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Abstract: Although many efforts have been made to control Listeria monocytogenes in the food
industry, growing pervasiveness amongst the population over the last decades has made this
bacterium considered to be one of the most hazardous foodborne pathogens. Its outstanding
biocide tolerance capacity and ability to promiscuously associate with other bacterial species forming
multispecies communities have permitted this microorganism to survive and persist within the
industrial environment. This review is designed to give the reader an overall picture of the current
state-of-the-art in L. monocytogenes sessile communities in terms of food safety and legislation,
ecological aspects and biocontrol strategies.
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1. Listeria monocytogenes, a Food Safety Concern

Listeria monocytogenes is a ubiquitous pathogen that can stem from a febrile gastroenteritis to
a severe invasive illness (listeriosis), leading to septicaemia, encephalitis, endocarditis, meningitis,
abortions and stillbirths, among others syndromes [1,2]. The incidence of listeriosis is low amongst
the general population, with 0.46 and 0.24 cases per 100,000 population in 2015 in the European
Union and the United States respectively [3,4]. However, L. monocytogenes was responsible for many
foodborne outbreaks with high hospitalisation and mortality rates worldwide, especially affecting
pregnant women, the elderly and individuals with compromised immune systems. In particular,
L. monocytogenes caused more foodborne outbreaks between 2005 and 2015 in the EU (83) than in
the US (47), resulting in 757 and 491 cases, respectively [5–13]. In contrast, a higher number of cases
required hospitalisation in the US (428) than in the EU (332), leading to more deceases (82 and 61
deaths respectively) and a higher mortality rate (24 and 16% of deceases related to foodborne outbreaks
in the US and in the EU, respectively).

In spite of modifications to legal regulations, ready-to-eat (RTE) meats and dairy products are
still the predominant vehicles involved in the main listeriosis outbreaks which have occurred since
2008, as well as other “low risk” products such as fruit and vegetables (Table 1). In addition to this,
no consensus has been achieved among international food authorities in regards to the microbial
criteria for L. monocytogenes [14]. As a matter of example, The United States Department of Agriculture
(USDA) and the Food and Drug Administration (FDA) implemented a “zero tolerance” policy for
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L. monocytogenes contamination of RTE food products [15,16]. In contrast, the European Commission
Regulation No. 2073/2005 (amended by EC No. 1441/2007) permits levels of L. monocytogenes up to
100 CFU/g in RTE foods placed on the market during their shelf-life, except in those intended for
infants or for special medical purposes, in which must be absent in 25 g of product [17,18]. Canada,
Australia and New Zealand also permit levels of L. monocytogenes lower than 100 CFU/g for RTE foods
in which the growth of this pathogen is limited throughout the stated shelf-life, but it must be absent
in 25 g of those which can support its growth [16,19,20]. According to the Chinese Centre for Food
Safety (CFS) levels of L. monocytogenes of 10–100 CFU/g are allowed in RTE commercialised in China,
except in those refrigerated (not frozen) in which it must be absent in 25 g of product [21,22]. In Brazil,
the use of L. monocytogenes as microbial criteria is limited to cheese, in which it must be absent in
25 g of product [23]. Curiously, many food companies follow the national regulations for products
commercialised in their own country, but not foreign regulations for products that they export, leading
to products with different standards of quality and safety. These actions can involve eventual problems
of cross-contamination between the processing chains and a serious risk to consumers due to this lack
of universal legislation. Therefore, an international consensus in microbial criteria for foodstuffs must
be reached.

Table 1. Main outbreaks of foodborne listeriosis since 2008.

Year Country Food Product Cases Hospitalisations Deaths Ref.

2008 Canada Delicatessen meat 57 47 24 [24]
2009–2010 Austria, Germany and Czech Republic “Quargel” cheese 34 34 8 [25]
2009–2012 Portugal Fresh cheeses 30 30 11 [26]

2010 Texas (US) Diced celery 10 10 5 [27]
2011–2012 28 US states Cantaloupes 147 143 33 [28]

2012 14 US states Brand ricotta salata cheese 22 20 4 [29]
2012 Spain Latin-style fresh cheese 2 2 2 [30]

2013–2014 Switzerland RTE salad 32 32 4 [31]
2013–2014 Denmark RTE meat products 41 41 17 [32]
2014–2015 12 US states Caramel apples 35 34 7 [33]

2015 10 US states Soft cheeses 30 28 3 [34]
2016 9 US states Packaged salads 19 19 1 [3]
2016 4 US states Frozen vegetables 9 9 3 [13]

RTE: ready-to-eat.

