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Abstract: The profile of secondary metabolites present in the apple cuticular layer is not only
characteristic of a particular apple cultivar; it also dynamically reflects various external factors in the
growing environment. In this study, the possibility of authenticating apple samples by analyzing their
cuticular layer extracts was investigated. Ultra-high-performance liquid chromatography coupled
with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) was employed for obtaining
metabolomic fingerprints. A total of 274 authentic apple samples from four cultivars harvested in
the Czech Republic and Poland between 2020 and 2022 were analyzed. The complex data generated,
processed using univariate and multivariate statistical methods, enabled the building of classification
models to distinguish apple cultivars as well as their geographical origin. The models showed very
good performance in discriminating Czech and Polish samples for three out of four cultivars: “Gala”,
“Golden Delicious” and “Idared”. Moreover, the validity of the models was tested over several
harvest seasons. In addition to metabolites of the triterpene biosynthetic pathway, the diagnostic
markers were mainly wax esters. “Jonagold”, which is known to be susceptible to mutations, was the
only cultivar for which an unambiguous classification of geographical origin was not possible.

Keywords: UHPLC-HRMS/MS; metabolomic fingerprints; classification models; markers; wax esters

1. Introduction

Apple (Malus × domestica Borkh) is one of the most widely cultivated fruits in the
temperate climate zone, with an annual world harvest of around 96 million tonnes [1].
In the Czech Republic, more than 100,000 tonnes of apples were harvested in production
orchards in 2023 (based on data from the Central Institute for Supervising and Testing in
Agriculture, 2023). Although they are more expensive compared to imported apples, the
regional fruits are favored by consumers as they believe that (thanks to the widespread
integral farming practices of local producers) fewer pesticides have been used in their
production. Unfortunately, under these conditions, dishonest traders tend to falsely declare
information when placing this popular fruit on the market. Alongside the intentional
false declaration of geographical origin, the other fraudulent practice is the mislabeling
of the particular apple cultivar. In detecting such economically motivated frauds, the
development of methods to detect them, the aim of which is both to take preventive
measures against fraudulent practices and to protect consumers, is a challenging task [2,3].

To date, a variety of instrumental techniques have been published to authenticate the
geographical origin and/or cultivar of apples. This includes near-infrared spectroscopy
(NIR) [4], fluorescence spectroscopy [5], head-space solid-phase microextraction coupled
with gas chromatography and mass spectrometry (SPME-GC-MS) [6,7], isotope ratio mass
spectrometry (IR-MS), either separately [2,8,9] or in combination with elemental analysis
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by inductively coupled plasma mass spectrometry (ICP-MS) [10], and electronic nose and
electronic tongue [3]. Further information on these authentication studies is summarized in
Table 1. However, as shown here, some of them were performed with a limited number of
samples or did not sufficiently cover factors of natural variability (different apple cultivars,
growing locations, farming systems, different harvest years, etc.), and in some cases,
the description of statistical methods for data processing was insufficient. Under these
conditions, generic applicability of the results could be rather difficult.

Table 1. The overview of studies dealing with the authentication of the origin and/or cultivar of
apples.

Analytical
Method

Description of
Apple Samples

Classification
Factor

Number of
Samples

Number of Classes to
Be Distinguished

within the Sample Set

Classification
Method

Performance of
Classification Reference

NIR
Surface of whole

apple fruits

Cultivar
300

3 (Fuji, Red Star, Gala)
NN, SVM, ELM

Calibration set
98% (ELM)

Prediction set
97% (ELM)

[4]Geographical
origin

2 (grown in different
Chinese provinces)

Fluorescent
spectroscopy

Apple juice
(squeezed with a
juice extractor)

Cultivar 89 2 (grown in different
Chinese provinces) PLS

Calibration set
100%

Prediction set
96%

[5]

SPME-GC-MS
Apple juice

(squeezed with a
juicer)

Cultivar

50

6 (Starkrimson,
Qinguan, Gala,

Jonagold, Golden
Delicioius, Fuji)

LDA, SLDA

Predicition set
100% (SLDA)

[6]
Geographical

origin

5 (grown in different
counties within Chinese

province)

Predicition set
90% (SLDA)

SPME-GC-MS
Apple juice

(squeezed with
hand press)

Cultivar 4 (3 kg of
apples per

sample)

4 (Rijo, Verde, Ribeiro,
Azedo)

PLS-DA, HCA

Vague
description of

model
performance

[7]
Geographical

origin
2 (different civil parishes

of Madeira)

IR-MS +
conventional

methods
Pulp, juice

Cultivar

19

6 (Topaz, Idared, Golden
Delicious, Goldrush,

Gala, Gloster)

LDA
Insufficient

description of
models

[2]Geographical
origin

4 (different regions of
Slovenia)

Agricultural
practice

2 (way of farming
organic, conventional)

IR-MS
Whole apples,

peel, pulp, seed

Cultivar

128

4 (Cripps Pink, Gala,
Golden Delicious,

Granny Smith)
LDA

71% correctly
classified
samples

[8]
Geographical

origin

4 (grown in different
districts of northerm

Italy)
99% (LOOCV)

