
foods

Article

Multiple Modeling Techniques for Assessing Sesame
Oil Extraction under Various Operating Conditions
and Solvents

Haitham Osman 1,*, Ihab Shigidi 1 and Amir Arabi 2

1 Department of Chemical Engineering, King Khalid University, P.O. Box 394, Abha 61411, Saudi Arabia;
etaha@kku.edu.sa

2 Department of Mechanical Engineering, King Khalid University, P.O. Box 394, Abha 61411, Saudi Arabia;
aarabi@kku.edu.sa

* Correspondence: haman@kku.edu.sa; Tel.: +966172417400

Received: 16 January 2019; Accepted: 18 April 2019; Published: 25 April 2019
����������
�������

Abstract: This paper compares four different modeling techniques: Response Surface Method (RSM),
Linear Radial Basis Functions (LRBF), Quadratic Radial Basis Functions (QRBF), and Artificial
Neural Network (ANN). The models were tested by monitoring their performance in predicting
the optimum operating conditions for Sesame seed oil extraction yields. Experimental data using
three different solvents—hexane, chloroform, and acetone—with varying ratios of solvents to seeds,
all under different temperatures, rotational speeds, and mixing times, were modeled by the three
proposed techniques. Efficiency for model predictions was examined by monitoring error value
performance indicators (R2, R2

adj, and RMSE). Results showed that the applied modeling techniques
gave good agreements with experimental data regardless of the efficiency of the solvents in oil
extraction. On the other hand, the ANN model consistently performed more accurate predictions
with all tested solvents under all different operating conditions. This consistency is demonstrated
by the higher values of R2 and R2

adj ratio equals to one and the very low value of error of RMSE
(2.23 × 10−3 to 3.70 × 10−7), thus concluding that ANN possesses a universal ability to approximate
nonlinear systems in comparison to other models.

Keywords: sesame oil extraction; response surface method; radial basis functions; artificial
neural network

1. Introduction

Sesame seed oil has many applications in health and food that have been known for several
thousands of years. With higher oil content in comparison with other revivals, mechanical extraction
for sesame seeds has always been the easiest in comparison to other seeds. Over the years the extraction
process has undergone numerous developments and the principle of simply “squeeze the oil out” has
been superseded significantly by the introduction of solvent extraction.

Sesame seeds have higher oil content (around 50%) than most of the known oilseeds. Sesame oil is
known to be a high-priced and high-quality oil. It is also among the most stable edible oils despite its
high degree of unsaturated fats [1,2]. Sesame oil is rich in monounsaturated and polyunsaturated fatty
acids [3]. The most abundant fatty acids in sesame oil are oleic, linoleic, palmitic, and stearic acids,
which together comprise about 96% of the total fatty acids. Oil content and fatty acid compositions vary
significantly between oilseed crops and among the same crop collected from different geographical
locations. Is has been reported that oil content for sesame seeds ranges between 44.6% to 53.1%.
The content of oleic acid, linoleic acid, linolenic acid, palmitic acid, and stearic acid varied between
36.12–43.63%, 39.13–46.38%, 0.28–0.4%, 8.19–10.26%, and 4.63–6.35%, respectively [4].
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Over the years, researchers investigated different solvents for sesame seed oil extraction [5]
have investigated the impact of roasting seeds on the oil yield and have concluded that antioxidant
capacity of the roasted seeds and oxidative stability of the extracted oil could be greater than that of
the unroasted counterpart. The operating condition of sesame seed oil extraction has been studied
in more comprehensive details by number of researchers [6], as they examined the effect of sesame
seed particle sizes, the ratio of solvent to seed mass, contact time, stirring effect, roasting impact,
and extraction temperatures.