In the food industry, L. monocytogenes can persist for months or even years on floors and
equipment and in drains of food-processing facilities [35,36]. This is mainly due to its ability to survive
under food-related conditions that are stressful for other bacteria, such as refrigerated temperatures,
desiccation, heat and high salt content [37–40], and its ability to form biofilms [41,42]. The application
of ineffective cleaning and disinfection procedures in food-processing environments, particularly in
locations of difficult access, also increases the risk of establishment and growth of L. monocytogenes
and, thus, generate continuous food product contamination [43,44]. The identification of particular
niches in a food-processing facility, the validation of the efficacy of sanitation procedures applied and
the continuous monitoring of the presence and reestablishment in food-processing environments are
therefore required to improve the control of L. monocytogenes.

Livestock and produce farms are considered potential primary sources for the introduction
of human pathogenic L. monocytogenes into the food chain and food-processing plants. In fact,
L. monocytogenes was detected in cattle, silage, animal feeds, manure and growing grass, among
others [45–48]. Nevertheless, soil, water and vegetation of natural and urban environments can also
serve as reservoirs of L. monocytogenes [49–51].

L. monocytogenes involved in most human listeriosis cases has been isolated from RTE foods
post-processed in retail facilities [52,53]. The application of inadequate post-processing procedures such
as improper manipulation (e.g., bacterial transfer from operator’s hands and gloves, cutting boards or
scales among others) or the use of contaminated slicing machines were the main cause of contamination
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in RTE foods [53–56]. In addition, L. monocytogenes is also found on non-food contact surfaces such
as floors, drains, sinks, and walk-in cooler shelves of retail facilities [57,58]. L. monocytogenes can
also proliferate due to temperature fluctuations in coolers during distribution and commercialisation
of food products [59]. Moreover, this pathogen is detected in domestic environments [60–62] and
public restaurants [63–65]. Several listeriosis outbreaks are also associated with foods purchased
from or provided in hospitals and health care centres [66–68]. A limited knowledge of food safety, as
well as an inappropriate attitude and hygiene of food handlers can directly affect the quality of the
product [69,70]. Therefore, guidelines for prevention of L. monocytogenes contamination and persistence
should be widely spread.

2. Efficacy of Food Industry Sanitisers against L. monocytogenes

According to published data, in Europe, around five trillion euros are invested annually for
the implementation of hygienisation systems in food-related industrial environments. Nevertheless,
the levels of bacterial contamination in processed food products is still a major issue of concern, with
the increasing incidence of L. monocytogenes being remarkable if we take into account the notified cases
of listeriosis [71]. The current tolerance to disinfectants in L. monocytogenes has been a topic of concern
in the context of the food industry and public health regarding foodborne pathogens. The presence of
high bacterial concentrations and the interference with organic matter due to insufficient cleaning prior
to disinfection diminishes the activity and thus the efficacy of disinfectants commonly used in industrial
premises [72]. This does not necessary mean that the quantity used is lower, but that the effective
concentration of the antimicrobial is less than expected, compared to the initial amount deployed.
However, anthropologic factors such as failure in dosage or inadequate rinsing are also responsible for
the generation of tolerances due to the formation of areas in which sub-lethal concentrations of the
disinfectant are present [73]. Additionally, it has also been stated that tolerance to certain disinfectants
may contribute to the persistence of L. monocytogenes in the food industry [74].

In this section, the behaviour and further tolerance mechanisms to quaternary ammonium,
chlorine and acid compounds in L. monocytogenes, are reviewed.

2.1. Quaternary Ammonium Compounds

Among biocides, quaternary ammonium compounds (QACs) are undoubtedly, one of the most
commonly used disinfectants in the food industry efficient against bacteria, algae, fungi, spores, viruses
and mycobacteria even at low concentrations [75]. QACs are active in the membrane of bacteria, casing
disruption in the phospholipid bilayer and subsequent cellular content leakage causing eventual
bacterial death [75]. They are stable, surface-active agents presenting low toxicity and little affected by
organic matter, which make them very adequate for food industry purposes.

The described mechanisms underneath tolerances to QACs are diverse and are strongly influenced
by the environment and the genetic background of each particular strain [76]. Considering the
latter, a study carried out by Liu et al. [77] demonstrated how the presence of antimicrobials’
sublethal concentrations can increase the possibility of oxidative stress of the cell due to an increasing
concentration of free radicals in the cytoplasm. As a result, this can promote the activation of various
genetic cascades like the apparition of de novo mutations due to the triggering of the SOS-response [78].
The overuse (or misuse) of QACs, may enhance the selection of new genetic elements that can be
horizontally transferred [78,79]. This fact poses an additional element for the development of new
forms of tolerances in L. monocytogenes, thus dwindling the number of options for treatment in
industrial contexts that could finally enhance the biofilm formation to this pathogen [74].