IR-MS Peel, petiole,
pulp, seed

Geographical
origin 48

2 (grown in different
districts of northern

Italy)
LDA

Limited
information on
classification

models
performance

[9]

IR-MS, ICP-MS

Apple juice
(concentrated to

sugar content
65.0◦Brix)

Geographical
origin 135 6 (grown in different

Chinese provinces) LDA, PLS-DA

Only description
of sample

clustering in
PLS-DA model

without
information
about model

validation

[10]

Electronic nose,
electronic tongue

Apple juice
(centrifugal

juicer)

Cultivar

126

10 (Fuji, Jonagold,
Corolla, Gala, Red

Delicous, Red Chief
Delicious, Cattle Apple,
Ralls Janet, Ourin, Tail,

Golden Delicous)

LDA, PLS-DA,
SVM

100% (prediction
ability of

PLS-DA) 100%
(accuracy testing

rate of SVM)

[3]

Geographical
origin

7 (grown in different
Chinese provinces)

ELM—extreme learning machine; HCA—hierarchical cluster analysis; LDA—linear discriminant analysis;
LOOCV—leave-one-out cross validation; NN—neural networks; PLS—partial least square; PLS-DA—partial least
square discriminant analysis; SLDA—stepwise linear discriminant analysis; SVM—support vector machine.
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Various parts and/or processed forms of apples were used within the studies listed
in Table 1; nevertheless, only in one of them [4] was the authentication based on the data
collected from the apple surface. However, the NIR technique used in that particular
study did not allow for the identification of characteristic marker compounds that could be
suitable for authentication via targeted analysis. In this context, it is worth noting that the
cuticular layer is an interesting matrix in the search for authenticity markers. The cuticular
layer contains a number of secondary metabolites whose profile is not only characteristic of
the respective cultivar (genotype) but can also be influenced by various external factors in
the respective growing location, such as local weather conditions, application of pesticides
and growth regulators, diseases and pests. The cuticle, the outer protective layer of the fruit,
consists of structural polymers coated with a layer of wax [11]. While the intracuticular
waxes are directly incorporated into the cutin, the epicuticular waxes cover a surface of
the cutin polymers [12]. The cuticular layer is a complex mixture of secondary metabolites,
which include long-chain hydrocarbons and their derivatives, such as carboxylic acids,
alcohols, aldehydes and ketones, esters, etc. The other group of typical metabolites are
various triterpenoids [13–15].

The composition of cuticular waxes has been analyzed in detail in several studies using
different analytical methods. For the wax extraction, several authors have used cuticle
membranes enzymatically isolated by pectinase and cellulase [14,16]. On the other hand,
simple methods based only on rinsing the apple surface with a solvent (usually chloroform,
but also dichloromethane, petroleum ether, hexane, etc.) have also been reported [11,17–19].
The most common method for analyzing the isolated compounds is GC-MS [11,14,16,18],
but this method requires derivatization. Reversed phase liquid chromatography coupled
with mass spectrometry (RPLC-MS) has been increasingly used as an alternative, using both
atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) [20–25].
The advantage of LC-ESI-MS is the possibility of the simultaneous detection of different
lipid classes, including difficult-to-ionize neutral wax esters when additives are used. The
use of high-resolution (HR) MS allows for identification based on molecular or adduct ion
exact masse, and the application of collision energy (tandem mass spectrometry, MS/MS)
is suitable to obtain information on molecular structure [20].

The aim of the present study was to investigate the potential of UHPL-HRMS-based
metabolomic fingerprinting of cuticular layer components, followed by advanced statistics,
for the classification of apple cultivars “Gala”, “Golden Delicious”, “Idared” and “Jon-
agold”, grown either in the Czech Republic or in Poland. To our knowledge, no other
published study has used such an approach.

2. Materials and Methods
2.1. Samples

Apple (Malus domestica) samples analyzed in this study were collected by the Research
and Breeding Institute of Pomology Holovousy Ltd. (Holovousy, Czech Republic). A total
of 274 authentic apple samples of known geographical origin and cultivar characterization
were provided over a period of 3 harvest years (2020–2022). The cultivars available in this
study were “Gala”, “Golden Delicious”, “Idared” and “Jonagold”, originating either from
the Czech Republic (CZE) or Poland (POL). A total of 35 samples of the “Gala” cultivar
(16 CZE, 19 POL), 37 samples of the “Golden Delicious” cultivar (19 CZE, 18 POL),
32 samples of the “Idared” cultivar (17 CZE, 15 POL) and 33 samples of the “Jonagold”
cultivar (13 CZE, 19 POL) were available. After delivery to the laboratory, the samples were
stored at 4 ◦C for a maximum of 3 days before further processing.

2.2. Chemicals

Analytical-grade methanol (MeOH), dichloromethane (DCM), ethyl acetate (EtAC),
methyl-tert-butyl-ether (MTBE) and isopropanol (iPrOH) were purchased from Merck
(Darmstadt, Germany). Deionized water (dH2O) was obtained from a Milli-Q Integral sys-



Foods 2024, 13, 1308 4 of 17

tem (Millipore supplied by Merck (Darmstadt, Germany)). The mobile phase modifiers (am-
monium formate, formic acid) were purchased from Sigma-Aldrich (Darmstadt, Germany).

