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Abstract: The industrial processing of mandarin fruits yields a large amount of peel waste, resulting
in economic losses and environmental pollution. The peels of mandarin fruits are a good source
of biomass and active substances that can be used to produce food packaging systems. In this
study, active food packaging films were prepared based on sodium alginate and twelve varieties
of mandarin peel powder. The structures, properties, and corn oil packaging performance of the
films were compared. Results showed that the twelve varieties of mandarin peel powder differed in
pectin, lipid, protein, crude fiber, and total phenol contents. The prepared films all exhibited a yellow
color, 117.73–152.45 µm thickness, 16.39–23.62% moisture content, 26.03–90.75◦ water contact angle,
5.38–8.31 × 10−11 g m−1 s−1 Pa−1 water vapor permeability, 5.26–12.91 × 10−20 m2 s−1 Pa−1 oxygen
permeability, 4.87–7.90 MPa tensile strength, and 13.37–24.62% elongation at break. Notably, the films
containing mandarin peel powder with high pectin and lipid contents showed high moisture/oxygen
barrier ability and mechanical properties. The films containing mandarin peel powder with high
total phenol content exhibited high antioxidant- and antimicrobial-releasing abilities and good
performance in delaying corn oil oxidation. Overall, the results suggested that the films have good
application potential in active food packaging.

Keywords: active packaging; mandarin peel power; mandarin variety; sodium alginate; edible
oil packaging

1. Introduction

Traditional food packaging materials play passive protective roles in food storage,
acting as barriers to environmental impacts (e.g., dust, moisture, gas, and contamina-
tion) [1]. Nowadays, scientists have shifted their focuses from traditional packaging
to active packaging, where the packaging materials can provide active protective func-
tions for food [2]. There are two ways to actively protect food through active packaging:
(1) absorbing or scavenging undesired gas, odors, and moisture from food or the packag-
ing environment; and (2) emitting antimicrobial and antioxidant agents into food or the
headspace of the package [3]. Accordingly, many active packaging techniques including
oxygen-scavenging, ethylene-absorbing, moisture-controlling, antioxidant-releasing, and
antimicrobial-releasing systems have been developed [4]. These active packaging systems
show good potential in ensuring food quality and extending food shelf life.

In the active packaging sector, antioxidant-releasing and antimicrobial-releasing sys-
tems have received the greatest level of attention because oxidation and microbial con-
tamination are two primary causes of food deterioration [5]. Antioxidant-releasing and
antimicrobial-releasing systems are normally prepared by integrating antioxidant and
antimicrobial substances in biodegradable polymer-based solid supports [6]. These an-
tioxidant and antimicrobial substances can be released from packaging systems and enter
food or the headspace of the package, thereby retarding food oxidation and inhibiting
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microbial contamination in direct or indirect manners [7]. In general, natural antioxidant
and antimicrobial substances (e.g., essential oils and polyphenols) are more favored in
active packaging, as compared with synthetic ones [8,9]. However, the use of natural
antimicrobial and antioxidant substances normally involves tedious steps, such as ex-
traction, isolation, and stabilization, which greatly increase the cost of active packaging
production [10]. Therefore, it needs to seek alternative methods to prepare antioxidant-
releasing and antimicrobial-releasing systems by avoiding the extraction and isolation of
active substances.

In recent years, agricultural wastes (especially the processing residues of vegetables
and fruits) have been considered as suitable raw materials for the production of antioxidant-
releasing and antimicrobial-releasing systems [11]. The use of agricultural wastes in
packaging systems has several advantages: (1) Agricultural wastes are a good source
of biomass (e.g., carbohydrate, lipid, and protein) and active substances (e.g., essential
oils and polyphenols) that can individually perform as the matrix and functional agents
of packaging systems; (2) Agricultural wastes can be simply pretreated (e.g., dried and
milled) and then be directly used to produce packaging systems, which remarkably reduces
production cost; (3) The fabrication of packaging systems with agricultural wastes can
alleviate the environmental burden of waste disposal [12,13]. Thus, the use of agricultural
waste is a feasible and sustainable way to produce value-added active packaging systems.

Citrus fruits are commonly cultivated and consumed crops worldwide [14]. The
industrial processing of citrus fruits yields a large amount of peel waste, resulting in
economic losses and environmental pollution. Notably, citrus peels are rich in biomass
(e.g., pectin, protein, lipid, and crude fiber) and active substances (e.g., polyphenols) [15].
To date, many studies have been conducted on the preparation of active packaging films
using citrus peels [16–22]. In our previous study, active packaging films were produced
based on sodium alginate and the peel powder of four common citrus fruits (i.e., mandarin,
pomelo, lemon and orange). Results showed the films containing mandarin peel powder
had the highest antioxidant- and antimicrobial-releasing abilities [23]. It is worth noting
that dozens of mandarin varieties are cultivated in China. The variety of mandarin greatly
affects the proximate composition of mandarin peel [14]. In view of this, active packaging
films produced from sodium alginate and different varieties of mandarin peel powder
might have different structures and properties.

In this study, active food packaging films were produced from sodium alginate and
twelve varieties of mandarin peel powder. The aims of this study were: (1) to compare the
structures and properties of the films; (2) to analyze the correlations between the component
content of mandarin peel powders and the structures and properties of the films; (3) to
verify the packaging performance of the films on corn oil.