Active efflux pumps are considered so far, the main mechanism for L. monocytogenes tolerance
to QACs. This was early described by Aase et al. [80], demonstrating an extrusion of ethidium
bromide outside the cell in BAC resistant and BAC adapted strains, which not only indicated the
presence of an efflux pump but also that this mechanism is intrinsic to L. monocytogenes and can
be activated by a sublethal exposure to BAC. Subsequent studies demonstrated that these efflux
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pumps are chromosomically encoded and that the exposure to QACs leads to an overexpression of
them [76]. Despite the general agreement on this major strategy for QAC tolerance, there is still some
controversy about the origin of the genetic determinants coding for efflux pumps. As a matter of
example, Dutta et al. [79] demonstrated that in BAC-tolerant L. monocytogenes from various sources,
the bcrABC cassette was present in 98.6% of isolates. Contrarily, Ebner et al. [81] identified the qacH
as the main genetic determinant in BAC resistant isolates from different food matrices, and the lack
of correlation between this genotype, the isolation source, the biofilm formation capability and the
serotype. More recently, a new efflux pump, emrE, has been described in L. monocytogenes conferring
cross-resistance to BAC and other antimicrobials [82].

Genetic mobile elements also play an important role in the dissemination of resistance genes
among L. monocytogenes. Among, bcrABC-carrying isolates, it has been proposed that the transmission
and subsequent integration into the chromosome, together with other resistance genes, has been
mediated via transposon-containing plasmids [79]. In addition to this, Müller et al. [83] have described
in L. monocytogenes the structure of Tn6188, harbouring the qacH gene. Ulterior investigation regarding
this mobile element, has demonstrated that cells expressing qacH-encoded efflux pumps, showed
increased MICs to BAC and other QACs, and also a decreased susceptibility to ethidium bromide [84].

Moreover, in L. monocytogenes, biofilm formation itself is a cause of increased tolerance to QACs
due to the alterations in the membrane fluidity of the cell [85]. These alterations are mainly because of a
decrease in the proportion of iso-C15 and anteiso-C15 branched-chain fatty acids (BCFA) together with
an significant increase in the quantity of saturated fatty acids (SFA) [86]. Consequently, the membrane
hydrophobicity is increased, thus promoting further adherence to surfaces [87]. Similar modifications
have been described in cells exposed to sublethal concentrations of BAC [73] or to cold stress [87].

2.2. Chlorine-Based Compounds

Chlorines are cheap and straightforwardly used antimicrobials active against bacteria, fungi and
algae. Different chlorine-based compounds such as sodium hypochlorite, chlorine dioxide gas or
aqueous chlorine dioxide have been proven to be active against L. monocytogenes [88].

Due to their fast-oxidising nature, they interact with cellular membranes or penetrate directly
into the cell forming N-chloro groups that react with the cellular metabolism due to the interference
with key enzymes [89]. With this regard, Valderrama et al. [90] found a L. monocytogenes reduction of
about 4 log CFU/mL in brine chilling solutions treated with 3 mg/mL chlorine dioxide with just 90 s
contact time. Nevertheless, in L. monocytogenes, proper chlorine efficacy seems to be age-dependent
since the thickness of the cell wall in young cultures is higher, thus protecting the cells from these
sanitisers. In this line, El-Kest and Marth [91] demonstrated that a solution of 1 mg/mL of free chlorine
during 10 min sufficed to reduce 4.27 orders of magnitude in 48-h-old L. monocytogenes Scott A cultures,
whereas in 24-h-old cultures the reduction was only of 2.88 orders of magnitude.

Tolerance development against chlorine-based sanitisers has been described so far to be unlikely
in L. monocytogenes cell suspensions [92,93]. However, Lundén et al. [94] showed that continuous
transfers culture in increasing concentrations of sodium hypochlorite can promote the increase in MIC
values of this disinfectant. Additionally, decreased activity of chlorine-based sanitisations have been
observed not because of intrinsic factors but to interactions with external elements such as organic
matter [91,92,95] or divalent cations [90].

