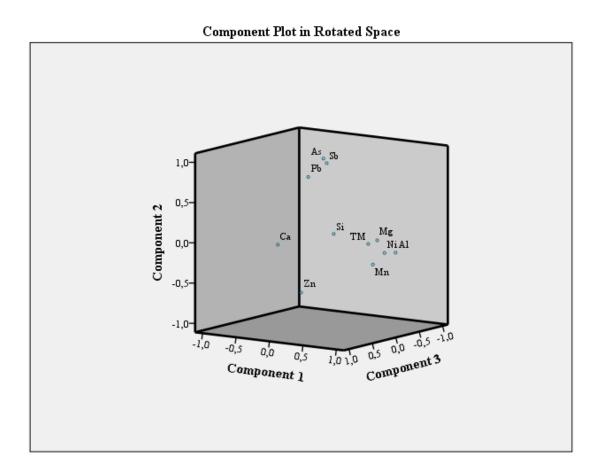
Supplementary Materials

Minerals	Wilks' Lambda	F	df1	df2	p	
Al	0.306	5.899	5	13	0.005	
As	0.180	11.858	5	13	0.000	
Ca	0.232	8.610	5	13	0.001	
Mg	0.391	4.048	5	13	0.020	
Mn	0.275	6.846	5	13	0.002	
Ni	0.350	4.821	5	13	0.010	
Pb	0.262	7.306	5	13	0.002	
Sb	0.414	3.684	5	13	0.027	
Si	0.370	4.429	5	13	0.014	
Zn	0.067	36.063	5	13	0.000	
TM	0.336	5.148	5	13	0.008	
В	0.464	3.003	5	13	0.051	
Cu	0.527	2.330	5	13	0.102	
Fe	0.594	1.780	5	13	0.186	

Table S1. Level of significance of individual minerals and total mineral content on honey botanical origin as defined by MANOVA

F: Fisher's function; df: degrees of freedom; *p*: probability. TM: total minerals.

Table S2. Minerals and total mineral content used to build the rotated component matrix^a along with communalities during extraction


Minerals		Component					
	1	2	3	4			
Mg	0.941	0.101	0.154	0.253	0.983		
Ni	0.940				0.890		
Al	0.929	-0.113	-0.254		0.941		
Mn	0.927	-0.192	0.227	-0.141	0.967		
TM	0.903		0.292	0.302	0.997		
As		0.979	-0.104	0.106	0.982		
Sb		0.956		-0.152	0.947		
Pb	-0.237	0.738		0.402	0.766		
Ca			0.969	0.139	0.965		
Zn	0.229	-0.531	0.761	-0.186	0.948		
Si	0.218			0.952	0.964		

^aExtraction method: Principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in 5 iterations. TM: total minerals. Initial communalities: all variables had the value of 1.000.

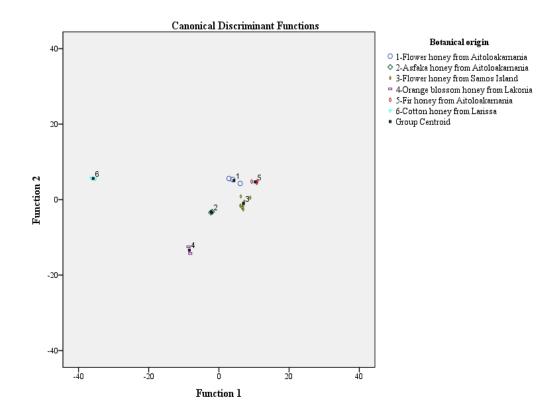

Chemometric technique	Classification rate	Predicted Group Membership							
		Botanical origin	Flower honey from Aitoloakarnania (1)	Asfaka honey from Aitoloakarnania (2)	Flower honey from Samos Island (3)	Orange blossom honey from Lakonia (4)	Fir honey from Aitoloakarnania (5)	Cotton honey from Larissa (6)	Honey samples
		(1)	3	0	0	0	0	0	3
Originalª		(2)	0	2	0	0	0	0	2
	Count	(2)	0	0	7	0	0	0	7
		(4)	0	0	0	2	0	0	2
		(5)	0	0	0	0	3	0	3
		(6)	0	0	0	0	0	2	2
		(1)	100.0	0	0	0	0	0	- 100.0
	%	(2)	0	100.0	.0	.0	.0	.0	100.0
		(3)	0	0	100.0	0	0	0	100.0
		(4)	0	0	0	100.0	0	0	100.0
		(5)	0	0	0	0	100.0	0	100.0
		(6)	0	0	0	0	0	100.0	100.0
		(1)	3	0	0	0	0	0	3
Cross- validated ^{b,c}	Count	(2)	0	2	0	0	0	0	2
		(3)	0	0	7	0	0	0	7
		(4)	0	0	0	2	0	0	2
		(5)	0	0	0	0	3	0	3
		(6)	0	0	0	0	0	2	2
	%	(1)	100.0	0	0	0	0	0	100.0
		(2)	0	100.0	0	0	0	0	100.0
		(3)	0	0	100.0	0	0	0	100.0
		(4)	0	0	0	100.0	0	0	100.0
		(5)	0	0	0	0	100.0	0	100.0
		(6)	0	0	0	0	0	100.0	100.0

Table S3. Classification ability of the SDA analysis model used for the botanical origin differentiation of asfaka, cotton, fir, flower, forest flowers, and orange blossom honeys.

^{a.} 100.0% of original grouped cases correctly classified. ^{b.} Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case. ^{c.} 100.0% of cross-validated grouped cases correctly classified.

Figure S1. Factor analysis highlighting the principal components (structure matrix) used for the botanical origin differentiation of Hellenic asfaka, cotton, flower, fir, forest flowers and orange blossom honeys based on abundant mineral and total mineral contents. Extraction method: Principal component analysis. Rotation method: Varimax with Kaiser Normalization. Figure shows only the first 3 components in dimensional space X, Y, Z. TM: total mineral content.

Figure S2. Botanical origin differentiation of Hellenic asfaka, cotton, flower, fir, forest flowers and orange blossom honeys based on abundant mineral and total mineral contents and linear discriminant analysis.