2. Materials and Methods
2.1. Materials and Chemicals

Sodium alginate (average molecular weight of 710 kDa), glycerol, 6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid (Trolox), gallic acid, and 2,2-diphenyl-1-pyrrolhydrazyl
(DPPH) were purchased from Macklin Corp. (Shanghai, China). Twelve varieties of fresh
mandarin fruits including Bendizao (BDZ, Citrus succosa Hort), Chunjian (CJ, Citrus reticu-
late Blanco ‘Chunjian’), Dahongpao (DHP, Citrus reticulata ‘Dahongpao’), Gonggan (GG,
Citrus reticulata Blanco var. gonggan), Jiaogan (JG, Citrus reticulata Blanco ‘Tankan’), Nan-
feng (NF, Citrus reticulata Blanco cv. Kinokuni), Ougan (OG, Citrus reticulate cv. Suavissima),
Ponkan (PK, Citrus poonensis Hort. ex Tanaka), Shatangju (STG, Citrus tachibana Blanco),
Shimen (SM, Citrus unshiu Marc.), Wogan (WG, Citrus reticulata cv. Orah), and Yichang (YC,
Citrus ichangensis Swingle) were collected from different production regions of mandarin in
China. Corn oil was bought from Yonghui Supermarket (Yangzhou, China).
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2.2. Preparation and Compositional Analysis of Mandarin Peel Powder

Fresh mandarin fruits were washed and peeled. Each variety of mandarin peel was
individually collected, freeze-dried, and milled into 100-mesh powder (Figure 1). The
proximate composition of the mandarin peel powders, including ash, pectin, protein, lipid,
crude fiber, and total polyphenol contents, were analyzed according to Yun et al. [23].
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Figure 1. Flow chart for the production of active food packaging films based on sodium alginate and
twelve varieties of mandarin peel powder.

2.3. Preparation of Active Packaging Films

Firstly, mandarin peel powder suspension was prepared by homogenizing 4.6 g peel
powder in 170 mL water at 6000 rpm for 2 min. Then, sodium alginate (1.38 g) and glycerol
(1.38 g) were thoroughly mixed with the mandarin peel powder suspension at 20 ◦C for
1 h. The whole mixture was poured into a square polymethyl methacrylate plate with a
boundary length of 25 cm and then dried at 35 ◦C for 36 h [23]. Based on the variety of
mandarin, the obtained films were named BZD, CJ, DHP, GG, JG, NF, OG, PK, STJ, SM,
WG, and YC (Figure 1).
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2.4. Structural Characterization of Films
2.4.1. Scanning Electron Microscopy (SEM)

Cross-sectional images of the gold-sputtered film specimens were taken using Gem-
iniSEM 300 scanning electron microscopy (Carl Zeiss Cop., Oberkochen, Germany) at
5 kV.

2.4.2. Infrared Spectroscopy

The film specimens were scanned between 4000 and 400 cm−1 under a Varian 670
infrared spectrometer (Varian Corp., Palo Alto, CA, USA) at 4 cm−1 resolution.

2.4.3. X-ray Diffraction (XRD)

The film specimens were subjected to XRD analysis under a D8-Advance diffractome-
ter (Bruker-AXS GmbH, Karlsruhe, Germany) ranging between 5◦ and 75◦. The crystalline
degree of the film specimen was determined using Jade 6.0 software (Material Date Inc.,
Livermore, CA, USA).

2.5. Determination of the Physical and Functional Properties of Films
2.5.1. Optical Properties

The optical properties of the film specimens, including color and light transmittance,
were determined using the method by Huang et al. [24]. First, an SC-80C colorimeter
(Kangguang Corp., Beijing, China) was applied to measure the L*, a*, b*, and ∆E of each film
specimen, where L*, a*, b*, and ∆E individually represented lightness, redness, yellowness,
and total color difference, respectively. Afterwards, a Lambda 35 UV-vis spectrophotometer
(PerkinElmer Corp., Waltham, MA, USA) was employed to test the light transmittance of
film specimens, ranging between 200 and 800 nm.

2.5.2. Thickness

A micrometer (EVERTE, Bonthe Corp., Shangqiu, China) was employed to measure
the thickness of film specimens.

2.5.3. Water Blocking Ability

The water blocking ability of film specimens was evaluated in terms of moisture
content (MC), water contact angle (WCA), and water vapor permeability (WVP), according
to Yun et al. [23]. Briefly, MC was calculated based on the gravimetric change of film
specimens after thoroughly drying at 105 ◦C. WCA was determined by recording the image
of a water drop (2 µL) on the film surface and calculating the contact angle between the
water drop and the film with a GP-50 analyzer (Gaopin Corp., Suzhou, China). WVP
was tested by placing a film specimen-mounted tube (50 mL) in an airtight container at
20 ◦C with 100% relative humidity. The tube was filled with 16 g dried silica gel and the
gravimetric change of the tube over 4 days was used to calculate WVP. The WVP of the
film was calculated as follows:

WVP =
W × x

t × A × ∆P
(1)

where W was the increased weight of the tube (g), x was the film thickness (m), t was the
time (s) for the weight gain of the tube, A was the permeable area (m2) of water vapor, and
∆P was the saturated vapor pressure at 20 ◦C.

2.5.4. Oxygen Permeability (OP)

The OP of the film specimens was tested using a Basic 201 gas permeability analyzer
(Labthink Corp., Jinan, China) at 50% relative humidity and 20 ◦C [25]. The OP of each film
was calculated as follows:

OP =
OTR × x

∆P
(2)
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where OTR was the oxygen transmission rate (m s−1), x was the film thickness (m), and
∆P was the pressure difference between the two compartments of the gas permeability
analyzer (Pa).

2.5.5. Mechanical Properties

The mechanical properties of each film specimen were tested on a universal tester
(STX200, Yishite Corp., Xiamen, China) with a stretching speed of 6 cm/min. Tensile
strength (TS) and elongation at break (EB) were recorded when the film fractured [26].