2.3. Methods
2.3.1. Sample Preparation

To isolate the metabolites present in the apple cuticular layer, the whole apple was
carefully placed into a 1000 mL glass beaker containing 400 mL of solvent mixture. After
covering the beaker with parafilm, its content was gently shaken for 10 min. In the experi-
ments undertaken to evaluate the extraction efficiency, the following solvents/mixtures
thereof were tested: hexane–EtAc (1:1, v:v), DCM, DCM–MeOH (2:1, v:v), MTBE–MeOH
(10:3, v:v) and DCM–MeOH (1:1, v:v). The last one was selected as optimal and then used
throughout the study.

To obtain maximum yield of apple surface components, this procedure was repeated
twice, always washing three representative apples. The combined extracts of each sample
were evaporated stepwise to dryness and the residue was stored at −80 ◦C. Prior to analysis,
the residue was reconstituted in a calculated amount of DCM:MeOH (1:1, v:v) to obtain a
standardized concentration of the extracted material of 33.33 mg/mL. The solution was
filtered using syringe filters (pore size 0.22 µm) and a 1.5 mL aliquot of each extract was
then transferred to glass vials for LC-MS analysis. The quality control (QC) sample was
prepared as a pool of aliquots of all prepared standardized apple extracts.

2.3.2. UHPLC-HRMS/MS Non-Target Screening

For the metabolomic analysis of apple extracts, the UHPLC-HRMS/MS technique was
employed. A high-performance liquid chromatograph Dionex UltiMate 3000 RS (Thermo
Fisher Scientific, Waltham, MA, USA) coupled with quadrupole-time-of-flight TripleTOFTM

6600 mass spectrometer (Sciex, Concord, ON, Canada) was used for this purpose. For
sample components separation, Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm)
(Waters, Milford, MA, USA) was employed. The mobile phase consisted of (A) 5 mM
ammonium formate in a mixture of dH2O:MeOH (95:5, v:v) with 0.1% formic acid and
(B) 5 mM ammonium formate in a mixture of iPrOH:MeOH:dH2O (65:30:5, v:v) with 0.1%
formic acid. The following gradient was used for both positive and negative ionization
modes: 0 min (70% A), 2 min (50% A), 7 min (20% A), 13 min (0% A), 20 min (0% A),
20.1 min (70% A) and 22 min (70% A), with a constant flow rate of 0,4 mL/min. The column
temperature was kept at 60 ◦C; the temperature of the autosampler at 5 ◦C and the sample
injection volume was 1 µL.

The mass spectrometer was operated in both positive (ESI+) and negative (ESI-) mode
with the following ion source settings: nebulizing gas pressure, 55 psi; drying gas pressure,
55 psi; capillary voltage, +4500 V (for ESI+)/−4000 V (for ESI-); ion temperature, 500 ◦C.
Both MS and MS/MS data were acquired using full-scan and information-dependent
acquisition (IDA) methods. The mass range in MS mode was set to 100–1200 m/z, and that
in MS/MS mode to 50–1200 m/z. The collision energy was 35 V with the spread of ±15 V.
Mass spectrometer calibration was performed regularly after every 10 samples based on
APCI calibration solution (Sciex, Concord, Canada).

Samples were injected in a randomized order; QC samples were injected during the
entire analytical run (after 10 previous sample injections). Blank samples (extraction solvent
mixture) were injected at the beginning of the sequence to capture background features.

2.3.3. Data Processing

The UHPLC-HRMS/MS data obtained were processed using the open-source software
MS-Dial (version 4.8) [26]. In the first step, the data were converted into the specific *.ibf
format. The peak picking parameters were set as follows for both data acquired in ESI+ and
ESI− mode: a minimum signal intensity threshold (peak height) of 10,000; a mass accuracy
of 0.01 Da for MS data and 0.025 Da for MS/MS data. For data alignment, retention time
tolerance of 0.05 min (ESI+) and 0.3 min (ESI−), along with m/z tolerance of 0.015 Da, were
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used. In ESI+ mode [M+H]+, [M+Na]+ and [M+NH4]+ adducts were considered, and in
ESI- mode, [M-H]− and [M+HCOO]− adducts were considered.

The exported data matrices, consisting of all detected features characterized by m/z
and retention time, were filtered according to the relative standard deviation (RSD) of the
signal intensity (peak area) in the QC samples, with a maximum RSD threshold of 20% for
both ESI+ and ESI−. Furthermore, all features with a signal-to-noise ratio (SNR) below 3
were filtered out to obtain the final data matrices.

2.3.4. Statistical Analysis

Prior to statistical analysis, the data were pre-processed to avoid possible misinterpre-
tation of data variability. In this study, the total area sum normalization and logarithmic
transformation were performed prior to any univariate statistics, followed by Pareto scaling
in the case of multivariate model building.

Within the chemometric processing, the aim was to create models for the classifica-
tion of apple samples using both univariate and multivariate statistical tools. Principal
component analysis (PCA) was used to overview the data. Diagnostics features were
selected using t-test/analysis of variance (ANOVA), fold change and receiver operating
characteristics (ROC) methods. The combination of used methods, where each of them
evaluates the feature significance based on a different algorithm, enables the selection of rel-
evant markers. Based on the selected feature subset, both partial least square discriminant
analysis (PLS-DA) and orthogonal partial least square discriminant analysis (OPLS-DA)
were applied. The developed classification models were validated using 7-fold internal
cross validation and characterized by the described variance (R2X and R2Y), the predicted
variance (Q2Y), the root mean square error of estimation (RMSEE) and permutation tests
for R2Y and Q2Y.