The solvent extraction is the key point-operation. Extraction takes place due to the high affinity of
solvents toward oil. The affinity is mainly chemically based. Many researchers have studied the impact
of different solvents on sesame oil extraction, [7] using n-hexane, cyclohexane, and benzene, a mixture
of n-hexane/chloroform (2:1, v/v), chloroform, acetic ether, butanol, and acetone; moreover, [8] they
have used hexane and [9] used compressed propane and supercritical carbon dioxide. The majority of
researchers have found that n-hexane yields higher extraction percentages, making it the optimum
solvent. The use of clean technology for sesame oil extraction has been investigated by various
researchers [10–12]. Different types of enzymes were used in aqueous solution in what is called
Enzymatic-Assisted Aqueous Extraction (“EAAE”), i.e., (Perctinex Ultra SPL, Alcalase, alpha amylase,
glucoamylase, pectinase, protease, lipase, and phytase) under different operating conditions. Results
revealed that oil extraction quality was improved. However, oil yield was found to be lower in
percentage in comparison to oil extracted using solvents and pressing [13,14].

The suitability of extraction methods, on the other hand, varies from plant to plant and there are
significant differences in the capital and operation costs associated [15]. Different solvents have been
studied by many researchers to reach higher extraction yields under economical operation conditions,
i.e., temperature, mixing rate, and solvent-to-seed ratios, and reported results showed different effects
on yield extraction by altering operating conditions [6,15,16].

Comparative studies between metamodels have been addressed by many researchers [17],
comparing the predictions of ANN and RSM models of fatty acid methyl ester yield achieved from
muskmelon oil under ultrasonication by two-step in situ process; other researchers applied RSM and
ANN in modeling of extrusion process [18], modeling of microwave-assisted extraction methods [18,19],
and modeling and optimisation of a heterogeneous photo-Fenton process [20].

In industry, the most advanced process control system requires accurate models if high performance
is to be attained. Most chemical processes are nonlinear in nature, which makes developing precise
models challenging [21,22].

When investigating the precision of the modeling technique, various factors, ranging from the
nonlinearity of the model behaviour to the dimensionality and data sampling technique, to the internal
parameters, are noticeably affected [23].

The need for a model that can accurately predict experimental behaviour has been the utmost
challenge for researchers over the years; such models can dramatically reduce the time and operational
cost in many engineering aspects. From here emerged the need to model sesame seed extraction using
various solvents and under different operating conditions [21].

Some of the most recognized models that are used widely are the response surface models [23–27].
Extensive surveys and reviews of different meta-modeling methods and their applications are given in
previous studies [28–30]. On the other hand [31], RSM and RBF were studied to find the best method
for modeling highly nonlinear responses found in impact-related problems. They also compared the
RSM and RBF models with a highly nonlinear test function. Despite the computation cost of RBF,
they concluded supremacy of RBF over RSM in such optimization problems.

2. Methodology

The previously obtained experimental data for sesame oil extraction [6] were modeled using
different solvents, namely hexane, acetone, and chloroform. These solvents were investigated as they
report to have higher extraction yields. Experimental data were obtained for different sesame seeds



Foods 2019, 8, 142 3 of 16

average particle sizes (2, 1.5, 1, 0.8, and 0.5 mm) after roasting at different temperatures (100, 120, 140,
160, 180, and 200 ◦C) as a pre-treatment process. Different ratios of sesame seed mass to solvent mass
(1:1, 1:2, 1:3, 1:4, and 1:5) and contact time of 6, 12, and 24 hours with varying stirring speeds of 0, 150,
300, and 700 rpm were examined and samples were subjected to heating at different temperatures (25,
30, 35, 40, 45, and 50 ◦C) during contact period of extraction; data obtained at 40 ◦C were used in this
work as it gave maximum extraction yield [6]. Extracted oil was then separated by distillation. Oil yield
was calculated as a ratio of extracted oil to seed weight. Experimental results used for modeling are
presented in Appendix A.

2.1. Modeling Techniques

In this paper the following models are used: Response Surface Method, Linear Radial Basic
Function, Quadratic Radial Basic Function, and Artificial Neural Network. The four promising
modeling techniques, LRBF, QRBF, ANN, and RSM, were applied to model the experimentally
available data, from which the predictions generated for oil extraction yields were obtained and then
compared to evaluate these models’ adeptness.