2.5.6. Thermogravimetric Analysis (TGA)

TGA was carried out using an HTG-1 tester (Henven Corp., Beijing, China) by heating
each film specimen (about 2 mg) from 50 to 750 ◦C (10 ◦C min−1) under nitrogen flow
(20 mL min−1) and recording the thermogravimetry (TG) curve. The derivative thermo-
gravimetry (DTG) curve was obtained via the first-order derivative of TG curve.

2.5.7. Antioxidant-Releasing Ability

To test antioxidant-releasing ability, a rectangular film specimen (1 cm × 4 cm) was
soaked in 5 mL of 95% ethanol with shaking at 120 rpm for 1 h. The total phenol content
(TPC) and the released antioxidant activity in the solvent were determined by reacting
with Folin-Ciocalteau and DPPH reagents, respectively, according to Yun et al. [23]. The
TPC released from the film was determined by reacting 1 mL of film specimen solution
with 1 mL of Folin-Ciocalteau reagent. The released antioxidant activity was measured by
reacting 1 mL supernatant with 3 mL DPPH methanol solution in the dark for 1 h. Results
were recorded as milligram gallic acid equivalent (GAE) per g film for the TPC test, and
µmol Trolox equivalent (TE) per g film for the DPPH radical scavenging test.

2.5.8. Antimicrobial-Releasing Ability

To test antimicrobial-releasing ability, a rectangular film specimen (1 cm × 4 cm) was
soaked in a bacterial suspension of Staphylococcus aureus ATCC 6538 and Escherichia coli
ATCC 43895 (106 CFU mL−1), followed by incubation at 37 ◦C for one day. The obtained
bacterial culture (100 µL) was gradient-diluted and incubated on a nutrient broth agar
plate at 37 ◦C for another day. The colonies formed on the plate were counted. Control
experiments were conducted following the same procedure, excepting the addition of the
film specimen to bacterial suspension [27].

2.5.9. Biodegradability

To test biodegradability, square film specimens (2.5 cm × 2.5 cm) were placed on
aluminum mesh to allow microbial action and moisture transfer and buried in 7 cm of
moist soil at 20 ◦C for 25 days. The soil was sprayed with distilled water once a day to
maintain soil moisture. The morphological change and weight loss of each film specimen
were recorded at an interval of 5 days, according to Ahmad et al. [16].

2.6. Corn Oil Packaging Test of Films

The anti-permeability of each film specimen was evaluated by covering film specimens
(4.5 cm × 4.5 cm) over the open mouth of a test tube [17]. The test tube, containing 10 mL
corn oil, was inverted upon filter paper. If oil permeated across the film, oil could be
observed on the filter paper. The anti-permeability test was conducted at 25 ◦C for 15 days.
Thereafter, the corn oil packaging test was conducted by storing 5 mL oil in a heat-sealed
film sachet (7 cm × 7 cm) at 50 ◦C for 10 days [28]. The oxidation degree of the oil was
evaluated by measuring the peroxide value (PV) and thiobarbituric acid reactive substance
(TBARS) at an interval of 2 days [29].
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2.7. Statistical Analysis

Data were analyzed by SPSS 20.0 software (SPSS Inc., Chicago, IL, USA) using one-
way analysis of variance followed by Duncan test (p < 0.05). The correlations between the
component content of the mandarin peel powders and the structures and properties of the
films were determined by Pearson analysis.

3. Results and Discussion
3.1. Proximate Composition of Mandarin Peel Powder

As shown in Figure 1, the twelve varieties of fresh mandarin fruits had different
sizes and colors. Peels were removed from mandarin fruits, freeze-dried, and milled
into powder. Table 1 summarizes the proximate composition for twelve varieties of man-
darin peel powder. The mandarin peel powders contained pectin (12.27–18.43%), lipid
(7.73–13.58%), protein (4.17–7.90%), crude fiber (3.32–5.00%), ash (2.81–4.00%), and total
phenol (4.97–6.70 mg GAE g−1). The component contents of the mandarin peel powders
were comparable to several previous studies [23,30,31]. Results indicated the proximate
composition of the mandarin peel powders was influenced by mandarin variety, with
CJ and NF having the highest pectin content, CJ having the highest protein content, NF
having the highest lipid content, SM having the highest crude fiber content, and CJ having
the highest TPC. Some previous studies have reported that different varieties of citrus
fruit exhibit varying compositions of pectin, crude fiber, lipid, and polyphenols in the
respective fruit peel powder [32–36]. Liu et al. [35] documented that pectin isolated from
different varieties of citrus fruit peel powder had different monosaccharide compositions
and molecular weights. Wang et al. [36] found that the insoluble crude fiber content (e.g.,
cellulose, hemicellulose, and lignin) of citrus fruit peel powders was affected by the variety
of citrus fruit. Hosni et al. [34] demonstrated that limonene was the key element in the
essential oils of different citrus fruit peels. Anticona et al. [32] suggested that hesperidin
and narirutin were the most abundant polyphenols in different varieties of mandarin peel
powder. In this study, different varieties of mandarin peel powder were further used to
prepare active food packaging films (Figure 1).

Table 1. Proximate composition for twelve varieties of mandarin peel powder.