All statistical analyses were performed using SIMCA® (Sartorius, Göttingen, Ger-
many), Metaboanalyst (metaboanalyst.ca, accessed on 16 January 2024) and using custom
built R scripts.

2.3.5. Marker Identification

All significant features (significance is described by the results of the univariate statis-
tical analysis or variable importance on the projection (VIP) score from PLS-DA/OPLS-DA)
used for classification models building were subject of structure identification. For these
features, *.mat files (containing both MS and MS/MS spectral information) were exported
from MS-Dial and imported into the open-source software SIRIUS 4 [27,28], which also
integrates CSI:FingerID [29] and CANOPUS [30,31]. Together, these three tools suggest
possible molecular formulae, potential structures and compound classes for a given feature,
which is compared with online spectral databases (BioCyc, HMDB, COCONUT) [32–34].
Tentatively identified markers were characterized by elemental formula, mass error and
compound name. In addition, a confidence level of markers identification was classified ac-
cording to the approaches used in previous studies [35–37] for identification of compounds
based on LC-MS metabolomic data. The confidence levels range from Level 4 (unknown
reproducible signal defined by m/z, retention time and MS spectrum), Level 3 (known
compound class with many isomers possibilities), Level 2 (annotated compound based on
matched MS/MS spectra and library) and Level 1 (identified compound confirmed with
analytical standard) to Level 0 (identified compound including full stereochemistry).

3. Results and Discussion

This study, aimed at the authentication of apple cultivars and their geographical origin,
was based on the assumption that characteristic metabolites, authenticity markers, could be
identified via the statistical processing of the HPLC-HRMS/MS metabolic fingerprints of
cuticular layer extracts. As described in the introduction, several studies have performed
well in cultivar or geographical origin classification (Table 1); nevertheless, none of them
focused on the analysis of the cuticular layer extracts, which, according to our working
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hypothesis, have a high application potential for authentication. In the paragraphs below,
the steps taken to test this working hypothesis are described.

3.1. Selection of Extraction Solvent/Mixture

The first step was to find an extraction solvent that would enable the reproducible
extraction (not necessarily quantitative) of the widest possible range of substances from the
apple cuticle. The tested solvents/solvent mixtures, differing in their selectivity, involved
hexane–EtAc (1:1, v:v), MTBE–MeOH (10:3, v:v), DCM, DCM–MeOH (2:1, v:v) and DCM–
MeOH (1:1, v:v). The comparison of the total ion chromatograms of the tested solvents is
shown in Supplementary Materials (Figure S1). The suitability of the extraction solvent
was assessed by the distribution of chromatographic peaks in terms of their retention times
and the total number of features detected via the reversed-phase UHPLC-HRMS method,
which is commonly used by the authors of metabolomic studies. Since wax esters, which
are known to occur in large amounts in the apple cuticular layer [13], ionize poorly in ESI-
mode, only ESI+ was used for the experiments. A similar approach was used in other
studies analyzing a similar matrix [20,22]. Based on the above criteria, the best solvent
mixture was DCM–MeOH (1:1, v:v). A total of 11,581 features corresponding to compounds
with a wide range of polarities were detected. Only a slightly lower number of features were
detected in DCM and DCM–MeOH (2:1, v:v) extracts, while in the chromatograms obtained
with the other solvent mixtures, hexane–EtAc (1:1, v:v) and MTBE–MeOH (10:3, v:v), the
more polar metabolites, eluted at lower retention times, were not sufficiently represented.

3.2. UHPLC-HRMS/MS Analysis

A number of analytical strategies have been applied for the investigation of apples’
authenticity, either geographically or by variety. As shown in Table 1, in most cases,
non-target screening performed by various instrumental techniques, such as NIR, GC-
MS or IR-MS, was employed for analyses of various apple parts/forms. In contrast to
these approaches, the UHPLC-HRMS/MS technique used in this study allows for not
only the acquisition of the metabolomic fingerprints of the respective sample but also
the identification of diagnostic markers (without pre-analytical derivatization) that can
be used for authentication based on a simpler target screening applicable under routine
conditions. The complexity of the apple cuticular layer extract is documented by the total
ion chromatograms (TIC) in Figure 1A,B. As expected, wide range of lipophilic compounds
was isolated; their main groups are indicated in the figures.

3.3. Chemometric Analysis

Processing of all raw UHPLC-HRMS/MS data with MS-Dial software resulted in the
detection of 96,072 features in positive ionization mode and 21,040 features in negative
ionization mode. Both of the aligned data matrices obtained were then filtered according to
the criteria mentioned in Materials and Methods (Section 2.3.3) based on RSD in the QC
sample (20%) and the SNR in the blank sample (≥3). As a result of feature filtering, the
final data matrices contained 16,044 features and 2132 features, respectively, in ESI+ and
ESI- mode, respectively. These data were used for further processing.

