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Abstract: In this study, cadmium (Cd), nickel (Ni), and lead (Pb) contents were analyzed
in sixteen banana composite samples from different commercial establishments from eleven
Ecuadorian production provinces using graphite furnace atomic absorption spectrophotometry.
The concentrations (fresh weight) in the samples collected (9.3–47.3 µg·kg−1 for Cd, 16.1–105.6 µg·kg−1

for Ni, and 36.9–538.0 µg·kg−1 for Pb) were used to calculate the estimated daily intake (EDI), target
hazard quotient (THQ), and target carcinogenic risk (CR) associated with dietary exposure to these
potentially toxic metals. Cd and Ni results showed that every sample had EDIs lower than the oral
reference dose and THQ values lower than 1, demonstrating that there was no non-carcinogenic
risk related to the exposure to Cd and Ni. In the case of Pb, two EDIs results were higher than the
reference dose, also their corresponding THQ values were higher than 1. The lead CR in all samples
was less than 1 × 10−4, the upper limit used for acceptable cancer risk. Thus, there is no significant
health risk to the consumer associated with bananas with contamination levels of Cd, Ni, but there is
Pb risk for toddlers (12 kg of body weight) intake comparable to the one detected in the present study.

Keywords: atomic absorption spectrophotometry; exportation product; food contamination; graphite
furnace; health risk; heavy metals; Musa sp.

1. Introduction

Fresh fruits like bananas (Musa sp.) are important to the human diet because of their vitamin and
mineral salts contents. However, they may also contain toxic metals [1].

In recent years, environmental contamination from heavy metals has been a worldwide concern
because of heavy metals’ persistence, their ecological risks, and their mobility between biotic and
abiotic spheres [2]. The increasing risk of human non-occupational exposure is related to the direct
contamination of food [1,3–6]. Cultivated products are of greatest concern owing to their direct
contact with environmental contaminants, and they are also the first contributors to the food web [7].
“Dietary intake of plant-derived food represents a major fraction of potentially health-threatening
human exposure” [8]. Heavy metals’ presence in cultivated food products depends on many factors,
principally on the natural soil composition, environment, genotype of the plant, fertilizers, and/or
metal-containing pesticides [9].

Not all heavy metals are unsafe for humans. Some are classified as essential for human metabolisms,
such as copper, zinc, iron, manganese, selenium, and cobalt, whereas other metals are considered as
probably essential, such as vanadium, and others such as arsenic, cadmium (Cd), lead (Pb), mercury,
and nickel (Ni) are categorized as toxic [10].
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The excessively high intake of toxic metals by humans and animals is dangerous, and the
bioaccumulation of these metals has been reported to have carcinogenic, mutagenic, and teratogenic
effects [1,8,11]. It has also been established that more than 95% of the total daily exposure to toxic
metals comes from the ingestion of contaminated food [9].

The International Program on Chemical Safety (IPCS) and the International Agency for Research
on Cancer [12] has considered classifying Cd as a carcinogenic substance (Group 1) as there is a
high probability that it can cause renal effects, calcium metabolism disorders, hypertension and
cardiovascular disease, and cancer, among others [13,14]. Pb, similarly to Cd, produces progressive
toxicity in humans [15]. This metal causes health disorders such as renal dysfunction, spontaneous
abortion and reduced birth weight, and affections in the immune system. Pb is also classified as a
probable carcinogen to humans, Group 2A [16,17]. Both Cd and Pb have damaging effects on humans
and animals because no effective mechanism exists for their elimination [9]. In the case of Ni, it has
not been considered as lethal as Cd and Pb, but in spite of this is classified as a probable carcinogen
to humans, Group 2A. When Ni exceeds the toxic concentration levels, it may produce pathological
pulmonary lesions, including hemorrhage, edema, and cellular derangement [18]. It also affects the
liver, kidneys, adrenal glands, spleen, and brain [19,20].

