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Abstract: Rose tea is a type of flower tea in China’s reprocessed tea category, which is divided
into seven grades, including super flower, primary flower, flower bud, flower heart, yellow flower,
scattered flower, and waste flower. Grading rose tea into distinct quality levels is a practice that
is essential to boosting their competitive advantage. Manual grading is inefficient. We provide a
lightweight model to advance rose tea grading automation. Firstly, four kinds of attention mecha-
nisms were introduced into the backbone and compared. According to the experimental results, the
Convolutional Block Attention Module (CBAM) was chosen in the end due to its ultimate capacity to
enhance the overall detection performance of the model. Second, the lightweight module C2fGhost
was utilized to change the original C2f module in the neck to lighten the network while maintaining
detection performance. Finally, we used the SIoU loss in place of the CIoU loss to improve the
boundary regression performance of the model. The results showed that the mAP, precision (P),
recall (R), FPS, GFLOPs, and Params values of the proposed model were 86.16%, 89.77%, 83.01%,
166.58, 7.978, and 2.746 M, respectively. Compared with the original model, the mAP, P, and R values
increased by 0.67%, 0.73%, and 0.64%, the GFLOPs and Params decreased by 0.88 and 0.411 M,
respectively, and the speed was comparable. The model proposed in this study also performed better
than other advanced detection models. It provides theoretical research and technical support for the
intelligent grading of roses.

Keywords: rose tea grading; YOLOv8; attention mechanism; lightweight; SIoU

1. Introduction

In the last several years, the commercial value of roses has become increasingly
important [1]. Roses can be used in perfume, rose tea, and other applications [2]. Currently,
the rose planting area in Pingyin County, Jinan City, Shandong Province is 61,000 acres.
Annual production of 3000 tons of processed dried rose flowers. Dried roses are mainly used
to make rose tea, but rose tea without grading is not competitive in the market. Grading
rose tea not only broadens the price range but also facilitates consumer purchases [3]. At
present, rose grading still requires manual labor, which is time-consuming and inefficient.
Moreover, the manual grading of one kilogram of rose tea will increase the cost by 10 yuan.
Therefore, there is an urgent need for mechanical grading to replace manual grading.
However, applying a model to actual production lines may produce problems such as poor
hardware performance [4], and the current models have a large number of parameters and
high computational complexity, which is not conducive to deployment. Thus, it is necessary
to design a high-precision and lightweight rose tea quality detection and grading model.
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Deep learning technology has made rapid progress in agriculture in the last several
years [5,6]. At present, many scholars have conducted a lot of research on detection and
grading in agriculture [7]. Du et al. put forward a DSW-YOLO model to accurately detect
ripe strawberries and their occlusion levels. Their model achieved excellent detection
accuracy [8]. Liu et al. proposed an efficient channel pruning method based on YOLOX for
the detection and grading of shiitake mushrooms. Their method could effectively detect
and grade shiitake mushrooms [9]. Li et al. put forward a lightweight tea bud detection
model based on the improved YOLOv4. Their model detected tea buds with an accuracy of
85.15%, which was 1.08% greater than the average accuracy of the original model, and the
number of parameters decreased by 82.36% [10]. In addition to the above research, studies
have also been done in the field of flower detection and grading. Cıbuk et al. proposed a
deep convolutional neural network (DCNN)-based hybrid method that was applied to the
classification of flower species. It used a pre-trained DCNN model for feature extraction
and an SVM classifier with a radial basis function kernel to classify the extracted features
with high classification accuracy [11]. Tian et al. proposed a deep learning method using
the YOLOv5 algorithm to achieve the fine-grained image classification of flowers. It was
able to successfully identify five different types of flowers [12]. Zeng et al. proposed a new
lightweight neural network model based on multi-scale characteristic fusion and attention
mechanisms. Their model had fewer parameters and high classification accuracy [13].
Wu et al. proposed a real-time apple flower detection method using the channel-pruned
YOLOv4 deep learning model, and the model was pruned using the channel pruning
algorithm, which achieved fast and accurate detection of apple flowers [14]. Shang et al.
proposed a lightweight YOLOv5s model for apple flower detection by replacing the original
backbone with ShuffleNetv2 and replacing the Conv module in the neck part with the
Ghost module [15]. Li et al. detected and identified kiwifruit flowers using YOLOv5l.
They classified kiwifruit flowers into ten categories and clusters and branch knots into four
categories. The mAP for all-species detection was 91.60%, and the mAP for multi-class
flowers was 93.23%. It was 5.70% higher than the other four categories. It has high accuracy
and speed for detection and classification [16].