In L. monocytogenes biofilms, the efficacy of chlorine solutions has been proven to greatly depend on
the biofilm substrate. Hence, Bremer et al. [96] observed a significant higher proportion of eliminated
cells of L. monocytogenes when grown on stainless steel coupons compared to those grown on polyvinyl
chloride surfaces. These results were also in concordance with those obtained by Pan et al. [97]
demonstrating higher tolerance to chlorine treatments in those biofilms grown in Teflon compared
to those on stainless steel. Moreover, it has been observed that the adaptation of planktonic cells
and subsequent sessile growth on stainless steel makes biofilms to be more tolerant to chlorine,
independently of the subtype, cellular density of the biofilm and its morphology [98]. Additionally,
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some authors also described a cross-resistance in favour of tolerance to chlorine in L. monocytogenes
biofilms previously treated with peroxide-based products, thus indicating that the mechanisms
responsible for oxidising agents’ tolerance may have a common nature in L. monocytogenes [97].

The effects of chlorination in L. monocytogenes multispecies biofilms have also been investigated.
Norwood et al. [99] showed that this pathogen is able to endure concentrations higher than 1000 ppm
of free chlorine in a continuous co-culture with Staphylococcus xylosus and Pseudomonas fragi on stainless
steel. In contrast, other authors have found that in co-culture with Flavobacterium spp., a slightly
acidic solution containing 400 ppm of free chlorine is enough to reduce the load both bacteria up to
undetectable levels [96].

2.3. Acid Compounds

Acids are strong oxidisers able to interfere with cellular phospholipid bilayers and cytosolic
material causing irreversible damage (e.g., disruption of proton motive force) and subsequent death
to cells [100,101]. However, L. monocytogenes is able to adapt to low pH environments generated
by natural processes (e.g., lactic fermentation) or artificially induced (e.g., acidification of water for
cleaning systems) by means of different mechanisms. This not only allows this pathogen to survive in
the environment, but could also increases its virulence since it further helps the bacterium to survive
into the gastrointestinal tract and macrophage phagosome [102].

In spite of the fact that acid adaptation is a transient state in L. monocytogenes [103], it enhances
the survival of this pathogen in the food industry, while also providing the bacterium with higher
protection against other environmental insults [103]. Following this line, Phan-Thanh et al. [104]
demonstrated that pre-exposure to mild acidic conditions (pH 5.5, 2 h) increased its endurance against
lethal acidic, temperature (52 ◦C), salinity (25–30% NaCl) and alcoholic (15%) shocks. These effects
are even more evident when the acid adaptation takes places gradually [102,105]. Additionally,
it has been demonstrated that sublethal acid adaptation deeply alters the intracellular protein pattern
expression, being more evident as the pH decreases [104,106], and that this differential pattern is
strain-dependent [104].

There are different ways described in the literature in which L. monocytogenes can adapt to acidic
conditions, all of them focused on the maintenance of the intracellular homeostasis. Among them,
the glutamate decarboxylase (GAD) system is considered one of the major mechanisms [107]. This
involves the GAD enzyme, which promotes the irreversible conversion of cytosolic glutamate to a
neutral compound, the γ-aminobutyrate (GABA), by irreversible decarboxylation of the first [103].
The synthesis of GABA has a dual protective role: firstly, it consumes an intracellular proton during
the process, with the subsequent increase of the pH inside of the cell [103]. Additionally, the extrusion
of GABA outside the cell via a glutamate:GABA antiporter, contributes to the slight neutralisation of
the pH outside the cell and the restarting of the metabolic pathway [102]. In food systems, it has been
demonstrated that in glutamate-rich products, the survival rate of L. monocytogenes is significantly
improved [107]. In addition to glutamate:GABA antiporter, other proton pumps such as F0F1-ATPase
have also been proposed as active mechanisms to maintain homeostasis in acidified environments [108].

Similarly with exposure to QACs, acidic conditions modify the composition of the cytoplasmic
membrane, altering the iso- and anteiso-BCFAs ratio. Giotis et al. [109] tested the response of
L. monocytogenes 10403S to mild acid conditions, demonstrating that the total anteiso/iso ratio increased
as the culture pH decreased. This was further demonstrated by Zhang et al. [110] in L. monocytogenes
cultured in presence of various organic acids, concluding not only that the relative proportions of
BCFAs were significantly altered but also that the mechanism underneath this adaptation was shared.

In biofilms, the acid-tolerance in L. monocytogenes seems to be strain dependent. In this
line, Ibusquiza et al. [111] showed that the resistance threshold to peracetic acid between three
different strains depended not only on the strain, but also the age of the biofilm and the substrate
where the biofilms were grown on. These results were in accordance with those obtained by
Lee et al. [112,113]. Furthermore, in addition to its overall resistance, biofilm formation is also affected
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when L. monocytogenes is exposed to acid compounds generally enhancing its adherence [114,115]
even though there is evidence that early exposure to acidic conditions does not modify the ulterior
biofilm formation capacity [116]. Additionally, accompanying strains, such as lactic acid bacteria, can
exert a protective effect to L. monocytogenes in mixed-species biofilms, increasing its tolerance to acidic
sanitisers [117].