The European Commission Regulation [21] has established maximum levels for some contaminants,
including heavy elements like Cd and Pb, of 50 µg·kg−1 and 100 µg·kg−1 in fruits, respectively.
The Food and Agriculture Organization of the United Nations (FAO) for the World Health Organization
(WHO), in the International Food Standards (CODEX 193), have established threshold values as
100 µg·kg−1 for Cd and Pb in different types of natural products [22]. In the case of Ni, neither the
European Commission Regulation nor the FAO have established the threshold values, nevertheless the
Environmental Protection Agency’s Integrated Risk Information System (EPA-IRIS) has established it
as 300 µg·kg−1 [18]. In addition, the FAO has also established the CODEX STAN 205 [23] specific for
banana, which refers to the contaminant limits cited in the CODEX 193.

Referring to the health risk assessment, the EPA has established oral reference doses (RfD) of 1.0
and 20.0 µg·kg−1

·d−1 for Cd and Ni (soluble salts), respectively [24]. There is no EPA RfD value for Pb,
but the United States Food and Drugs Administration (US FDA) Interim Reference Levels for lead is
3 µg·day−1 for children and 12.5 µg·day−1 for adults [25]. The European Food Safety Authority has
mentioned the hazard reference value for Cd is 2.5 µg·kg−1

·body weight−1
·week−1 (2013), for Ni is

2.8 µg·kg−1
·body weight−1 (2015), and for Pb is 25 µg·kg−1

·body weight−1
·week−1 (2005) [26].

Bananas are among the five most important food crops in the world, and Ecuador is a leading
banana producer and exporter [27]. According to the Central Bank of Ecuador, bananas are the
second-highest non-oil export product, with a generated revenue of 3.196 million USD in 2018 [28].
Banana exports represent 2% of the country’s general gross domestic product (GDP) and approximately
35% of its agricultural GDP [29].

Although there are a number of studies in which banana peels have been used as a material for
remediation and uptake of contaminants [30–32], published information about Ecuadorian bananas’
heavy metal content is limited [27,33]. Therefore, it is important to examine the presence of toxic
metals in Ecuador’s natural foodstuffs, not only to be able to control them in accordance to the
defined maximum residue levels set by authorities, but also to constantly monitor and compare those
levels with data available in the literature in the absence of such limits [9]. Additionally, the WHO,
through its Global Environmental Monitoring System/Food Contamination Monitoring and Evaluation
Programme (GEMS/Food), is guiding and supporting countries such as Ecuador in the execution of
research in food contaminants to determinate dietary exposure to chemical contaminants [9].

In this sense, the aim of this study was to (i) determine concentrations of Cd, Ni, and Pb in banana
samples collected from various banana producing provinces in Ecuador, (ii) calculate the estimated
daily intake (EDI) of Cd, Ni, and Pb associated with the consumption of Ecuadorian bananas, and (iii)
determine the carcinogenic and non-carcinogenic risks of ingesting Ecuadorian bananas for toddlers,
children, and adults.
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2. Materials and Methods

2.1. Sample Collection and Preparation Process

Sixteen composite banana samples were collected from eleven banana-producing provinces:
Azuay, Bolívar, Cañar, Cotopaxi, El Oro, Esmeraldas, Guayas, Los Ríos, Manabí, Santa Elena, and Santo
Domingo de los Tsáchilas. Each sample comprised five subsamples of specimens purchased in
randomly chosen local commercial establishments within the sampling locations. The samples were
immediately placed in plastic bags, and the air inside the bag was removed using cold-water immersion
and the bag then sealed. The samples were stored on ice to delay the fruits’ oxidation process for
48 hours.

The samples were washed with high-quality reagent water (resistivity 18.2 MΩ·cm−1) to eliminate
impurities. The peeled samples were mashed and homogenized to obtain the composite sample.

The water content of the composite samples was determined using a humidity analyzer (Mettler
Toledo, HB43-S, Greifensee, Switzerland). Then, the composite samples were dried for approximately
24 hours at 70 ◦C in a Memmert UM 500 stove (Schwabach, Germany) until a constant weight
was achieved.