The above research was conducted to detect common objects and classify common
flowers. Previous studies mainly focused on the grading of different types, but this study
focuses on the same type of flower. The detection and grading of kiwifruit flowers are
similar to the work carried out in this study. However, kiwifruit flowers are detected and
graded outdoors, while rose tea is detected and graded indoors. Moreover, the difference
between the two flowers is significant. This algorithm is not suitable for detecting rose
tea. Currently, there are few reports on the detection and grading of rose tea within the
class. Rose tea is similar in color, and some flowers are similar in shape, which makes
their detection and grading more difficult. At the same time, future applications in actual
production may involve problems related to poor hardware performance. Therefore, this
study proposes a lightweight rose detection and grading model based on the improved
YOLOv8.

The main contributions of this paper are as follows: (1) Four attention mechanisms
are respectively added to the backbone of the experiments. We compare the experimental
results and choose the CBAM to enhance the detection performance of the model. (2) The
C2f module is substituted by the module C2fGhost in the neck of the network to achieve
lightweighting while maintaining performance. (3) In terms of the loss function, the original
CIoU loss is substituted by the SIoU loss to improve the boundary regression performance
of the model.

2. Methods
2.1. The Abbreviations Used in This Article and the Experimental Design Flowchart

The abbreviations used in this article and the experimental design flowchart are shown
in Table 1 and Figure 1, respectively.
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Table 1. The abbreviations used in this article.

Number Abbreviation Full Name Number Abbreviation Full Name

1 CBAM Convolutional Block Attention Module 10 TP True positive
2 CA module Coordinate Attention Module 11 FP False positive
3 ECA module Efficient Channel Attention Module 12 FN False negative
4 NAM Normalization-Based Attention Module 13 TN True Negative
5 AP Average precision of a single category 14 P Precision
6 mAP mean Average Precision 15 R Recall
7 GFLOPs number of floating point operations 16 FPS Frames Per Second
8 YOLO You Only Look Once 17 IoU Intersection over Union
9 SSD Single Shot MultiBox Detector 18 DFL Deep Feature Loss
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2.2. The YOLOv8 Network

YOLOv8 is the latest YOLO model for object detection, instance segmentation, and
image classification, and it offers new features based on previous YOLO versions to improve
performance and flexibility. According to the ratio of network depth and width, YOLOv8
can be categorized into five types: n, s, m, l, and x. Given the model size and complexity,
YOLOv8n was chosen as the base network model for this study. The four components of
YOLOv8n are the input, backbone, neck, and head [17], as shown in Figure 2a.

The model input is augmented with mosaic data, and an anchor-free mechanism is
used to directly predict the center of the object, which reduces the number of anchor frame
predictions and accelerates the non-maximal suppression. The function of the backbone
is to extract the information featured in the picture. YOLOv8n’s backbone references the
structure of CSPDarkNet-53 and uses C2f instead of the C3 module. The gradient flow is
increased, the level of computation is significantly reduced, and the convergence speed
and convergence effect are significantly improved. The neck fuses the features between the
backbone and the head. The neck takes advantage of the PANet structure, which unifies the
network’s top and lower information flows and improves detection capabilities. Using the
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features that were extracted, the head makes predictions. YOLOv8n’s head is a decoupled
head like YOLOX, and it has three output branches. Each output branch is subdivided into
a regression branch with a DFL strategy and a prediction branch [18,19].
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2.3. YOLOv8n Network Improvements