2.1.1. Response Surface Methodology (RSM)

Response surface methodology came from the original work of a previous study [24].
Their collaboration was initiated at a chemical company when solving the problem of determining
optimal operating conditions for chemical processes. Response surface methodology is used in many
practical applications in which the goal is to identify the levels of design factors or variables that
optimize a response. Despite its simplicity and efficiency, RSM provides efficient and accurate solutions.
Therefore, it has successfully been applied in many engineering problems [32–35].

RSM is a higher order polynomial model; a second-order (Quadratic) polynomial equation is
developed after ANOVA test to express the value of the variable Y (oil Yield) as a function of each
independent variable (X1, X2, and X3), as follows [16]:

Y = βo +
∑3

i=1
βiXi +

∑3

i=1
βiiX2

i +
∑∑3

i< j=1
βiiXiX j, (1)

where β0, βi, βii, and β in are the regression coefficients for intercept, and the notations X1 = A, X2 = B,
and X3 = C are the independent variables, as presented in Table 1. A least-squares methods can be
used to determine the parameters for RSM as follows:

β = (XTX)−1XTY, (2)

All regression models were developed using the Design of Experiment, DOE and statistical
toolbox in MATLABTM.

Table 1. Experimental design variables used for modeling Sesame seeds oil yield.

Independent Variables Xn
Coded Levels

−1 0 1

X1: Seeds to solvent ratio (%) A 1 3 5
X2: Contact Time (hr) B 6 12 24

X3: Stirring speed (rpm) C 0 350 700

2.1.2. Linear and Multiquadric Radial Basis Function (LRBF and QRBF)

A Radial Basis Function (RBF) is a real-valued function that depends only on the distance from
the origin, Any function φ that satisfies the property φ (x) = φ (|| x ||) is a radial function. Even though
the norm is usually Euclidean distance, other distance functions can also be possible [36]. RBF
uses a series of basic functions that are symmetric and cantered at each sampling point, and it was
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originally developed for scattered multivariate data interpolation [25]. RBF had applications in medical
imaging, ocean depth measurement, altitude measurement, rainfall interpolation, surveying, mapping,
geography and geology, and image warping [37].

If f(x) is the true objective or response function and f ’(x) its approximation obtained from a classical
RBF with the general form:

f ′(x) =
∑n

i=1
λiϕ(‖x− xi‖), (3)

where n is the number of sampling points, x is the vector of design variables, xi is the vector of design
variables at the i-th sampling point, ‖x− xi‖ is the Euclidean distance, ϕ is a basis function, and λi is
the unknown weighting coefficient.

Therefore, an RBF is actually a linear combination of n basis functions with weighted coefficients.
Some of the most commonly used basis functions include:

• Linear Radial Basis Function (LRBF): ϕ(r) = r.

• Gaussian: ϕ(r) = e−cr2
, 0 < c ≤ 1.

• Quadric Radial Basis Function (QRBF): ϕ(r) =
√

r2 + c2, 0 < c ≤ 1.
• Inverse multiquadric: ϕ(r) = 1

(r2+c2 )
, 0 < c ≤ 1.

An RBF using the highly nonlinear functions does not work well for linear responses [38]. To solve
this problem, an augmented RBF polynomial function is included:

f ′(x) =
∑n

i=1
λiϕ(‖x− xi‖) +

∑n

j=1
c jp j, (4)

where n is the total number of terms in the polynomial, and cj (j = 1,2, . . . , m) is the corresponding
coefficient. A detailed discussion on the polynomial functions that may be used can be found in a
previous study [38].

RBF passes through all the sampling points exactly. This means that function values from the
approximate function are equal to the true function values at the sampling points. Therefore, it would
not be possible to check RBF model fitness with ANOVA, which is the main drawback of RBF.