3.3.1. Data Overview

Data visualization via PCA revealed a clustering of the samples based on cultivar
(Figure 2A). However, the separation of apples from the Czech Republic and Poland by
geographical origin was not pronounced (Figure 2B). The data shown in these figures were
obtained for the ESI+ mode; similar trends are documented in the PCA Score plots for the
ESI− mode (see Supplementary Materials Figure S2).



Foods 2024, 13, 1308 7 of 17Foods 2024, 13, 1308 7 of 17 
 

 

 
Figure 1. Total ion chromatogram of apple cuticle layer extract, QC sample: (A) ESI+ mode and (B) 
ESI− mode. 

3.3. Chemometric Analysis 
Processing of all raw UHPLC-HRMS/MS data with MS-Dial software resulted in the 

detection of 96,072 features in positive ionization mode and 21,040 features in negative 
ionization mode. Both of the aligned data matrices obtained were then filtered according 
to the criteria mentioned in Materials and Methods (Section 2.3.3) based on RSD in the QC 
sample (20%) and the SNR in the blank sample (≥3). As a result of feature filtering, the 

Figure 1. Total ion chromatogram of apple cuticle layer extract, QC sample: (A) ESI+ mode and
(B) ESI− mode.



Foods 2024, 13, 1308 8 of 17

Foods 2024, 13, 1308 8 of 17 
 

 

final data matrices contained 16,044 features and 2132 features, respectively, in ESI+ and 
ESI- mode, respectively. These data were used for further processing. 

3.3.1. Data Overview 
Data visualization via PCA revealed a clustering of the samples based on cultivar 

(Figure 2A). However, the separation of apples from the Czech Republic and Poland by 
geographical origin was not pronounced (Figure 2B). The data shown in these figures 
were obtained for the ESI+ mode; similar trends are documented in the PCA Score plots 
for the ESI− mode (see Supplementary Materials Figure S2). 

 
Figure 2. PCA Score plots of the complete dataset of ESI+ features. Samples are colored according 
to (A) their cultivar and (B) their geographical origin. 
Figure 2. PCA Score plots of the complete dataset of ESI+ features. Samples are colored according to
(A) their cultivar and (B) their geographical origin.

In order to obtain reliable models for the classification of both apple cultivars and geo-
graphical origin, two alternative methods of supervised learning were combined. PLS-DA
was used for cultivar classification, while a systematic strategy was used for geographical
origin classification, as the influence of growing location on the metabolome of the cuticular
layer is less pronounced. Individual binary OPLS-DA models were created for each apple
cultivar. The use of this specific chemometric method allowed us to reduce the effect of
collinearity and model overfitting [38].
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3.3.2. Apple Cultivars Classification

Prior to building the PLS-DA classification models, an ANOVA false discovery rate
(FDR) p-value threshold of 0.05 was used to filter out features that were unimportant for
cultivar differentiation. This process resulted in a subset of 14,551 and 1678 significant
features for the ESI+ and ESI- modes, respectively, which were used for building PLS-
DA models (all four groups of cultivars included). For the model based on ESI+ data,
the validation parameters were R2Y = 0.790 and Q2Y = 0.756; for the ESI- data, similar
qualitative results were achieved, with R2Y = 0.770 and Q2Y = 0.756. Permutation tests
(n = 100) were performed to validate the developed models; for both R2Y and Q2Y, the p-
value was below 0.01, indicating valid models [39]. In general, a VIP score > 1 is considered
as a threshold value for significant features [40]; nevertheless, in the study here presented,
this threshold was increased up to 1.5, which resulted in exclusion of less significant
metabolites. This way, only the 197 most significant markers (ESI+ and ESI− combined)
were selected for further processing. Table 2 provides an overview of 13 metabolites whose
molecular structure could be identified using the criteria specified in Materials and Methods
(Section 2.3.5).

Table 2. Identified significant metabolites used for apple cultivar classification (compounds sorted in
descending order according to the PLS-DA VIP score).

Marker Ion
(m/z)

Retention
Time [min] Adduct Type Elemental

Formula
Mass Error

[ppm]
Tentative

Identification
PLSDA VIP

Score
Confidence

Level

701.7138 14.03 [M+H]+ C48H92O2 −5.4 Wax ester
(30:1/18:1) 3.1 2

317.064 2.06 [M+H]+ C16H12O7 −6.7 Isorhamnetine 2.9 3

673.6829 13.69 [M+H]+ C46H88O2 −5 Wax ester
(28:1/18:1) 2.9 2

461.1111 2.14 [M-H]− C22H22O11 5.9 Isorhamnetin
rhamnoside 2.8 3

671.6652 13.43 [M+H]+ C46H86O2 -8 Wax esters
(46:3) 2.8 3

699.691 14.64 [M+Na]+ C46H92O2 −12.1 Wax esters
(46:0) 2.7 3

979.8971 14.81 [M+Na]+ C63H120O5 −6.4 TAG (60:2) 2.4 3

509.4234 12.24 [M+H]+ C31H56O5 5.6 DAG (28:2) 2.1 3

533.0917 1.33 [M-H]− C24H22O14 2.6
Luteolin-O-

malonyl
glucoside

2.1 3

663.3906 5.99 [M+HCOO]− C39H54O6 1.3 Caffeoylbetulinic
acid 2 3

535.4747 12.87 [M-H]− C34H64O4 3.8 FAHFA
(18:1/16:0) 1.9 2

549.3436 3.7 [M+HCOO]− C30H48O6 1.6 Triterpenic acid 1.6 3

749.6105 13.21 [M-H]− C49H82O5 2.8 DAG (46:7) 1.6 3

DAG—diacylglycerol; FAHFA—fatty acid ester of hydroxy fatty acid; PLSDA VIP—variable importance in
projection of PLSDA model; TAG—triacylglycerol