In this study, the YOLOv8n network was improved. A diagram of the network after
the improvement is shown in Figure 2b. First, four types of attention mechanisms are
introduced into the backbone of the network for the experiments. To achieve lightweighting
without sacrificing detection performance, the original C2f module of the network is
replaced in the neck by the lightweight C2fGhost module. Finally, the model’s boundary
regression performance is enhanced by replacing the CIoU loss with the SIoU loss.

2.3.1. The Attention Mechanism Module

In object detection algorithms, the purpose of the attention mechanism is to apply
more weight to the information to help solve a problem in a specific scenario by ignoring the
irrelevant information and focusing on the key information, thereby improving detection
performance. In this study, we chose four attention mechanisms, the CBAM [20], CA
module [21], ECA module [22], and NAM [23], with which to conduct experiments.

The Convolutional Block Attention Module

The CBAM is a lightweight attention module that combines channel and spatial
attention mechanisms along two independent dimensions, as shown in Figure 3. Channel
attention aggregates the spatial information related to features through average pooling
and maximum pooling, compresses the spatial dimensions of the features, and feeds them
into a shared network that adaptively adjusts its weights through learning to generate
attention weights. Spatial attention, on the other hand, executes maximum pooling and
average pooling per channel and then pools all channels for the same feature point. The
feature maps are superimposed to generate spatial attention weights. The optimized feature
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map is ultimately produced after the feature maps first go through the channel attention
module, where they receive the channel attention weights and multiply them by the initial
features. Next, they enter the spatial attention module, where they receive the spatial
attention weights and multiply them by the features from the previous step.
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The Coordinate Attention Module

Figure 4 illustrates the two primary phases of the CA module. Varying channels
are given varying attention weights by the CA module, which is a fundamental channel
attention mechanism. It typically employs global average pooling and a fully connected
layer to learn the degree of correlation between channels, and then it applies a softmax
function to normalize the attention weights.
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The Efficient Channel Attention Module

The ECA module, as shown in Figure 5, adopts a 1 × 1 convolutional layer directly
after the global average pooling layer. It removes the fully connected layer, which makes
dimensionality reduction unnecessary and captures cross-channel interactions efficiently.
ECANet requires a few parameters to produce good results. ECANet uses one-dimensional
convolution to achieve cross-channel information interaction. To increase the frequency of
cross-channel interaction for layers with several channels, the convolution kernel’s size is
adaptively changed.
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The Normalization-Based Attention Module

As seen in Figure 6, the NAM is a compact and effective attention mechanism that
redesigned the channel attention and spatial attention sub-modules while adopting the
CBAM’s module integration. In the channel attention sub-module, the scaling factor is
used in batch normalization. The scaling factor shows the significance of each channel as
well as the amount that it has changed.
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2.3.2. The C2fGhost Lightweight Module

GhostNet is a lightweight network that was designed by Huawei’s Noah’s Ark Lab
in 2020. The GhostNet lightweight network model can maintain the size and channel size
of the original convolutional output feature map while reducing the computational and
parameter requirements of the network. First, a small number of ordinary convolution
kernels are employed to take feature data out of the input feature map. Then, linear
transformation operations are performed on the feature map, which is less computationally
expensive than ordinary convolutions. Finally, the final feature map is generated through
concatenation, as shown in Figure 7a. It increases feature expressiveness by introducing
additional branches into the convolution operation. The lightweight module C2fGhost
replaces the bottleneck in the C2f module of the original network with Ghost BottleNeck,
as shown in Figure 7b. It makes use of the truncated gradient flow technique and the cross-
stage feature fusion strategy to increase the network’s learning capacity, lessen the impact
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of redundant information, and improve the variability of learned features across various
network levels. The introduction of the C2fGhost module greatly reduces the number
of model parameters needed as well as the computational effort by greatly reducing the
number of common 3 × 3 convolutions [24,25].
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2.3.3. Loss Function

The YOLOv8 algorithm adopts DFL loss + CIoU loss as the regression loss. There is
some ambiguity surrounding CIoU in terms of the relative values described by the aspect
ratio. In this study, SIoU loss is used in place of CIoU loss.