Variety Ash (%) Pectin (%) Protein (%) Crude Fiber (%) Lipid (%) TPC (mg GAE/g)

BDZ 4.00 ± 0.16 b 14.24 ± 0.57 de 4.44 ± 0.50 fg 4.08 ± 0.79 cd 8.72 ± 0.11 fg 6.08 ± 0.16 bc

CJ 3.05 ± 0.31 e 18.13 ± 0.79 a 7.90 ± 0.13 a 3.52 ± 0.23 e 12.82 ± 0.74 b 6.70 ± 0.14 a

DHP 2.82 ± 0.16 e 14.75 ± 0.57 cd 6.75 ± 0.50 b 4.43 ± 0.28 bc 10.43 ± 0.40 e 6.10 ± 0.02 bc

GG 3.87 ± 0.25 bc 12.37 ± 0.64 f 7.01 ± 0.63 b 4.72 ± 0.22 ab 9.26 ± 0.08 f 6.44 ± 0.24 ab

JG 2.98 ± 0.11 e 16.77 ± 0.71 b 5.33 ± 0.25 de 3.64 ± 0.17 de 12.51 ± 0.29 b 5.58 ± 0.08 d

NF 4.74 ± 1.48 a 18.43 ± 0.50 a 4.79 ± 0.63 ef 3.32 ± 0.28 e 13.58 ± 0.39 a 5.95 ± 0.01 cd

OG 2.81 ± 0.26 e 14.85 ± 0.36 cd 5.41 ± 0.37 d 4.00 ± 0.34 cd 9.16 ± 0.16 f 5.70 ± 0.39 cd

PK 3.22 ± 0.11 de 16.81 ± 0.64 b 6.84 ± 0.63 b 3.52 ± 0.34 e 11.17 ± 0.11 d 5.96 ± 0.08 cd

STJ 3.86 ± 0.08 bc 13.64 ± 0.57 e 5.33 ± 0.50 de 4.44 ± 0.17 bc 7.73 ± 0.87 h 6.54 ± 0.13 a

SM 3.31 ± 0.21 cde 12.27 ± 0.79 f 6.13 ± 0.38 c 5.00 ± 0.40 a 8.54 ± 0.15 g 4.97 ± 0.28 e

WG 3.78 ± 0.18 bcd 14.65 ± 0.71 cd 4.17 ± 0.38 g 4.27 ± 0.17 c 10.38 ± 0.30 e 6.44 ± 0.24 ab

YC 3.28 ± 0.25 cde 15.30 ± 0.50 c 6.03 ± 0.25 c 4.00 ± 0.22 cd 11.74 ± 0.39 c 6.00 ± 0.84 cd

Values are given as mean ± SD (n = 3). Different letters in the same column indicate significant differences (p < 0.05).

3.2. Structural Characteristics of Films

Figure 2 shows the structural characteristics of sodium alginate/mandarin peel pow-
der films, which were characterized by SEM, infrared spectrometry, and use of an X-
ray diffractometer. The prepared films showed different cross-sectional morphologies
(Figure 2A). Amongst the twelve films, the CJ, JG, NF, OG, PK, and YC films showed
compact cross-sections without obvious inner cracks. In contrast, the BDZ and DHP films
had some cracks inside. The situation was much worse for the GG, STJ, SM, and WG films.
The morphological differences in the films could be explained by the compositional content
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of the different mandarin peel powders (Table 1). The CJ, JG, NF, OG, PK, and YC peel
powders had higher contents of pectin, protein, and lipid, which may have interacted with
each other to form the tightly packed films [37]. However, BDZ, DHP, GG, STJ, SM, and WG
peel powder had higher contents of insoluble crude fiber (4.08–5.00%). The insoluble crude
fiber had low compatibility with other film components, thereby disrupting the integrity
of the films. The cracks in the BDZ, DHP, GG, STJ, SM, and WG films were adverse to the
barrier and mechanical properties of these films. Recently, Yun et al. [23] also found that
citrus fruit peel powders with higher contents of crude fiber were disadvantageous in the
production of dense packaging films.
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Figure 2. Cross-sectional morphologies (A), infrared spectra (B), and XRD pattern (C) of sodium
alginate/mandarin peel powder films.

Although different varieties of mandarin peel powder had different component con-
tents, the sodium alginate/mandarin peel powder films showed similar infrared spectra
(Figure 2B). A broad peak (O–H/N–H stretching) around 3300 cm−1 was caused by hy-
droxyl groups in all film components, as well as amino groups in protein [17,38]. Notably,
different films showed some differences in the position of this infrared peak, varying from
3280 to 3303 cm−1. This was because the different varieties of mandarin peel powder
had different component contents (Table 1), which could have influenced the hydrogen
bonds of film components [23]. The films displayed double peaks (C–H stretching) around
2925 cm−1, attributed to methylene-containing components (e.g., pectin, protein, crude
fiber, sodium alginate, and glycerol) [18,39]. The films also showed characteristic ester
carbonyls around 1735 cm−1, which are present in pectin, lipids, and sodium alginate [19].
The peak around 1600 cm−1 (C=C stretching) corresponded to polyphenols [40]. Other
peaks around 1410 and 1025 cm−1 corresponded to CH–CH2 bending and C–O–C stretch-
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ing of film components, respectively, which are frequently observed in fruit peel-based
packaging films [38,41]. The above results suggest that the the infrared spectra of the films
were only minorly influenced by the variety of mandarin peel powder.