All RBF have been claimed to create better models than the RSM with a limited number of
samples [31]; it has not been found from the literature which RBF or RBFs are highly accurate in general
for linear, quadratic, and high-order nonlinear responses. A study on the accuracy of RBF models is
needed before RBF can be used to create high-fidelity global models because the types of responses are
typically unknown in most situations.

2.1.3. Artificial Neural Network (ANN)

ANN is made up of two parts, nodes and connections. Nodes consist of neurons, which consist
of the transfer function that takes the argument S, and produces the scalar output of a single neuron.
The most used transfer functions to solve linear and nonlinear regression problems are purelin, logsig,
and tansig [39].

For the case of logistic output the log sig transfer function may be written as:

logsig(S) =
1

1 + e(−S)
, (5)

The architecture of the neural network is presented in the form in which the neurons’ inputs and
outputs are connected. These neurons are divided into several groups, called layers. A multi-layer
neural network has hidden and output layers consisting of hidden and output neurons, respectively.
Frequently, the inputs are considered as an additional layer. The most common neural network
architecture used for solving nonlinear regression problems is the multi-layer feed-forward neural
network, also known as Multi-Layer Perceptron (MLP), as shown in Figure 1.
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Figure 1. Architecture of the ANN with Multi-Layer Perceptron (MLP), with three inputs and
one output.

A technique called “Early Stopping” was used during model training to avoid overfitting and
subsequent poor generalization. Data sets were divided into 70% training set, 20% testing set,
and 10% validation set. The number of training samples was 42, number of testing samples was 12,
and validation was 6 samples. The MATLAB Neural Network Toolbox, version 6, was used to design
and implemented all the ANNs.

2.2. Model Validation and Evaluation

In order to evaluate the goodness of the model fitting and prediction accuracy of the constructed
models, R2 and error analyses were performed between the experimental and predicted data in the
LRBF, QRBF, RSM, and ANN models. Many approaches for validation stated in the literature are used
for error analyses, with some listed in a previous study [36].

In this paper, promising techniques that used the error as a performance index to measure the
model accuracy are introduced. There are a number of different measures of model accuracy. The first
two are the root mean square error (RMSE) and the R square value, are defined below:

RMSE =

√∑m
i=1(y− ŷ)2

m
, (6)

R2 =

∑m
i=1(y− ŷ)2∑m
i=1(y− y)2 , (7)

where ŷ is the predicted value, y is the mean of the observed values.
In general, the larger the values of R2 and R2

adj, and the smaller the value of RMSE, the better
the fit. In situations where the number of design variables is large, it is more appropriate to look
at R2

adj, because R2 always increases as the number of terms in the model is increased, while R2
adj

actually decreases if unnecessary terms are added to the model [19]. The four techniques proposed in
this study are used to examine experimental data for solvent extraction of sesame seeds using three
solvents, chloroform, acetone, and hexane. The experiments were conducted under different operating
conditions (temperature, mixing speed, and solvent/seed ratio); experimental results are presented
in a previous work [6,16]. Different statistical analysis techniques, e.g., ANOVA test, can be used to
check the fitness of an RSM model, and hence identify the main effects of design variables. However,
the main effect analysis is not the focus of this study and will not be discussed here. The major statistical
parameters used for evaluating model fitness are the R, adjusted R2, and Root Mean Square Error
(RMSE). Note that, these parameters are not totally independent of each other and are calculated by
the methods listed in the following section.
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2.2.1. Root Mean Square Error (RMSE)

Generally speaking, the smaller the value of RMSE, the better the fit. It can be calculated as:

RMSE =

√
SSE

n− p− 1
, (8)

where p is the number of non-constant terms in the RSM model, SSE is the sum of square errors,
and SST is the total sum of squares. SSE and SST are calculated as:

SSE =
∑n

i=1
( f i− f ′), (9)

SST =
∑n

i=1

(
f i− f

)
, (10)

where fi is the measured function value at the i-th design point, fi is the function value calculated from
the polynomial at the i-th design point, and f is the mean value of fi.