SIoU loss is a function that takes into account the angle of the predicted regressions
and redefines the metric for the angle penalty. It allows the frame to drift to the nearest
coordinate and then return to one of the coordinates. This method can reduce the total
degrees of freedom. It is composed of four parts: the angle cost, the distance cost, the shape
cost, and the IoU cost [26]. Its calculation schematic is shown in Figure 8.
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The calculation is as follows:

Λ = 1 − 2sin2
(

arcsin
( ch

σ

)
− Π

4

)
∆ =

(
1 − −(2−Λ)

bgt
cx−bcx

cw

)
+

1 − −(2−Λ)
bgt
cy−bcy

ch


Ω =

(
1 −

− |w−wgt |
max(w,wgt)

)θ

+

(
1 −

− |h−hgt |
max(h,hgt)

)θ

LIoUcost = 1 − IoU = 1 − Intersection
Union

(1)

where Λ represents the angle cost, ∆ represents the distance cost, Ω represents the shape
cost, and LIoUcost represents the IoU cost.

Finally, the SIoU loss calculation is shown in Equation (2):

Lbox = 1 − IoU +
∆ + Ω

2
(2)

3. Experimental Design and Result Analysis
2.4. Dataset Production

This experiment uses rose tea from Pingyin (116.45◦ E, 36.28◦ N), Shandong Province,
as the research object. The rose tea was divided into seven grades, which included super
flower, primary flower, flower bud, flower heart, yellow flower, scattered flower, and waste
flower. A super flower should not be yellow or white in color, and the heart of the flower
should not be exposed. The standard for the primary flower is to have a little bit of the
flower heart, and the color must not be turning white or yellow. All the flowers must
be in full bloom. The standard for the flower bud is that the surrounding petals cannot
be blooming or turning yellow. The standard for the flower heart is that the color of the
flower is good, it cannot turn white, cannot be too small, and half or all of the flower hearts
are exposed. Yellow flower refers to the yellowing of the entire flower or more than half
of it, with a large yellow heart; a scattered flower is a flower larger than the bud with a
middle that has a hard heart, the surrounding petals are scattered, and the color cannot
be turning yellow. Waste flowers are the flowers that are left over after the other six types
of flowers have been selected, and compared to the other six types of flowers, the waste
flowers are broken, moldy, and of poorer quality. Figure 9a shows different grades of rose
tea, excluding the waste flower. Because the waste flower contains more kinds of flowers, it
is the one remaining after the selection of the six kinds of flowers; they are crushed, moldy,
and of poor quality. There is no value to the selection, so the image of the waste flower is
not shown.

We created a dataset of 1500 images taken using a Canon camera (Canon EOS80D) and
a cell phone. We used two cameras to take pictures with the purpose of getting images at
different resolutions and enriching the dataset. The dataset was first randomly sorted into a
training set + validation set and a test set according to the ratio of 4:1. The training set and
validation set were then divided according to the ratio of 4:1, and LabelImg (Tzutalin, US)
was used to annotate them and generate label files. The dataset contained more than
9000 ground-truth boxes. Figure 9b shows the total number of ground-truth boxes for each
category.
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2.5. Experimental Environment and Parameter Settings

The operating system used for this experiment was Windows 10, the CPU model was
a 13th-Gen Intel Core i7-13700F, and the GPU model was a NVIDIA GeForce RTX4070. The
programming language was Python 3.9, the deep learning framework was PyTorch 1.8.2,
and the GPU acceleration library was CUDA 11.1 and CUDNN 8.4.1. All the experiments
in this study were carried out on the PyTorch deep learning framework, using the Adam
optimizer to update the parameters. A total of 200 epochs were trained, the batch size was
8, and the momentum was set to 0.937.

