–LC
(t1,t2,t3) analysis of polysaccharide samples are plotted in Figure 4.

2D–LC was eluted sequentially according to polarity from small to large. Each heart-
cutting was performed under optimized conditions, facilitating the further separation
of the samples. This study compared the separation ability of 1D–LC (SEC) and 2D–LC
(SEC–HILIC) using polysaccharides as samples, with a total analysis time of 68 min for
2D–LC. First, combined with the reference substance (dextran, Mw 44100), each sample
showed an oligosaccharide profile at t1 and t2. That is, elution occurred sequentially
according to the degree of polymerization and presented a continuous wavy peak shape at
retention times of approximately 25–30 and 50–55 min (marker points a and b), indicating
the presence of oligosaccharides at time t1 and t2. However, only about three independent
chromatographic peaks (marker e) were observed in the t3 region. Based on the separation
results of 1D–LC (SEC), it could not be excluded that the t3 region also contained impurities
of small-molecule compounds in the crude polysaccharides. The reason for retaining this
section for heart-cutting analysis was to make a clear comparison with the t1 and t2 regions
so as to support the feasibility of this experimental approach. When integrating data from
all three time periods, the heart-cutting analysis after each 2D–LC separation revealed more
than one chromatographic peak, with up to nine times as many peaks as in 1D–LC. This
indicated that the resolution of oligosaccharide fractions eluted by molecular weight was
significantly improved after further separation based on different polarities. Meanwhile,
2D-LC was demonstrated to have a higher peak capacity and separation selectivity, and
this analytical method was suitable for separating polysaccharides.

Subsequently, four different sources of polysaccharides were analyzed: D. huoshanense,
Astragalus membranaceus (Fisch.) Bunge, Polygonum multiflorum Thunb, and dextran (1. DHP,
7. AMP, 8. PMP, and 9. dextran). Although polysaccharides from different sources had
oligosaccharide characteristic peaks at a and b, still significant differences existed. Dextran
was used as a reference substance hydrolyzed to oligodextrose, with a single component,
and the map showed results as expected. Compared with the reference substance dextran,
AMP and PMP also exhibited clear oligosaccharide characteristic chromatographic peaks at
positions a and b (Figure 4), indicating that these two TCMs contained glucan. However, sig-
nificant differences were found between DHP and other TCM polysaccharides in the region.
We preliminarily speculated that this was a heteropolysaccharide chain that could not be
separated well. Furthermore, existing research indicated that the polysaccharides present in
DHP were primarily glucomannans [42]. In addition, significant differences were observed
in the c, d, and e regions. Particular attention should be paid to the fact that PMP appeared
to have characteristic peaks at f, g, and h, which were clearly different from those of other
polysaccharides. In summary, the applicability of the presently established 2D–LC method
in different varieties of polysaccharide compositions was preliminarily demonstrated.

Then, we also attempted to apply 2D–LC to identify TCM, distinguishing six different
types of Dendrobium polysaccharides. As shown in Figure 4B, all Dendrobium samples
exhibited oligosaccharide characteristics in both a and b. Combined with the 2D–LC
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fingerprints of polysaccharides from different sources in Figure 5A, it was observed that
DNP, DAP, DDP, and DPP exhibited obvious common peaks at positions c, d, and e, and
DHP and DOP were significantly different from the other Dendrobium polysaccharides.
Therefore, nine different sources of polysaccharides were imported into ChemPattern
software for similarity analysis. The similarity data in Figure 5B showed that DOP was
indeed more similar to DHP, which could reach about 0.890. In addition, the similarity
values of the other Dendrobium varied widely, ranging from 0.600 to 0.800. D. huoshanense
and D. officinale, as the mainstream Dendrobium species, have the highest market prices of
all Dendrobiums, and both have similar quality-control indicators. These findings indicated
that, although the polysaccharide profiles of different species of Dendrobium had similar
1D-LC, significant differences were noted in 2D-LC. Meanwhile, the proposed method
could also better distinguish different varieties of TCM polysaccharides, as shown by the
analysis of the similarity evaluation of AMP, PMP, and dextran. In conclusion, this method
may assist in the quality-control studies of Dendrobiums, which can distinguish between
different Dendrobium spp. and can also be used as a basis for identifying TCMs.
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4. Conclusions

This structural heterogeneity of polysaccharides impairs their comprehensive char-
acterization and requires analytical techniques with high resolving power and sensitiv-
ity. In the qualitative and quantitative analysis of polysaccharides, the degradation of
polysaccharides into oligosaccharides is a commonly used key method. For instance, Li
et al. [3,43,44] performed partial acid hydrolysis on polysaccharides followed by derivati-
zation, enabling a comprehensive characterization of various plant polysaccharides using
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saccharide-mapping techniques such as HPTLC and PACE. Although this method is inno-
vative, it demands extensive analytical technology and a substantial workload. Due to the
unique principle of CAD, the analysis of carbohydrate compounds can be accomplished
without the need for derivatization, saving considerable time. The oligosaccharide profiles
obtained from different natural polysaccharides under the same controlled degradation con-
ditions exhibit high variability and stability. Hence, utilizing the polysaccharide-controlled
degradation of oligosaccharides for the identification of traditional Chinese medicines
(TCMs) is a rational strategy.

2D–LC, as an advanced separation technique, is relatively uncommon in the analysis
and separation of plant polysaccharides. The primary reason for this phenomenon may lie
in the complex and heterogeneous structures of polysaccharides, which pose significant
challenges to the development of innovative characterization techniques tailored to their
properties. This study successfully designed and independently established a 2D–SEC–
HILIC system, which proved efficient for the separation of plant polysaccharides. The
system showed an excellent separation ability when analyzing complex polysaccharide
samples. In 2D–LC, the application of not only 1D (SEC) for characterizing the molecular
weight and distribution of polysaccharide samples but also using its separated components
to further resolve into multiple peaks in 2D (HILIC) indicated a significant complementarity
between the two separation modes. This combination is favorable for the 2D separation of
samples and is suitable for constructing a 2D separation system. However, certain areas
still need improvement in this experiment, such as the subsequent use of polysaccharides
to purify the samples and reduce the interference of small molecules, and the possibility of
connecting mass spectrometry for identifying information. This will be a part of our next
experimental research program.

In conclusion, the 2D–LC method established in this study helped achieve far better
separation effects and information than the conventional HPLC method, which proved
the feasibility of the method established. Through these research and optimization efforts,
2D–LC is expected to become a powerful tool for the separation and analysis of plant
polysaccharides and provide new perspectives for revealing the fine structural characteri-
zation of polysaccharides.
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