3. Microbial Interactions and Resistance of L. monocytogenes Mixed-Species Biofilms

It is accepted that bacteria live in nature associated with another species forming structured
multispecies biofilms [118]. Their life in communities makes unavoidable interspecies interaction and
its impacts biofilm ecology.

Microbial communities can be defined as multispecies associations with complex structures that
normally suppose important ecological advantages to the individual species present. In fact, it is
accepted that biofilms represent a microbial phenotype with an explicit organisation level in which
microorganisms are involved in intracellular interactions that can be competitive, cooperative or even
neutral, depending on the microbial species involved and the environmental conditions [119].

Interspecies interactions are especially relevant in L. monocytogenes considering it is considered a
poor biofilm former when compared to other bacterial species [120]. Several previous studies have
addressed the influence of the accompanying microbiota in the number of adhered viable cells of
L. monocytogenes in the corresponding mixed biofilm. There is a risk associated with the increased
attachment of L. monocytogenes on food processing surfaces precolonised by other bacterial genera.
In general, the number of adhered L. monocytogenes was increased, decreased or unaltered depending
on the accompanying bacterium [121]. As an example, Norwoord and Gilmour [122] demonstrated
that higher L. monocytogenes numbers in monocultures compared with the multispecies biofilms formed
after its association with Staphylococcus xylosus and Pseudomonas fragi. Rodríguez-López et al. [123]
explored the association capacity of ten different accompanying strains with L. monocytogenes when
forming dual-species biofilms. Outcomes demonstrated a deleterious effect of several accompanying
strains on L. monocytogenes present on biofilms in 4 out of 10 different combinations checked. On
the contrary, in other studies it has been showed that accompanying strains increase the level of
adherence of L. monocytogenes in the mixed biofilm [123–126]. In summary, literature highlights that
phenomena of adhesion/aggregation between different bacterial genera cannot be predicted since
different environmental conditions can be encountered within the different niches.

Generally, previously reported studies consider that the amount of adhered viable cells in biofilms
is directly related with its resistance to antimicrobials [127,128]. Nevertheless, in L. monocytogenes,
viable biomass present in the biofilm does not give any certain indication about the difficulty of
this pathogen to be eliminated from a given contamination site. In fact, a study carried out by
Midelet et al. [129] demonstrated that interaction of L. monocytogenes with Kocuria varians results in
higher density of the first but made its detachment easier.

The specific location of L. monocytogenes in the mixed microbial communities seems to be crucial
when thinking on the effective elimination of the cells from contaminated surfaces or foods. Sasahara
and Zottola [130] described initially interactions between Pseudomonas sp. and L. monocytogenes in
biofilms and claimed on the need of a primary coloniser such as Pseudomonas sp. for L. monocytogenes
to attach. Curiously, subsequent confocal microscopic studies highlight that L. monocytogenes locates at
the bottom layers of the dual biofilms with Pseudomonas fluorescens. Moreover, the authors argue that
L. monocytogenes cells have to make their way towards the biofilm bottom across the matrix [131].

Specific interspecies interactions existing in nature inside the biofilm are difficult to understand
because it is impossible to empirically reproduce the strategies adopted by each species of the bacterial
community to finally enhance the fitness of the biofilm consortium [119]. In spite of this, several
advances have been achieved, mainly referred to the role of the accompanying microbiota.

As part of biofilm fitness, resident microbiota could protect L. monocytogenes to external stimuli
such as food processing and/or disinfection conditions. This has been a matter of concern for biofilm
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researchers in the last decades. However, due to the complexity associated with the experimental
work within biofilms, most of the published articles had been carried out with dual-species biofilms,
which can be considered an excessive simplification of the realistic situation. Lactobacillus plantarum
protected L. monocytogenes from the action of BAC and peracetic acid (PAA) [117]. Similarly,
Saá Ibusquiza et al. [132] also showed that the presence of Pseudomonas putida increased the resistance
of several strains of L. monocytogenes to BAC and PAA.

On the other hand, a recent study carried out by Papaioannou et al. [133] demonstrated, using a
more realistic approach, that L. monocytogenes adhesion to stainless steel decreased (<102 CFU/cm2)
due to co-culture with indigenous microbiota commonly found in fish industry such as Pseudomonas
spp., Enterobacteria or sulfide-producing bacteria. Furthermore, they postulated that this adhesion
impairment was possibly one of the causes of an observed increased sensitivity to two common
industrial disinfectants (Hypofoam and Divosan).