Figure 2C shows the XRD patterns of the sodium alginate/mandarin peel powder
films. Several crystalline peaks were observed in these films, ranging from 9◦ to 40◦. The
sharp crystalline peaks were attributed to the crude fiber (e.g., cellulose, hemicellulose,
and lignin) in mandarin peel powder, which have also been observed in other biopoly-
mer/fruit peel powder packaging films, such as starch/pomegranate peel powder film and
chitosan/pomegranate peel powder film [42,43]. The results revealed that the sodium algi-
nate/mandarin peel powder films were semi-crystalline. The crystalline degree of the films
varied from 5.49% to 13.91%, indicating that the variety of mandarin peel powder used had
a major impact on the crystallinity of the films. Correlation analysis was then performed
between the component content of the mandarin peel powders and the crystalline degree
of the films. As shown in Figure 3, the crude fiber content of mandarin peel powder had
a highly positive correlation with the crystalline degree of the films (R2 = 0.91), verifying
the major contribution of crude fiber to the semi-crystalline status of the films. Conversely,
the pectin and lipid contents of mandarin peel powder showed highly negative correla-
tions with the crystalline degree of the films (R2 = −0.90 for pectin content–crystalline
degree correlation, and R2 = −0.87 for lipid content–crystalline degree correlation). This
was probably because pectin and lipid were the two main components in mandarin peel
powders with amorphous natures. Pectin and lipid could interact with crude fiber through
hydrogen bonds, resulting in a decreased crystalline degree of the films. Some researchers
have also found that the interactions between pectin and crude fiber decreased the degree
of crystallinity of the films [44].
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Figure 3. Correlation analysis between the component content of mandarin peel powder and the
structural, physical, and functional properties of sodium alginate/mandarin peel powder films.
Circles of different sizes indicate the magnitude of the correlation.

3.3. Optical Properties of Films

All of the sodium alginate/mandarin peel powder films were yellow (Figure 1), similar
to the color of raw mandarin peel powder. This was because mandarin peel powder was
the main component of the films, and the other film components (e.g., sodium alginate
and glycerol) were almost colorless. The yellow color of the films was primarily caused by
natural pigments in mandarin peel powder, especially carotenoids and polyphenols [45].
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Table 2 shows that all the films had very high b* values, varying from 64.99 to 78.35. This
further demonstrates the yellowness of the films. On one hand, the color of the films was
related to the carotenoid and polyphenol contents of mandarin peel powder, as intuitively
reflected by the color of mandarin peel powder (Figure 1). On the other hand, the color of
the films was influenced by the ratio of the outer yellow flavedo layer and the inner white
albedo layer of mandarin peels [46]. Since GG, OG, and WG peels had relatively thicker
white albedo layers (Figure 1), the produced GG, OG, and WG films exhibited relatively
lower b* values than other films.

Table 2. Color values of sodium alginate/mandarin peel powder films.

Films L* a* b* ∆E

BDZ 70.11 ± 0.25 i 12.51 ± 0.19 a 75.53 ± 0.52 d 83.48 ± 0.38 a

CJ 78.28 ± 0.23 b 3.62 ± 0.45 h 78.35 ± 0.37 b 83.26 ± 0.30 a

DHP 74.06 ± 0.14 g 12.74 ± 0.20 a 77.50 ± 0.05 c 84.27 ± 0.02 a

GG 78.88 ± 0.22 a 0.60 ± 0.42 i 64.99 ± 0.23 h 70.04 ± 0.17 b

JG 74.09 ± 0.02 g 7.51 ± 0.27 d 72.81 ± 0.22 e 79.15 ± 0.24 c

NF 71.61 ± 0.13 h 9.88 ± 0.10 c 77.50 ± 0.08 c 84.57 ± 0.05 c

OG 74.22 ± 0.30 g 4.92 ± 0.06 g 66.05 ± 0.11 g 68.47 ± 0.19 b

PK 77.31 ± 0.31 c 5.93 ± 0.21 f 75.07 ± 0.57 d 80.40 ± 0.64 c

STJ 76.29 ± 0.25 e 6.45 ± 0.17 e 75.17 ± 0.11 d 83.68 ± 0.17 c

SM 74.33 ± 0.02 g 10.70 ± 0.07 b 79.92 ± 0.31 a 86.26 ± 0.30 c

WG 76.75 ± 0.03 d 5.94 ± 0.18 f 68.34 ± 0.71 f 74.03 ± 0.66 b

YC 74.72 ± 0.26 f 6.58 ± 0.47 e 72.70 ± 0.16 e 78.80 ± 0.26 c

Values are given as mean ± SD (n = 3 for color values). Different letters in the same column indicate significant
differences (p < 0.05).

Figure 1 shows that all the films were transparent. Despite this, the light transmittance
of the films was smaller than 5% at visible light range and almost zero at UV light range,
revealing that the films had strong UV-vis light blocking performance (Figure 4A). This
was because the films contained crude fiber that could block light transmittance [20].
Meanwhile, many film components including pectin, protein, lipid, lignin, sodium alginate
and polyphenols contained unsaturated bonds that could absorb UV light [23]. By contrast,
sodium alginate/mandarin peel powder films showed lower light transmittance than
previously prepared pomelo peel flour films [17], chitosan/polyvinyl alcohol/orange peel
composite films [20], and different citrus fruit peel powder-based films [23].

3.4. Thickness and Water Blocking Ability of Films

As the different varieties of mandarin peel powder had different component contents,
the produced sodium alginate/mandarin peel powder films showed thickness values
ranging from 117.73 to 152.45 µm (Figure 4B). Notably, the thickness of the films displayed
a positive correlation with the crude fiber content in the mandarin peel powder, but
negative correlations with the pectin and lipid contents in mandarin peel powder (Figure 3).
This result agreed with SEM observations (Figure 2A), showing that the films with high
crude fiber contents had loosely packed structures, whereas the films with high pectin
and lipid contents had tightly packed structures. Amongst the films, PK film exhibited
the lowest thickness, as the PK peel powder had high pectin and lipid contents, but the
lowest crude fiber content. On the contrary, the SM film displayed the greatest thickness,
as the SM peel powder had the highest crude fiber content, but the lowest pectin and lipid
contents. The sodium alginate/mandarin peel powder films showed similar thickness
compared to previously prepared chitosan/polyvinyl alcohol/orange peel composite films
with 120–138 µm of thickness [20], had lower thickness than mosambi peel/sago powder
films with 0.34–0.70 mm of thickness [16], but had higher thickness than pomelo peel flour
films with 80.6–101.0 µm of thickness [17], and pomelo peel flour films with 60.4 µm of
thickness [18].
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Figure 4. Light transmittance (A), thickness (B), MC (C), WCA (D), WVP (E), OP (F), TS (G), and
EB (H) of sodium alginate/mandarin peel powder films. Data are given as mean ± SD (n = 10 for
thickness, n = 3 for MC, WVP and OP, n = 6 for WCA, TS and EB). The inserted pictures in (D) show
the WCA of different films. Different lower case letters indicate significant difference (p < 0.05).
MC: moisture content; WCA: water contact angle; WVP: water vapor permeability; OP: oxygen
permeability; TS: tensile strength; EB: elongation at break.