2.2.2. R2 and R2
adj

In situations where the number of design variables is large, it is more appropriate to look at R2
adj,

because R2 always increases as the number of terms in the model is increased:

R2 = 1−
SSE
SST

, (11)

R2
adj actually decreases if unnecessary terms are added to the model,

R2
adj = 1− (1−R)

n− 1
n− p− 1

. (12)

3. Results and Discussion

The model prediction is developed using MATLAB 2017a with Model-Based Calibration Toolbox™
in windows 7 platform with i5 8GB RAM. This toolbox uses Design of Experiments (DoE), statistical
modeling, and optimization techniques to efficiently produce high quality calibrations for the oil yield
model. To evaluate the computational efficiency and accuracy of the developed models, the above
performance evaluation functions are known as good indicators. The small values of R2

adj and R2,
as well as large values of RMSE, indicate bad fittings for the RSM models. Using the same experimental
data samples, RBF models with the linear function (LRBF) and multi-quadric functions (QRBF) and the
ANN model are also developed.

3.1. Modeling Experimental Data Using RSM

A second-order (Quadratic) polynomial optimum equation was developed after testing the
feasibility of other possible orders (2–6 orders, see Figure 2). To express the value of the variable Y
(oil Yield) as a function of each independent variable (X1, X2 and X3), the following models are obtained.

3.1.1. Acetone

The second order equation for acetone is:

Y(oil Yield) = 4.17− 0.024×X2 + 0.0641 ×X3 + 0.0183×X1 − 0.047×X2
2
− 0.0119×X2 ×X3

−0.012×X2 ×X1 − 0.096×X3
2
− 0.0122×X3 ×X1 − 0.0511×X1

2
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3.1.2. Chloroform

The second order equation for Chloroform is:

Y(oil Yield) = 6.545 + 0.088×X2 + 0.15×X3 − 0.068×X1 + 0.0206×X2
2 + 0.0028×X2 ×X3

−0.10812×X2 ×X1 − 0.2003×X3
2
− 0.01759×X3 ×X1 − 0.05714×X1

2

3.1.3. Hexane

Y(oil Yield) = 33.6575 + 0.427709×X2 + 0.252519×X3 + 4.25703×X1 − 0.06×X2
2

−0.0128276×X2 ×X3 − 0.259821×X2 ×X1 − 0.320569×X3
2

−0.0976245×X3 ×X1 − 0.928571×X1
2

3.2. Modeling Experimental Data Using LRBF

The response surface model for LRBF for the three solvents is shown in Figure 3. In the graph
the predicted oil extraction yields versus experimental data are presented. The result showed better
agreement between predicted and experimental data. When comparing these results with that obtained
using the RSM model, the RBF model prevails. Moreover, hexane showed the best RBF linear model
agreement between the predictions versus experimental data of the oil yield extracted in comparison to
other solvents. The RBF linear model showing higher R2 and R2

adj values at near to 1 (Table 4), whereas
for the RMSE value, hexane has been found to achieve the highest value of 0.116 in comparison to the
other solvents. Table 2 shows the linear RBF optimum parameters.

3.3. Modeling Experimental Data Using QRBF

Figure 4 shows the difference between the three solvent models. It can be seen from the graph of
the experiment versus predicted oil yield data that the hexane solvent produced a more robust model
when compared to the other solvents. The QRBF parameter values can be seen in Table 2.

Table 2. QRBF parameters Value.