In spite of the difficulty associated with this type of studies, advances in microscopic and high
throughput sequencing methodologies will permit to go deeper in the knowledge of species interactions
in order to improve the hygienic design and the control of foodborne pathogens.

4. Biosanitation of L. monocytogenes Biofilms Using Lactic Acid Bacteria and Bacteriocins

The removal of microorganisms from food premises cannot be currently conceived without the
use of conventional biocides. However, this practice has not been completely successful, and some
issues have arisen. For instance, the emergence of resistant (or tolerant) strains [134,135] and a highly
decreased effectiveness in the presence organic material [136] or in “harbourage sites” [121].

Huge efforts have been therefore conducted to search for new strategies of control of foodborne
pathogens, with particular reference to L. monocytogenes [137–139]. This search has also included
cost-effectiveness, environmentally friendly nature and low toxicity to humans as further major
requirements. As a result, a number of promising alternatives have been identified, such a lactic acid
bacteria (LAB), bacteriocins or bacteriophages, enzymes and surfactants (mainly as anti-adhesion and
detachment agents), essential oils, electrolysed oxidising water and ozone, photocatalysts, ionising
and UV radiation or ultrasonication, among others.

It is widely known that the microbiota present in food facilities can enhance or inhibit the
colonisation of surfaces by L. monocytogenes [119,125,140]. Accordingly, Fox et al. [141] proposed to
influence the microbiome in favour of antilisterial species as a strategy to reduce the presence of
L. monocytogenes. However, the microorganisms are, in general, undesirable in food premises, since
they may promote food spoilage or cause food safety problems. This is may not be the case for LAB,
particularly for those having probiotic properties.

Many different LAB and several bacteriocins are known to be highly active against Gram-positive
bacteria, particularly against L. monocytogenes [142,143]. In addition, the presence of antilisterial
structural bacteriocins genes in LAB has been recently reported [144]. Accordingly, several studies
have examined the potential of LAB and their bacteriocins as a tool for the control of biofilms of
L. monocytogenes in food facilities. This last section of this review is intended to briefly outline some of
the most significant results of these studies.

4.1. Preventing Biofilm Formation

Nisin is, without any doubt, the most studied bacteriocin. Moreover, among bacteriocins, only
nisin has been granted a generally recognised as safe (GRAS) status by the FDA and approved for use
as a food additive (additive number E234) within the European Union. Initial studies were, therefore,
focused on the effectiveness of nisin and nisin-producing Lactococcus lactis subsp. lactis strains against
biofilms. An early study by Bower et al. [145] already showed that nisin films adsorbed on silica
surfaces inhibited the growth of L. monocytogenes. In addition, high nisin concentrations were found to
be lethal to attached cells.
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Since then, a number of studies have evaluated the potential of several bacteriocins to prevent
adhesion and biofilm formation of L. monocytogenes on different plastic and metallic substrates,
specifically nisin [146–148], enterocins [148,149] and sakacin 1 [150]. Although these studies were
conducted using from pure bacteriocins to cell-free extracts, results clearly show that bacteriocins may
delay but not prevent biofilm formation completely. In fact, only enterocin AS-48 (conditioned on
polystyrene surfaces) was reported to be able to completely inhibit biofilm formation for at least 24 h,
but longer times of study were not tested [149]. Similarly, Winkelströter et al. [150] also observed a
noticeable inhibition of initial stages of biofilm formation for up to 24 h in the presence of a cell-free
neutralised supernatant of Lactobacillus sakei 1 (containing non-purified sakacin 1), but regrowth of
biofilms took place subsequently, which was attributed to a possible lack of competition for nutrients
or a selection of bacteriocin-tolerant phenotypes.

The effect of Lactococcus lactis CNRZ 150, a nisin-producing strain, against the attachment of
L. monocytogenes was also examined [151]. These authors underlined an additional advantage of using
bacteriocin-producing LAB over bacteriocins, that is, competitive inhibition limiting nutrient supply
and, accordingly, two different approaches were addressed. The first, “deferred adhesion” (later
defined as exclusion mechanism), consists of testing the effect of pre-formed L. lactis biofilms. In the
second, “simultaneous adhesion” (later, competition mechanism), the effect is tested by co-culturing
L. lactis and L. monocytogenes. In both scenarios, attachment of L. monocytogenes and subsequent biofilm
formation was effectively prevented.