Sodium alginate/mandarin peel powder films showed MC from 16.39% to 23.62%
(Figure 4C). It is worth noting the MC of the films was positively correlated with their thick-
nesses (Figure 3). This further revealed that the moisture in the films greatly contributed
to thickness enhancement. However, the MC of the films did not show high correlations
with the component content in mandarin peel powder. The SM film presented the highest
MC because the films had several inner cracks (Figure 2A) that could retain moisture. In
another study, Meydanju et al. [39] also found that the MC of lemon peel powder-based
films was related with the compactness of the films. The MC of the films decreased after
the voids in the films were filled with metal nanoparticles. The sodium alginate/mandarin
peel powder films had similar MC to previously prepared pomelo peel flour films with
15.14–19.72% MC [17], but had higher MC than mosambi peel/sago powder films with
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10.00–14.67% MC [16], pomelo peel flour film with 14.84% MC [18], and gelatin/orange
peel powder films with 11.30–12.67% MC [21].

Sodium alginate/mandarin peel powder films had WCA ranging from 26.03◦ to 90.75◦

(Figure 4D). This indicates that the variety of mandarin peel powder used had a major
impact on the surface wettability of the films. Figure 3 shows that the WCA of the films
had a positive correlation with the lipid content in the mandarin peel powder (R2 = 0.81),
demonstrating that lipid content was beneficial in increasing the hydrophobicity of the
films. This is due to the fact that lipids are hydrophobic substances that can act as a
good water barrier [47]. Notably, the STJ and SM films showed relatively lower WCA
than other films due to the fact that these two films had not only lower lipid contents,
but also higher crude fiber contents (Table 1). Crude fiber could disrupt the compactness
of the films and produced loosely packed structures (Figure 2A), which increased the
wettability of the films. In this respect, the WCA of the films had a negative correlation
with the crude fiber content in mandarin peels (R2 = −0.60), as displayed in Figure 3.
The sodium alginate/mandarin peel powder films showed similar WCA to previously
prepared poly(lactic acid)/orange peel powder films with 70.12–88.18◦ WCA [22], had
overwhelmingly higher WCA than pomelo peel flour films with 32.37–42.03◦ WCA [17],
but had lower WCA than chitosan/polyvinyl alcohol/orange peel composite films with
78.38–104.7◦ WCA [20].

WVP is often used to evaluate the moisture blocking ability of packaging films. Sodium al-
ginate/mandarinpeelpowder filmshadWVPbetween5.38×10−11 and8.31× 10−11 g m−1 s−1 Pa−1

(Figure 4E). Figure 3 shows that the WVP of the films was negatively correlated with their
WCA (R2 = −0.78), demonstrating that the films with high surface wettability also had low
moisture blocking ability. Notably, the WVP of the films was positively correlated with the
crude fiber content in the mandarin peel powder (R2 = 0.86), with the STG film having the
highest WVP. This is because crude fiber creates cracks within the films, which helps mois-
ture to quickly pass through the films. On the contrary, the WVP of the films was negatively
correlated with the contents of pectin and lipid in mandarin peel powder, because pectin
and lipids are beneficial in producing films with dense structures (Figure 2A). At the same
time, the hydrophobic character of lipids could also contribute to the moisture blocking
ability of the films [47]. Many research groups have also demonstrated that the compactness
of citrus fruit peel powder-based films has a large impact on their WVP [21,23,39]. The
sodium alginate/mandarin peel powder films had similar WVP to previously prepared
lemon waste powder film with 6.83 × 10−11 g m−1 s−1 Pa−1 WVP [19], but had lower WVP
than pomelo peel flour films with 20.8 × 10−11–25.8 × 10−11 g m−1 s−1 Pa−1 WVP [17] and
pomelo peel flour film with 23.3 × 10−11 g m−1 s−1 Pa−1 WVP [18].

3.5. Oxygen Blocking Ability of Films

The sodium alginate/mandarin peel powder films had OP from 5.26 to12.91×10−20 m2 s−1 Pa−1,
reflecting the oxygen blocking ability of the films (Figure 4F). The OP of the films showed a
positive correlation with their WVP (Figure 3). Moreover, the OP of the films was negatively
correlated with the contents of pectin and lipid in mandarin peel powder but positively
correlated with the crude fiber content in mandarin peel powder. The above results suggest
that the moisture and oxygen blocking abilities of the films had similar trends, and both
of them were associated with the inner structures of the films. Amongst the films, the NF
and PK films had the highest oxygen blocking ability, as the NF and PK peels had high
pectin and lipid contents but the lowest crude fiber contents, presenting dense structures
(Figure 2A). On the contrary, the SM film exhibited the lowest oxygen blocking ability
because the SM peel had the lowest pectin and lipid contents but the highest crude fiber
content, displaying a cracked and loosely packed structure. Terzioğlu et al. [20] and Yun
et al. [23] also reported that citrus fruit peel powder-based films with tightly packed
structures had good oxygen blocking ability. The sodium alginate/mandarin peel powder
films showed similar OP as previously prepared different citrus fruits peel powder based
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films with 4.11–7.88 × 10−20 m2 s−1 Pa−1 OP [23], but had lower OP than chitosan/polyvinyl
alcohol/orange peel composite films with 34.52–37.01 × 10−20 m2 s−1 Pa−1 OP [20].