2.6. Indicators of Model Evaluation

The experiments adopted common evaluation metrics for object detection tasks to
assess the performance of the experimental results. These evaluation metrics include:
precision (P), recall (R), mAP, Params, GFLOPs, and FPS [27].
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(1) Precision is the proportion of correct positive predictions to the proportion of all
positive predictions, which is calculated as Equation (3):

P =
TP

TP + FP
(3)

where TP represents true positive, which means the number of actual positive examples
predicted as positive examples, and FP represents false positive, which means the number
of actual negative examples predicted as positive examples.

(2) Recall is the proportion of positive cases in the sample that are predicted correctly,
and this is calculated as in Equation (4):

R =
TP

TP + FN
(4)

where FN represents false negative, which means the number of actual positive examples
predicted as negative examples.

(3) mAP is the average of the detection accuracy of all categories and is calculated as
in Equation (5):

mAP =
1
n

n

∑
i=1

APi (5)

where AP represents the average precision of a single category.
(4) Params is the number of learnable parameters in the model, which reflects the

complexity and resource consumption of the model.
(5) GFLOPs represents the number of floating point operations performed during the

model inference process, which is related to the computational complexity of the model.
(6) FPS (frames per second) refers to the speed of the model.

2.7. Experimental Results and Analysis
2.7.1. Attention Mechanism Comparison Experiment

Under the same conditions, each of the four attention mechanism modules was added
to the backbone network for comparison. The experimental results are shown in Table 2.

Table 2. Results of experiments comparing all attention modules.

Model GFLOPs Params/M FPS mAP/% P/% R/%

YOLOv8n 8.858 3.157 166.28 85.49 89.04 82.37
YOLOv8n + CBAM 8.861 3.179 157.63 86.08 90.37 83.36

YOLOv8n + CA 8.861 3.169 151.58 86.23 89.88 82.79
YOLOv8n + ECA 8.859 3.157 164.59 86.14 88.95 82.89
YOLOv8n + NAM 8.863 3.158 162.40 86.17 89.49 83.28

Note: GFLOPs represents the number of floating point operations performed; Params is the number of model
parameters; FPS is the speed of model inference; mAP is the average of the detection accuracy; P stands for
precision; and R stands for recall.

After adding each of CA, ECA, NAM, and CBAM, respectively, to the backbone part of
the original YOLOv8n model, the detection performance of the model was improved, and
the speed of the model decreased, which suggests that the attention mechanism facilitated
the network in extracting the key features of the rose tea, and it inevitably increased the
model’s GFLOPs and Params. The best improvement was achieved with the CBAM, where
the mAP, P, and R increased by 0.59%, 1.33%, and 0.99%, respectively.

2.7.2. Performance of the Improved Model

The loss curve, log-average miss rate, P–R curve, and AP comparison with various
flowers of the improved model after it was trained for 200 epochs are shown in Figure 10.
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From Figure 10a, it can be seen that as the number of training epochs increases, the loss
value of the improved model rapidly decreases and stabilizes. The final loss value converges
near 2.08, and the improved model achieves good training results. The log-average error
rate of the improved model for the classification of various types of flowers can be seen in
Figure 10b. The log-average error rates for super flower, primary flower, flower bud, flower
heart, yellow flower, scattered flower, and waste flower are 0.22, 0.39, 0.29, 0.22, 0.19, 0.43, and
0.35, respectively. As can be seen in Figure 10c,d, the detection AP values of the improved model
for super flower, primary flower, flower bud, flower heart, yellow flower, scattered flower, and
waste flower are 90.24%, 85.69%, 82.08%, 91.83%, 88.33%, 82.32%, and 82.61%, respectively.
Compared with the original model, the AP values for super flower, primary flower, flower
bud, scattered flower, and waste flower increased by 1.35%, 3.00%, 0.51%, 0.76%, and 1.22%,
respectively. The mAP increased by 0.67%, and the overall performance of the model improved.