Considering that it is highly likely that L. monocytogenes encounters resident biofilms rather than
solid abiotic surfaces in food-processing environments [152], the effectiveness of LAB against the
attachment of L. monocytogenes has been interchangeably tested in terms of exclusion or competition
mechanisms in many subsequent studies. This effect has been defined as competitive exclusion.
As a result, a high number of different strains has been shown to be highly effective: Enterococcus
durans [153,154], Enterococcus faecium [146], L. lactis [153–155], Lactobacillus plantarum and Enterococcus
casseliflavus [156], Leuconostoc mesenteroides [157], L. sakei [150,158], Pediococcus acidilactici, Lactobacillus
amylovorus and Lactobacillus animalis [159], Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus
paracasei and Lactobacillus rhamnosus [160], and Lactobacillus paraplantarum [161], among others.

Generally, bacteriocin-producing strains have been found to be more effective than
non-bacteriocin-producing strains against biofilm formation by L. monocytogenes. This was clearly
found for E. faecium [146], L. mesenteroides [157] and L. sakei [150]. However, the effectiveness of LAB
can be also due to other antimicrobial metabolites, such as lactic acid and other organic acids which
also decrease pH, as well as biosurfactants that can additionally prevent adhesion [155,162].

Additionally, competition for adhesion sites and nutrients was also shown to inhibit biofilm
formation [163,164]. Interestingly, a study performed by Habimana et al. [164] showed by
confocal laser-scanning microscopy of dual-species biofilms formed by co-culture with L. lactis that
L. monocytogenes cells were located in the bottom layers of biofilms, entirely covered by L. lactis.
In addition, modelling revealed that L. monocytogenes would be, in their own words, smothered by
competitors and forced into a survival lifestyle, rather than into proliferation or colonisation processes.
This inhibition would mainly occur during the initial phases of biofilm formation, essentially due to
longer generation time and latency of L. monocytogenes. A similar effect had been already detected
by Leriche et al. [151], who found that L. monocytogenes became permanent resident in dual-species
biofilms when the inoculum size was high (108 CFU/mL), even though high densities of L. lactis were
able to outcompete and prevent L. monocytogenes to resume growth on surfaces. In keeping with these
studies, it is worth to indicate that L. monocytogenes was found to be more resistant to disinfection in
dual-species biofilms with L. plantarum than in single-species biofilms, particularly when outnumbered
by L. plantarum, which seems to indicate a protective effect of the latter [117].
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4.2. Removal of Biofilms

In line with these above mentioned studies, different comparative studies have shown that
the effectiveness of LAB against pre-formed biofilms of L. monocytogenes (approach known as
displacement mechanism) is significantly lower than on adhesion and biofilm formation by competitive
exclusion [158–160]. That is, acting early would seem to be most appropriate to prevent biofilm
formation. A similar conclusion can be drawn by comparing results from two different studies
conducted by Zhao et al. [153,154], despite the effectiveness of displacement being considerably
increased by extending treatments with LAB for up to 3 weeks.

Similarly, nisin was found to act rather slowly and, more importantly, with a limited effectiveness
against pre-formed biofilms of L. monocytogenes [111,155]. This was attributed to a reduced ability to
diffuse into the matrix and reach cells. Subsequent studies have confirmed that nisin does not seem to
be practical as a surface sanitiser on its own [165,166]. Biofilms were also highly resistant to treatments
with enterocin [149] and a semi-purified curvacin extract of L. sakei [158]. Concentrated cell-free
supernatants from several bacteriocin-producing LAB did not have strong effects on pre-formed
biofilms of L. monocytogenes either [167]. On the contrary, an important effect on biofilms was recently
claimed for both nisin and enterocin [148], but rather high cell densities could be still clearly observed
by scanning electron microscopy following treatments.

4.3. Combined Treatments

L. monocytogenes can develop tolerance and even resistance to bacteriocins if exposed to
sub-inhibitory concentrations [168,169], and this decreases substantially the efficacy of treatments.
Thus, Bower et al. [145] had already shown that coating surfaces with nisin did not inhibit the adhesion
of nisin-resistant L. lactis. Combining LAB or bacteriocins with other antimicrobial factors may provide
a greater effect, something that has been widely known for a long time. Thus, Leriche et al. [151] had
already suggested the use of hurdle technology-like approaches to overcome bacteriocin resistance.
Some studies have tested this strategy on biofilms of L. monocytogenes.

Of note, the treatment of floor drains of food-processing facilities with one strain of L. lactis
subsp. lactis and other of E. durans greatly reduced the contamination with L. monocytogenes [154,170].
This combination should reduce the likelihood that L. monocytogenes developed tolerance to nisin too.
Thus, most drains were found to remain free of detectable L. monocytogenes for several weeks after
completing treatments.