3.6. Mechanical Properties of Films

Figure 4G,H show that the TS and EB of the sodium alginate/mandarin peel powder
films were 4.87–7.90 MPa and 13.37–24.62%, respectively. Figure 3 reveals that the TS
and EB of the films had similar trends, presenting a positive correlation between them
(R2 = 0.70). The TS and EB of the films had positive correlations with the contents of
pectin and lipid in the mandarin peel powders, but negative correlations with the crude
fiber content in the mandarin peel powders. The mechanical properties of the films were
consistent with their WVP (Figure 4E) and OP (Figure 4F), which were all related to the
inner structures of the films (Figure 2A). The CJ, NF, and PK films, with higher pectin and
lipid contents, had dense structures that could withstand mechanical force, resulting in
stronger mechanical properties. However, the BDZ, GG, STG, SM, and WG films, with
higher crude fiber contents, had cracked structures and presented weaker mechanical
properties. Similarly, Yun et al. [23] found that the mechanical properties of citrus peel
powder-based films was negatively correlated with the WVP and OP of the films. By
contrast, the sodium alginate/mandarin peel powder films showed similar TS as compared
to previously prepared lemon waste powder film with 7.64 MPa TS [19], but had lower
TS than pomelo peel flour films with 13.75–23.55 MPa TS [17], pomelo peel flour film
with 17.52 MPa TS [18], chitosan/polyvinyl alcohol/orange peel composite films with
17.77–21.29 MPa TS [20], and gelatin/orange peel powder films with 23.21–27.22 MPa
TS [21]. The sodium alginate/mandarin peel powder films showed similar EB as previously
prepared pomelo peel flour film with 19.46% EB [18] and lemon waste powder film with
24.24% EB [19], slightly higher EB than pomelo peel flour films with 9.31–17.68% EB [17],
and lower EB than chitosan/polyvinyl alcohol/orange peel composite films with 234.67–
257.52% EB [20] and gelatin/orange peel powder films with 42.25–61.69% EB [21].

3.7. Thermal Properties of Films

TG and DTG curves for the sodium alginate/mandarin peel powder films showed that
the films had four decomposition processes (Figure S1). As summarized in Table S1, the first
process, with weight loss between 5.19% and 15.57%, was caused by water vaporization.
The second process, with weight loss between 36.31% and 46.09%, was the main decom-
position stage, which was attributed to the pyrolysis of glycerol, sodium alginate, pectin,
protein, cellulose, and hemicellulose [23,48]. During the second process, the maximum
decomposition rate of the films appeared at 183–203 ◦C. The third process, with weight loss
between 9.49% and 16.45%, was mainly due to the pyrolysis of cellulose [48]. The fourth
process was associated with the decomposition of lignin and carbonaceous residues [48].
When the temperature reached 750 ◦C, the solid residues of the PK and NF films were still
higher than 15%. Based on the TG curves, it could be concluded that the PK, NF, JG, and
CJ films were more stable than other films. This was consistent with the results regarding
WVP (Figure 4E), OP (Figure 4F), and TS (Figure 4G), which were all attributed to the inner
structures of these films. The four abovementioned films had dense structures and could
withstand thermal treatment.

3.8. Antioxidant-Releasing Ability of Films

Antioxidant-releasing ability is an important functional property for active packaging
films as it aids in the retardation of food oxidation. The antioxidant-releasing ability of the
sodium alginate/mandarin peel powder films was tested in 95% ethanol, simulating the
antioxidant behavior of the films in fatty food [49]. Figure 5A,B show the TPC and DPPH
radical scavenging activity of the films, respectively. After the films were shaken in 95%
ethanol for 1 h, the films released 2.06–2.86 mg GAE g−1 total phenol. Meanwhile, the DPPH
radical scavenging activity of the released polyphenols reached 13.94–22.91 µmol TE g−1.
Figure 3 shows that the antioxidant-releasing abilities of the films were highly positive
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correlated with the TPC in mandarin peels (R2 = 0.94), revealing that the polyphenols in
mandarin peel powder were responsible for the antioxidant behavior of the films. Amongst
the films, the CJ film showed the highest antioxidant-releasing ability, which was 1.64 times
that of the SM film, which had the lowest antioxidant-releasing ability. Other researchers
have also recently reported that citrus fruit peel powder-based films have good antioxidant-
releasing ability [20,21,23]. Except for TPC in mandarin peel powder, the other components
in mandarin peels had little impact on the antioxidant-releasing ability of the films. This
indicates that the antioxidant-releasing ability of the films was not affected by their inner
structures. In other words, all the films effectively released polyphenols into the simulated
fatty food.
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Figure 5. TPC (A), DPPH radical scavenging activity (B), antimicrobial-releasing ability against
S. aureus (C) and E. coli (D), and antimicrobial mechanisms (E) of sodium alginate/mandarin peel
powder films. Data are given as mean ± SD (n = 3). Different lower case letters indicate significant
difference (p < 0.05).
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3.9. Antimicrobial-Releasing Ability of Films