2.7.3. Ablation Experiments

To verify the contribution of each module to the model proposed in this study, dif-
ferent modules were combined in the original model for the ablation experiments. The
experimental results are shown in Table 3.

From Table 3, it can be seen that after the CBAM was added to the backbone part, the
values of mAP, P, and R improved by 0.59%, 1.33%, and 0.99%, respectively, compared with
the original model, with a slight decrease in speed. After the C2f module was replaced
with the C2fGhost module in the neck part, the speed increased, and the mAP, P, and R
values improved by 0.93%, 0.43%, and 0.47%, respectively, relative to the original model.
The GFLOPs and Params values were reduced by 1.063 and 0.432 M, respectively. After
replacing the loss function based on the improvements of the first two, the speed was
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comparable to that of the original model, and the values of mAP, P, and R improved by
0.67%, 0.73%, and 0.64%, respectively. The GFLOPs and Params values were reduced by
0.88 and 0.411 M, respectively, relative to the original model.

Table 3. Results of ablation experiments.

Model GFLOPs Params/M FPS mAP/% P/% R/%

YOLOv8n 8.858 3.157 166.28 85.49 89.04 82.37
YOLOv8n + CBAM 8.861 3.179 157.63 86.08 90.37 83.36

YOLOv8n + C2fGhost 7.975 2.725 175.39 86.42 89.47 82.84
YOLOv8n + CBAM + C2fGhost 7.978 2.746 159.94 86.69 89.70 82.81

YOLOv8n + CBAM + C2fGhost + SIoU 7.978 2.746 165.80 86.16 89.77 83.01

Note: GFLOPs represents the number of floating point operations performed; Params is the number of model
parameters; FPS is the speed of model inference; mAP is the average of the detection accuracy; P stands for
precision; and R stands for recall.

2.7.4. Comparison of Model Effects before and after Improvement

As shown in Figure 11, three photos in the test set were randomly selected, processed,
and then compared using the original YOLOv8n model and the improved model. As
shown in the photos for Group 1, the improved model has higher confidence than the
original model for detection and grading, and its detection and grading are more accurate.
The original model mistakenly detects the flower bud as a yellow flower in the photos for
Group 2. In the third group of photos, the original model has missed detections. However,
the improved model avoids the problems of misdetection and missed detections of the
original model, which further illustrates that the proposed model is more effective.
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2.7.5. Comparison between Different Object Detection Network Models

In order to further demonstrate the advantages of the improved model in this study
in terms of detection performance and light weight, we compare the proposed model
with the more advanced object detection models, including Faster R-CNN, SSD, YOLOv3,
YOLOv4_Tiny, YOLOv5n, and YOLOv7, under the same conditions. The results of the
comparison experiments are shown in Table 4.

Table 4. Experimental results for comparisons with other advanced models.

Model GFLOPs Params/M FPS mAP50/% P/% R/%

Faster R-CNN 370.210 137.099 22.90 87.07 76.69 86.19
SSD 62.747 26.285 132.23 87.71 82.65 84.55

YOLOv3 66.171 61.949 96.95 85.47 87.91 80.93
YOLOv4_Tiny 6.957 6.057 242.49 83.45 84.07 80.05

YOLOv5n 4.564 1.872 156.99 85.87 88.73 81.66
YOLOv7 106.472 37.620 57.25 88.17 90.76 84.74

YOLOv8n 8.858 3.157 166.28 85.49 89.04 82.37
YOLOv8n + CBAM + C2fGhost + SIoU 7.978 2.746 165.80 86.16 89.77 83.01

Note: GFLOPs represents the number of floating point operations performed; Params is the number of model
parameters; FPS is the speed of model inference; mAP is the average of the detection accuracy; P stands for
precision; and R stands for recall.