Solvents Model Centers Width Regularization Parameter λ

Acetone
Linear RBF 20 0.0593 0.0487

Multi-quadric RBF 11 2.718 2.471

Chloroform
Linear RBF 20 0.055952 0.03144

Multi-quadric RBF 19 1.432 2.13 × 10−5

Hexane
Linear RBF 20 0.0683 0.03375

Multi-quadric RBF 4 4.75 4.399 × 10−5

3.4. Modeling Experimental Data Using ANN

The optimum configuration for the neural network is performed with 2 hidden layers; the first
layer contains 10 neurons, the second layer 5 neurons. Different back-propagation (BP) algorithms
were compared to select the best-suited BP algorithm. The Marquardt–Levenberg learning algorithm
was used with a Mean Squared Error (MSE). Table 3 shows the ANN optimum parameter values used
for the three solvents. The ANN model and its parameters variation were determined based on the
minimum values of MSE of the training dataset. The 3D response surface plot using ANN for all
solvents together with a graph presenting experimental versus predicted oil yield data is shown in
Figure 5. The result shows identical matching between experimental and predicted data, thus ANN
overperformed all the aforementioned models in term of low RSME, (acetone = 3.7 × 10−5, chloroform
= 3.3757 × 10−5, and hexane = 2.23 × 10−3) and R2 and R2

adj equal one.



Foods 2019, 8, 142 8 of 16

Table 3. ANN parameters value.

Parameter Value

Number of input variables 3
Number of first layer neurons 10

Number of output neurons 5
Learning rule Levenberg–Marquardt

Number of iteration 1000
Error goal 0.0001

Mu 0.0005
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Figure 2. Response surface plot of using RSM and experiment versus predicted data for Sesame seeds 
oil extraction using (A) acetone, (B) chloroform, and (C) hexane. 
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Figure 5. Response surface plot using ANN and experimental versus predicted data for sesame seed
oil extraction using (A) acetone, (B) chloroform, and (C) hexane.

The results summarized in Table 4 show that values of R2, R2
adj, for the RSM Quadratic model

indicate good agreement for the hexane solvent with R2, R2
adj near to one, whereas, the RMSE value for

the hexane was relatively large (0.225) compared to the rest of models. On the other hand, ANN has
a smaller value of RMSE and R2, R2

adj equal to one, indicating the most accurate modeling for all
three solvents.
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Table 4. Model Performance validation.

Solvents Model Name Observations RMSE R2 R2
adj

Hexane

RSM Quadratic 60 0.225 0.996 0.995
ANN [5,10] 60 2.23 × 10−3 1 1

LRBF 60 0.116 0.998 0.999
QRBF 60 0.263 1 1

Chloroform

RSM Quadratic 60 0.123 0.693 0.638
ANN [5,10] 60 3.3757 × 10−5 1 1

LRBF 60 0.053 0.912 0.933
QRBF 60 0.086 1 1

Acetone

RSM Quadratic 60 0.05 0.692 0.636
ANN [5,10] 60 3.7 × 10−5 1 1

LRBF 60 0.03 0.852 0.871
QRBF 60 0.047 1 1

The LRBF gave better R2, R2
adj values in comparison with the RSM quadratic for all three solvents

and showed better responses for Chloroform. The QRBF showed values for R2, R2
adj equal to one for

all modeled solvents.
In a nutshell, the results show the supremacy of the ANN over the other modeling techniques

applied in terms of minimum RMSE, and R2, R2
adj values near one. This result agrees with that

obtained by many researchers confirming that the ANN model has the best prediction [17,18,20,36].

4. Conclusions and Future Work

The systematic comparative study presented in this paper has provided insightful observations
into the performance of various meta-modeling techniques. This study has revealed that the properly
trained ANN model has consistently performed more accurate prediction compared to those of RSM,
Linear (LRBF), and Multi-quadric (QRBF) models in all aspects. This accurateness is expressed in the
very high values of R2 and R2

adj ratios equal to one and the very low value of error for RMSE (for hexane
2.23 × 10−3, chloroform 3.3757 × 10−5, and for acetone 3.7 × 10−5) indicators for the ANN results
compared to others. This confirms that the ANN model displays a significantly higher generalization
capacity than the rest of the models. The reason can be accredited to the universal ability of ANN to
approximate the nonlinearity of the system.