The antimicrobial-releasing ability of the sodium alginate/mandarin peel powder
films was tested in a liquid culture medium containing S. aureus and E. coli. The film-treated
bacterial suspension was cultured in a solid culture medium, and the formed colonies were
counted and used to calculated the antimicrobial rate of the films. As shown in Figure 5C,D,
more than two hundred colonies formed on the control plates without film treatment.
However, the growth of S. aureus and E. coli was significantly inhibited by the films, with
most plates presenting less than twenty colonies. The antimicrobial rate of the films ranged
from 83.02% to 99.77%, indicating that the sodium alginate/mandarin peel powder films
had strong antimicrobial-releasing ability. Other researchers have also demonstrated that
mandarin peel powder-based films could inhibit the growth of S. aureus and E. coli [23,50].
Notably, the antimicrobial rate of the films against S. aureus and E. coli showed positive
correlations with the TPC in mandarin peels (Figure 3), revealing that polyphenols played
a main role in inhibiting microbial growth. Similar to the antioxidant-releasing ability of
the films, the antimicrobial-releasing ability of the films was not affected by their inner
structures. Based on the literature [51–54], the antimicrobial mechanisms of the films are
illustrated in Figure 5E. The antimicrobial agents (i.e., polyphenols) were released from the
films and could interfere with or inhibit microbial growth and proliferation in different
ways, such as increasing the permeability or disintegration of microbial membranes, induc-
ing the leakage of potassium ions and protons from microbial cells, denaturing protein and
enzyme activity, and damaging DNA molecules.

3.10. Biodegradability of Films

Citrus fruit peel powder-based packaging films, due to their biodegradable nature,
have been considered as alternatives to synthetic plastics [15]. Although many studies
have focused on citrus fruit peel powder-based films, the biodegradability of the films
has seldom been evaluated [22]. In this study, sodium alginate/mandarin peel powder
films were buried in moist soil, and the morphological changes in, and weight loss of, the
films were monitored. As displayed in Figure 6, all the films were gradually degraded into
debris. The biodegradable nature of the films was reflected by observed weight loss, which
progressively increased over the course of 25 days. At the end of 25th day, the weight
loss of these films reached 85.39–92.01%, which was higher than the reported poly(lactic
acid) films containing orange peel powder [22]. This suggests that all the films had good
biodegradability. As reported, the biodegradation of bio-based packaging films normally
comprises three main stages: (1) the colonization of soil microorganisms on the film surface,
(2) the depolymerization of film components under the action of microbial enzymes, and
(3) the utilization of film-degraded products as microbial nutrients, with the release of
water and CO2 [55]. The findings of this study revealed that the biodegradability of the
sodium alginate/mandarin peel powder films was not particularly affected by mandarin
variety. The biodegradable nature of the films makes it possible to utilize mandarin peels
in a renewable and sustainable way.

3.11. Application of Films

Edible oil is an indispensable nutritional resource in the human diet. However, several
environmental factors including heat, light, oxygen, and moisture can trigger the oxidation
of oil during storage [56]. In recent years, researchers have preferred to use natural
antioxidants to elevate the oxidative stability of oil, because they are much safer than
synthetic antioxidants [57]. Considering that the sodium alginate/mandarin peel powder
films had good antioxidant-releasing ability in simulated fatty food (Figure 5A,B), they
were used to package corn oil. Beforehand, an anti-permeability test was performed to
verify whether oil could leak from the films (Figure 7A). After being tested for 15 days, all
of the films showed good anti-permeability against corn oil. Thus, the films were further
processed into small sachets for corn oil packaging (Figure 7B). The oxidation degree of oil
was evaluated by PV and TBARS values, individually corresponding to the primary and
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secondary oxidative products of oil. As shown in Figure 7C, the PV level of the control oil
rapidly increased at day 4–10. By contrast, the TBARS level of control oil slowly increased
over the course of 10 days. This was because heat, light, oxygen, and moisture had bigger
impacts on the initial stage of oil oxidation [58]. As compared with the control oil, the oil
packaged in film sachets showed lower PV and TBARS levels. At the end of 10 days, the PV
and TBARS levels of sachet-packaged oil were reduced by 47.83–58.98% and 33.81–48.79%,
respectively, in comparison with those of the control oil. Results revealed that the sodium
alginate/mandarin peel powder films effectively delayed oil oxidation. Notably, these
films showed some differences in delaying oil oxidation, because the films had different
physical and functional properties. The protective mechanisms of the films on corn oil
were proposed in Figure 7E. As demonstrated above, the sodium alginate/mandarin peel
powder films had good barrier abilities against light, moisture, and oxygen (Figure 4),
which are key factors triggering oil oxidation. At the same time, polyphenols were slowly
released from the sodium alginate/mandarin peel powder films, which could have played a
role in quenching free radicals involved in oil oxidation (Figure 5). In addition, polyphenols
in the films acted as an antimicrobial barrier against external microorganisms, which could
further improve the safety of oil.
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4. Conclusions

This study compared the structures and functional properties of active food packaging
films based on sodium alginate and twelve varieties of mandarin peel powder. All the films
showed superior light barrier ability, antimicrobial-releasing ability, and biodegradability.
The CJ, NF, and PK films showed better moisture/oxygen barrier abilities and mechanical
properties. The CJ, GG, STJ, and WG films exhibited better antioxidant-releasing ability
and oil oxidation inhibitory ability. Considering all of the properties of the films, the CJ
film had the optimal performance. Moreover, this study analyzed the correlations between
the component content of mandarin peel powder and the structures and properties of the
films. The structures and physical properties of the films were positively correlated with
the pectin and lipid contents in mandarin peel powder, and were negatively correlated
with the crude fiber content in mandarin peel powder. The antioxidant-releasing and
antimicrobial-releasing abilities of the films were positively correlated with the TPC in
the mandarin peel powders. In the future, further studies are needed to improve the
mechanical properties of the films for practical applications. Additionally, factors affecting
consumer acceptance of the films (e.g., their color and aroma) should be assessed before
the films are released to market.
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