From Table 4, it can be seen that the faster R-CNN model has a lower P value. The
GFLOPs and Params are close to 50 times greater than the improved model, and the
detection speed is slower than the improved model. The SSD model has a lower P value,
a higher Params value, and a slower detection speed than the improved model. The
YOLOv3 model has larger GFLOPs and Params values and lower P and R values than the
improved model. The YOLOv4_Tiny model performs faster detection but has lower P and
R values than the improved model. The YOLOv5n model has smaller GFLOPs and Params
values than the improved model but slower detection speed and lower P and R values.
Although the P and R values of the YOLOv7 model are higher than those of the improved
model, the GFLOPs and Params values of the YOLOv7 are close to 13 times those of the
improved model, and the detection speed is slower. The model in this study can meet
the requirements for rose tea detection grading, although it achieves lower speeds than
some models. Our comprehensive analysis indicates that the improved model in this study
achieved the best performance of the more advanced models.

3. Discussion

Rose tea grades are uneven, making it uncompetitive in the market. While manual
grading is time-consuming, labor-intensive, and inefficient, automated detection and
grading is imminent. In addition, it may encounter problems such as low hardware
performance in actual production, which makes it difficult to deploy. Therefore, this
study proposes a lightweight rose tea quality detection and grading model based on an
improved YOLOv8n network. Firstly, according to the experimental results, CBAM is
selected from four different attention mechanisms. After adding CBAM, the mAP, P, and
R of the model are improved by 0.59%, 1.33%, and 0.99%, respectively. The addition of
the attention mechanism is beneficial to the extraction of the main features of the rose
tea, but it also increases the GFLOPs and Params of the model. The original network C2f
module is replaced by the lightweight module C2fGhost; the mAP, P, and R of the model
are improved by 0.93%, 0.43%, and 0.47%, respectively, compared with the original model;
and the GFLOPs and Params are reduced by 1.063 and 0.432 M, respectively. This model is
lightweight and improves the model’s detection speed while maintaining accuracy. Finally,
we replace CIoU loss with SIoU loss. mAP, P, R, FPS, GFLOPs, and Params values of the
improved model are 86.16%, 89.77%, 83.01%, 166.58, 7.978, and 2.746 M, respectively. mAP,
P, and R values are improved by 0.67%, 0.73%, and 0.64%, respectively, compared with the
original model, and the GFLOPs and Params values were reduced by 0.88 and 0.411 M,
respectively, with comparable detection speeds.
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Although our improved model achieves lightweight performance while the detection
performance is improved, it also obtains the best performance compared with the current
advanced detection models. However, the model in this paper is only for rose tea in Pingyin
County, Shandong Province, and it is necessary to further expand the data volume, improve
the model generalization performance, and apply it to other regions for rose tea detection
and grading. In addition, the deployment of the model in actual production will be a
technical challenge, and it is necessary to design an effective deployment strategy to ensure
that the model is successfully deployed to actual production as a means of promoting the
development of the rose tea industry chain.

4. Conclusions and Future Research

In this paper, based on the YOLOv8n model, by adding the attention mechanism
and replacing the lightweight structure and loss function, the established model achieved
its lightweight status while meeting the requirements of rose tea detection and grading
and providing technical support and theoretical research for the deployment of rose tea
detection and grading and subsequent actual production of the model.

The detection and grading of rose tea is a novel research project. At present, the
quality detection and grading of rose tea is still based on the appearance, shape, and color
characteristics of this tea. On the basis of this research, in the future, we will combine the
spectral image of rose tea to conduct a detailed analysis of the endoplasmic components of
rose tea and finally combine the appearance, shape, and endoplasmic components of rose
tea to achieve a more accurate and comprehensive detection and grading of rose tea.
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