Flavonoids, wax esters and other lipids together with triterpenoids were the three
classes of compounds identified as markers. The first group included isorhamnetin (methy-
lated metabolite of quercetin), isorhamnetin rhamnoside and luteolin malonyl glucoside,
secondary metabolites reported to be present at low levels in apple skin [41,42]; all were
present at higher levels in “Idared” and “Jonagold” apple cultivars. The second group
of significant markers (according to the VIP score) was identified as wax esters, a lipid
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subclass defined by the LIPID MAPS structure database (LMSD) [43]. Although many
studies have indicated the presence of wax esters in the apple cuticular layer [12,44–46], the
(tentative) identification of individual representatives relied exclusively on gas chromatog-
raphy coupled to a flame ionization detector or mass-spectrometry with a simple mass
analyzer, where the sample preparation typically involved the hydrolysis of ester bonds
and a derivatization step aimed at increasing the volatility of the released fatty acids and
alcohols under these conditions; some of the information about the wax structure is lost.
Contrary to that approach, in another earlier comprehensive study [47], GC-MS analysis
of whole molecules was performed; a database involving electron ionization mass spectra
of 154 wax ester standards (various straight-chain and methyl-branched saturated and
unsaturated species) was created. As regards LC-MS, several authors have investigated
the mass spectra of wax esters obtained via this technique in more detail. In two older
studies [48,49], atmospheric pressure ionization (APCI) and two types of mass analyzers
(ion trap and Orbitrap) were used for this purpose. The dominant signals in the mass
spectra were protonated molecular ions [M+H]+. Also in our study, where ESI was used
instead of APCI, the most intensive ions in the wax ester spectra were [M+H]+. On the
other hand, some papers report the use of ESI (and ammonium formate was a component
of a mobile phase), but the most intensive adducts of wax esters were [M+NH4]+ [50,51].
In our study employing the Q-ToF mass analyzer, the fragmentation spectra of the [M+H]+

ion were further investigated and compared with those reported by Chen et al. [20], who
focused on a systematic investigation of collision-induced dissociation (CID) patterns of
different wax ester standards using HPLC-ESI-Q-ToF-MS. Based on this information, the
fragmentation spectra of some wax esters present in our samples could be interpreted; an
example of one of identified markers as wax ester (28:1/18:1) is shown in Figure 3.
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Figure 3. Fragmentation spectrum of marker identified as wax ester (28:1/18:1).

The molecular formula C46H88O2 was calculated for the precursor ion m/z 673.6829
based on its exact mass and isotopic envelope. In the MS/MS spectrum, the base ion m/z
283.2659 was identified as an octadecenoic acid fragment [RCOOH2]+, which was formed
by breaking the ester bond in the wax molecule. The fragments ions m/z 256.2564 and m/z
247.2445 were residues of oleic acid, namely, [RCO]+ and [RCO-H2O]+, respectively, which
is in line with the spectra interpretation introduced by the aforementioned study [20]. The



Foods 2024, 13, 1308 11 of 17

calculated difference between the precursor ion [M+H]+ (m/z 673.6829) and the fatty acyl
fragment (m/z 283.2659) 390.4170 corresponded to the elemental composition C28H54, i.e.,
the loss of the octacosenol alkyl moiety. The fragmentation spectra for other wax esters
with identified fatty acid and fatty alcohol moieties are shown in File S1. The description
of the wax esters’ structure (number of carbon atoms in the alcohol; number of double
bonds/number of carbons in the fatty acid; number of double bonds) corresponds to
the nomenclature used in LMSD for this lipid subclass [52]. Another identified marker
belonging to lipids was the fatty acid ester of hydroxy fatty acid (FAHFA, 18:1/16:1). These
FAHFAs (previously known as indicators of inflammation in human samples) have only
recently been quantified in some foods, including apple skin [53]. The other identified
markers representing the class of acylglycerols were DAG (46:7), DAG (28:2) and TAG
(60:2).

The last group of identified markers of apple cultivar were triterpenic acids, a group
of compounds that was the only one analyzed in the apple cuticle by several authors using
the UHPLC-HRMS/MS technique [22,23,25]. Caffeoylbetulinic acid, one of the tentatively
identified triterpenic acids, was, together with caffeoyloleanolic acid, recognized earlier as
a typical metabolite occurring in the skins of russeted apples [25]. It should be noted that
susceptibility to russeting is rather cultivar-specific; some apples, such as Idared, develop
this defect only very rarely.

It must be emphasized that despite a relatively small number of markers used for cul-
tivars classification, the performance characteristics of the PSL-DA model were acceptable
with R2Y = 0.691, Q2Y = 0.666 and recognition ability of 91% [39]. The boxplots illustrating
markers can be found in Supplementary Materials (Figure S3).