Remarkably, bioencapsulation of thermally-treated fermentates of two strains of Carnobacterium
maltaromaticum and one of Enterococcus mundtii, plus a relatively high nisin concentration, in an alginate
matrix supported by a mesh-type fabric was highly effective against biofilms of L. monocytogenes [171].
Bioencapsulation allows bacteriocins to be slowly released, which seems to be more effective than
large doses [172], as long as the emergence of resistance does not occur. This biocontroller eliminated
L monocytogenes from biofilms formed in floor gutters in a fish processing plant after only 48 h of
contact time, but was rather ineffective against biofilms formed on plastic surfaces (i.e., Teflon and
rubber), where they were thinner and the attachment was stronger than on stainless steel. Importantly,
conventional biocides did not reduce the effectiveness of the biocontroller. They were thus used jointly
to achieve maximum effectiveness.

As an alternative to combine different LAB, some researchers have proposed to combine
bacteriocins with different modes of action. This involved merging nisin—a class I bacteriocin—with
enterocin—belonging to class IIb—, a bacteriocin produced by enterococci, was highly active against
biofilms of nisin-resistant L. monocytogenes. Four-fold less of both bacteriocins were required and,
importantly, no cross-resistance was detected [148]. On the contrary, cross-resistance for nisin and
class IIa bacteriocins has been detected [173,174]. Nonetheless, previous studies demonstrated that
some enterocins can present cytotoxicity upon epithelial cells [175], hence, whether they can be safe
for use in food environments still remains to be clarified.
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Combining bacteriocins with conventional biocides also seems an attractive strategy to reduce the
likelihood of colonisation by resistant variants. Thus, the combination of enterocin AS-48 with different
commercial sanitisers (quaternary ammonium compounds, bis-phenols or guanides) was found to
be much more effective than any single treatment, but this effect was not observed with oxidising
agents [149]. This approach would also allow conventional biocides to be used in lower amounts while
increasing efficacy, which is highly important to reduce toxicity to humans and in the environment.

4.4. Final Considerations

A controlled application of LAB seems a very promising approach to prevent or even remove
L. monocytogenes from food facilities basically as a result of a high competitive potential for adhesion
sites and nutrients, and the production of some growth-inhibiting compounds, majorly bacteriocins.
Moreover, the ability of LAB to spread and colonise surfaces can make them highly suitable as an
alternative treatment for difficult-to-reach locations, where L. monocytogenes is not easily removed by
routine cleaning and disinfection.

LAB have been safely used by humans for centuries in food production and preservation.
However, they have no legal status for use as biosanitisers in the food industry. Accordingly,
some issues have arisen concerning the use of some LAB. Prerequisites for a safe use need to be
clearly defined.

Ideally, bacteriocin-producing LAB with no cross-resistance should be strategically combined to
increase efficacy and prevent the emergence of bacteriocin-resistant phenotypes. In this sense, studies
intended to validate different combinations of LAB should be encouraged. However, LAB generally
join pre-existing polymicrobial biofilms in food processing environments rather than forming new
structures. Consequently, this coexisting microbiota as well as temperature (which fluctuates rather
significantly), the surface or soiling, among other factors, can eventually affect attachment, growth and
bacteriocin production of each LAB, and therefore the effectiveness of treatments. Treatments should be
therefore optimised individually. Unfortunately, only a small number of studies have addressed in situ
testing [154,170,171], which makes it highly likely that applications are far from being straightforward.
The design of strategies for in situ application of LAB in the food industry is thus needed.

5. Conclusions and Future Perspectives

There is no doubt that the recalcitrance of L. monocytogenes in foodstuffs is greatly influenced
by the ubiquitous presence of its biofilm among food contact and non-food contact surfaces within
food-processing premises [121]. Despite the great advances that have been made over the last few
decades in the field of food safety, several outbreaks (Table 1) with high rates of morbidity and
mortality, especially within the so-called YOPI (young, old, pregnant, immunosupressed) group, are
still reported [71,176].

Understanding the various genetic and physiological underlying mechanisms leading to
antimicrobial resistance as well as the influence on L. monocytogenes of pre-existing resident/transient
microbiota and vice versa, are nowadays considered as key factors to developing fast, efficient, safe and
cost-effective treatments in order to improve the environmental control of this foodborne pathogen.

Additionally to biocontrol as presented in this review, there is a significant amount of ongoing
investigation developed by several groups focused on the design of ad hoc antibiofilm strategies
such as enzymes [177], bacteriophages [178] or combined strategies [179]. Nevertheless, the rapid
adaptation undergone by the different members of sessile communities makes us always being one step
behind. Hence, the development of preventive rather than disinfecting strategies based on case-by-case
approaches appears as wide field of research to go in-depth to eventually ensure the quality and safety
of foodstuffs consumed in the society.
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