As a conclusion it can be noted from the plot of experimental data against the predicted data that
the ANN is superior, and the modeling techniques compared to RSM, Linear (LRBF), and quadric
(QRBF) in the second-ranking QRBF proved to be more accurate and had the finest prediction capability,
when compared to LRBF and RSM. The applications of artificial neural networks can be used for
on-line state estimation and control of sesame oil extraction.

Statistical indices have generated competitive results in predicting experimental extraction data.
It is recommended that these techniques be applied on further techniques, such as modeling green
solvent systems. Moreover, the experimental testing of different solvent mixtures in addition to
analysing extracted oil quality by monitoring different properties, such as pH, acidity, and peroxide
value, can be introduced as extra operating condition functions to be modeled.
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Appendix A

Seeds/Solvent
Ratio

Contact Time
(hour)

Stirring Speed
(rpm)

Oil Yield %

By Chloroform By Acetone By Hexane

1:1 6 0 6 4 27
1:1 6 150 6.3 4.3 27.5
1:1 6 300 6.5 4.4 28
1:1 6 700 6.5 4.4 28
1:1 12 0 6 4 27.3
1:1 12 150 6 4.2 28
1:1 12 300 6.3 4.2 28.4
1:1 12 700 6.3 4.2 28.5
1:1 24 0 6.5 4.1 28.6
1:1 24 150 6.7 4.2 29
1:1 24 300 6.7 4.2 29
1:1 24 700 6.7 4.2 29
1:2 6 0 6 4.1 29.8
1:2 6 150 6.2 4.2 30.1
1:2 6 300 6.3 4.2 30.2
1:2 6 700 6.5 4.2 30.2
1:2 12 0 6.5 4.05 30.5
1:2 12 150 6.6 4.2 30.8
1:2 12 300 6.6 4.2 31
1:2 12 700 6.6 4.2 31
1:2 24 0 6.3 4.1 31
1:2 24 150 6.7 4.2 31.6
1:2 24 300 6.7 4.2 31.7
1:2 24 700 6.7 4.2 31.7
1:3 6 0 6.1 4.1 32.5
1:3 6 150 6.3 4.2 33.1
1:3 6 300 6.3 4.2 33.1
1:3 6 700 6.4 4.2 33.1
1:3 12 0 6.2 4 33
1:3 12 150 6.5 4.1 33.2
1:3 12 300 6.5 4.1 33.2
1:3 12 700 6.5 4.1 33.2
1:3 24 0 6.1 4.1 33.4
1:3 24 150 6.6 4.1 33.6
1:3 24 300 6.6 4.1 33.8
1:3 24 700 6.6 4.1 33.8
1:4 6 0 6.2 4.1 34.9
1:4 6 150 6.4 4.2 35.3
1:4 6 300 6.4 4.2 35.4
1:4 6 700 6.4 4.2 35.4
1:4 12 0 6.1 4 35.3
1:4 12 150 6.3 4.2 35.5
1:4 12 300 6.3 4.2 35.7
1:4 12 700 6.3 4.2 35.7
1:4 24 0 6 4 35.4
1:4 24 150 6.5 4.1 35.8
1:4 24 300 6.5 4.2 35.9
1:4 24 700 6.5 4.2 35.9
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Seeds/Solvent
Ratio

Contact Time
(hour)

Stirring Speed
(rpm)

Oil Yield %

By Chloroform By Acetone By Hexane

1:5 6 0 6.1 4.1 36.3
1:5 6 150 6.4 4.2 36.5
1:5 6 300 6.4 4.2 36.5
1:5 6 700 6.4 4.2 36.5
1:5 12 0 6.1 4 36.2
1:5 12 150 6.4 4.2 36.5
1:5 12 300 6.4 4.2 36.6
1:5 12 700 6.4 4.2 36.6
1:5 24 0 6 4.1 36.5
1:5 24 150 6.4 4.2 36.9
1:5 24 300 6.4 4.2 37
1:5 24 700 6.4 4.2 37
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