3.3.3. Classification of Apple Geographical Origin

The comparison of the PCA cosre plots (Figures 2 and S1) documents a bigger impact
of the apple cultivar on the fingerprint of the cuticular-layer metabolome than that of the
geographical origin. For this reason, the generated data were investigated more in depth
and separately for each variety. The input file was a filtered data matrix with 16,044 and
2132 features, obtained in ESI+ and ESI− mode, respectively. Both t-test and ROC were
then applied to the data and the fold change was calculated. An OPLS-DA model was
created based on the subset of features that met the t-test FDR p-value < 0.05 and where the
area under curve (AUC) value was higher than 0.75 [54]. Apart from the model validation
performed, which was performed using seven-round cross-validation [55], the validity
of the model was also proved over several harvest seasons. The predictive ability of the
model was calculated by inserting samples from the 2020 and 2022 harvest seasons into
the model created from samples harvested in 2021. The performance characteristics of all
created OPLS-DA models for all cultivars are summarized in Table 3.

As shown in Table 3, all OPLS-DA models, except for the one classifying the geograph-
ical origin of “Jonagold” apples (ESI− data), performed satisfactorily [39]. The highest
number of features differentiating between apples from Poland and the Czech Republic was
found for the “Golden Delicious” cultivar. On the other hand, the worst performance of the
developed classification models was found for the “Jonagold” cultivar, which is known to
be susceptible to mutations (according to the experts from the Czech Research and Breeding
Institute of Pomology Holovousy, there are 23 known mutations in “Jonagold” compared
to 4 known mutations in “Golden Delicious”, 3 in “Idared” and 8 in “Gala”). Rather high
variability of apple metabolite patterns in the case of “Jonagold” cultivar (even within
the respective country) was obviously associated with its high susceptibility to mutations.
For this reason, it was difficult to identify reliable diagnostic markers. When searching
for experiences with the authentication of “Jonagold” in other studies, we found that
Chinese authors [6] included this variety in their sample set, together with “Starkrimson”,
“Qinguan”, “Gala”, “Golden Delicious” and “Fuji”. However, a different approach, the
fingerprinting of volatiles in apple juices via the SPME-HS-GC-MS technique, was used by
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authors. Interestingly, contrary to other cultivars, the authentication of which was 100%
successful, in the case of Jonagold, it was only 89%.

Table 3. Parameters of the OPLS-DA models for the classification of apple samples according to the
geographical origin (Poland vs. Czech Republic).

OPLS-DA Model
Parameters

ESI+ ESI−

Gala Golden
Delicious Idared Jonagold Gala Golden

Delicious Idared Jonagold

number of features 506 1048 156 11 13 44 24 9

R2X 0.783 0.596 0.570 0.946 0.667 0.567 0.850 0.921

R2Y 0.735 0.635 0.886 0.561 0.639 0.738 0.646 0.480

Q2Y 0.624 0.554 0.809 0.501 0.543 0.686 0.574 0.436

RMSEE 0.265 0.309 0.175 0.335 0.307 0.261 0.308 0.362

p-value of
permutation for

R2Y
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

p-value of
permutation for

Q2Y
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

validity of the
model over time 82% 65% 85% 88% 78% 77% 78% 88%

R2X—fraction of X variation described by the model; R2Y—fraction of Y variation described by the model;
Q2Y—fraction of Y variation predicted by model according to the cross validation; RMSEE—root mean square
error of estimation.

All features selected for geographical origin classification (distinguishing between
Czech and Polish apple samples), i.e., those with ROC AUC value > 0.75 and t-test FDR
p-value < 0.05, were subjected to the identification process. A total of, 40, 72 and 6 mark-
ers were identified for “Gala” (Table S1), “Golden Delicious” (Table S2) and “Idared” 6
(Table S3) cultivars, respectively. With regard to the facts mentioned above, no marker was
identified for “Jonagold” cultivar.

The most frequent markers for geographical origin were wax esters, 23 of them for
“Gala” and 28 for “Golden Delicious”. In addition to fatty acids, hydroxy fatty acids were
also bound in wax ester molecules. The example of the fragmentation spectrum of such a
marker (m/z 631.5975; retention time: 13.02 min), which was identified as a hydroxy wax
ester (24:0/18:3-O), is shown in Figure 4. The obtained spectra were similar to those of
the wax esters discussed in the previous section, but the calculated molecular formula (in
this case, C42H78O3) contained three oxygen atoms instead of two. In the fragmentation
spectra of these compounds, alike to that shown in Figure 5, there was a visible neutral loss
of H2O molecules from both precursor and fragment ions corresponding to the hydroxy
fatty acyl [56]. A total of 27 hydroxy wax esters were identified as markers of geographical
origin in the analyzed apples. For those, in which fatty acid composition was tentatively
identified, the corresponding fragmentation spectra are summarized in File S1.
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changes, respectively, darker shadows indicate higher absolute values) of wax ester (WE) and hydroxy
wax ester (OHWE) intensities corresponding to the median value of the respective compound in apple
samples (on the horizontal axis) harvested either in the Czech Republic (blue) or Poland (yellow).

In general, the most common fatty acids bound in waxes were hexadecanoic acid,
hexadecenoic acid (16:0, 16:1) and unsaturated fatty acids containing 18 carbons (18:1, 18:2,
18:3, 18:4) bound to C22-C28 aliphatic alcohol. The heatmaps in Figure 5 show that in both
“Gala” and “Golden Delicious” cultivars, the wax esters, as well as hydroxy wax esters,
were upregulated in the apples harvested in the Czech Republic (exceptions were shorter
chain wax esters, i.e., 30:3, 30:4, 30:5). In “Gala”, the differences were more pronounced
than in “Golden Delicious”; the fold change of wax esters ranged from 1.21 to 2.37 and
from 1.11 to 3,17, respectively. The higher intensities of wax esters signals (i.e., their higher
amounts) observed in the samples from the Czech Republic could be due to the higher
average altitude (and thus the different climatic conditions) of the orchards where the
apples were collected (450 m in the Czech Republic versus 173 m in Poland), which has
been previously reported as a parameter associated with thicker cuticles [57].
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The next group of identified geographical origin markers were triterpenic acids, specif-
ically ursane-type triterpenic acids. As already mentioned, these compounds, together with
their derivatives (oxo, dihydroxy, oxohydroxy), have been identified in the apple cuticle
layer by several authors [22,23].

In the case of our data, eight derivatives of ursolic acid were identified among the
markers for the cultivar “Gala”. Interestingly, all ursenoic acids showed increased intensity
in Czech apple samples. The higher intensity was statistically significant based on t-test
p-value < 0.05 (except for oxohydroxy ursenoic acid), with fold changes ranging from 1.3 to
4. In “Golden Delicious”, in addition to the five ursolic acid derivatives, their precursors
lupeone, uvaol, amyrin and hydroxybetulin were also found. Among markers for cultivar
“Golden Delicious”, there was no clear trend. As an example, the boxplots of all ursenoic
acids selected as markers are shown in the Supplementary Materials (Figures S4 and S5).

As relatively polar metabolites such as sorbitol, fucose, heptulose and mannose (trace
amounts were contained in analyzed extracts), alike some flavonoids, represented by
phloretin and chlorogenic acid common apple flavonoids [58,59], were also on the list of
geographic origin markers.

4. Conclusions

In this study, the UHPLC-HRMS/MS-based metabolomic fingerprinting of cuticular
layer extracts followed by advanced data processing was proved to be an applicable strategy
for the authentication of apples cultivars and their geographic origin. The results of this
study, within which 274 apple samples of four cultivars harvested either in the Czech
Republic or Poland in three seasons were analyzed, can be summarized as follows:

• PCA showed a more pronounced cultivar impact on the metabolites occurring in the
apple cuticle compared to that of geographical origin.

• The created PLS-DA models enabled reliable apple cultivar classification; 13 markers
encompassing mainly waxes and triterpenoids were identified,

• The created OPLS-DA models enabled the safe classification of geographical origins of
“Gala”, “Golden Delicious” and “Idared” cultivars; however, for “Jonagold”, it was
unsuccessful.

• Wax esters, including those with bound hydroxy fatty acids (reported for the first time
in apple cuticular wax), represented a significant group of identified markers, the
amount of which in “Golden Delicious” and “Gala” cultivars was higher (upregulated)
in samples from the Czech Republic compared those from Poland.

Overall, our findings underscore the potential of apple cuticular layer analysis to
be used as a robust tool for apple authentication, offering insights into both cultivar and
geographical origin distinctions. Moreover, revealing novel compounds that enhance our
understanding of apple wax composition is facilitated by this approach.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/foods13091308/s1: Figure S1: Total ion chromatograms (ESI+)
showing intensities of compounds extracted by various solvent mixtures. Figure S2: PCA Score plots
of the complete dataset of ESI− features. Samples are colored according to their cultivar (A) and
geographical origin (B). Figure S3: Boxplots of identified markers for classification of apple cultivar.
Figure S4: Boxplots of markers for classification of geographical origin for cultivar “Gala” identified
as ursane-type triterpene acids and their derivatives and precursors. Figure S5: Boxplots of markers
for classification of geographical origin for cultivar “Golden Delicious” identified as ursane-type
triterpene acids and their derivatives and precursors. Table S1: Identification of metabolites used
for geographical origin classification of apple cultivar “Gala”. Markers are in descending order
according to the AUC ROC value. The log2 FC value indicates whether the marker is increased in
Czech samples (log2 FC > 0) or in Polish samples (log2 FC < 0). Table S2: Identification of metabolites
used for geographical origin classification of apple cultivar “Golden Delicious”. Markers are in
descending order according to the AUC ROC value. The log2 FC value indicates whether the marker
is increased in Czech samples (log2 FC > 0) or in Polish samples (log2 FC < 0). Table S3: Identification
of metabolites used for geographical origin classification of apple cultivar “Idared”. Markers are in
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descending order according to the AUC ROC value. The log2 FC value indicates whether the marker
is increased in Czech samples (log2 FC > 0) or in Polish samples (log2 FC < 0). File S1: Fragmentation
spectra of all wax esters with identified fatty acid and fatty alcohol moiety.
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