An approximately 1.0000 g sample was weighed in Teflon vials, then 5 mL of 70% nitric acid
(Fisher Chemical, Certified ACS plus, CAS# 7697-37-2, Fair Lawn, NJ, USA) and 3 mL of 30% hydrogen
peroxide (Fisher Chemical, Certified ACS plus, CAS# 7722-81-1) were gently added. Acid digestion was
performed using a MARS 6 microwave (CEM, Matthews, NC, USA), taking as reference the analytical
method IPN AC-06-00 [34], modified and verified for its applicability for the chemical analysis of
metals in biological matrixes.

2.2. Metal Determination

All the digestions of the composite samples were filtered, and then Cd, Ni, and Pb were analyzed
using a graphite furnace absorption spectrophotometer (HGA 900 and AAnalys 400, Perkin Elmer Inc.,
Whaltham, MA, USA). Calibration curves were prepared using four concentration levels of dilutions of
certified reference materials of 0.5, 1.0, 2.0, and 4 µg·dm−3 for Cd, and 5.0, 10.0, 20.0, and 40.0 µg·dm−3

for both Ni and Pb. Linear regression coefficients (R2) higher than 0.99 demonstrate linear adjustment
between concentration and absorbance.

The standards of the calibration curve, samples, and blanks were prepared using analytical
grade reagents and high-quality reagent water. Sample analysis was performed in triplicate using
fortifications of known concentrations as quality control. The results are presented in µg/kg of
dry weight.

The results obtained were evaluated against the corresponding threshold values 50 µg·kg−1 for
Cd [21], 300 µg·kg−1 for Ni [18], and 100 µg·kg−1 for Pb [21,22].

2.3. Quality Control

To ensure the reliability and performance of the mineralization technique and the quantification
method, the rates of standard deviation (RSD) and the accuracy as recovery rates of fortifications were
also evaluated using the criteria established by the Association of Official Analytical Chemists [35]:
Precision of 8% for repeatability and recoveries between 75% and 120% for accuracy.

For the fortifications, known concentrations of certified reference materials of approximately
1000 mg/L were added to original non-fortified samples. All the samples were fortified according
to each metal’s quantification limit level: 12.5 µg·kg−1 for Cd and 125 µg·kg−1 for both Ni and Pb.
The standards used were:

• Cadmium Certified Reference Material Certipure® (Merck, Darmstadt, Germany), 986 mg/kg ±
4 mg/kg, density 1.0131 g/cm3, Ord. No. 1.19777.0100, Lot No. HC60709577.
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• Lead Certified Reference Material (Inorganic Ventures, Christiansburg, VA, USA), 999 µg/cm3
±

3 µg/cm3, density 1.010 g/cm3, Cat. No. CGNI1, Lot No. J2-NI02103.
• Nickel Certified Reference Material (Inorganic Ventures), 1003 µg/cm3

± 5 µg/cm3, density
1.002 g/cm3, Cat. No. CGPB1, Lot No. M2-PB656988.

2.4. Human Health Risk Assessment

The human health risk assessment was evaluated based on the EDI and the target hazard quotients
(THQ) for non-carcinogenic and carcinogenic risks. In addition, the recommended values for banana
intake were determined. All these parameters were calculated using each concentration of toxic metal
determined in the samples as well as different body weights: 12 kg for toddlers (aged 1–3 years) [36],
25 kg for children (aged 5–10 years) [37–39], and 60 and 70 kg for adults [36]. The daily intake sample
amount was the mean weight of the banana samples (110 g). All the calculations were based on the
EPA formulas [40–42].

2.4.1. EDI

First, the EDI values as the chronic daily intake (expressed in µg·kg−1
·day−1) were calculated

using the EPA [40] exhibit 6–18 equation as follows:

EDI =
C× IR× FI × EF× ED

BW ×AT
, (1)

where C is the concentration of each metal in the samples (expressed in µg·kg−1); IR is the ingestion
rate (the mean weight of samples 0.110 kg per day); FI is the fraction ingested from contaminated food
(1, unitless); EF is the exposure frequency (365 days per year); and ED is the exposure duration (ED,
70 years). These are in relation to body weight (BW, kg) and the averaging time (AT, ED × 365 days
per year).

2.4.2. Non-Carcinogenic Risk

The potential health risks of contaminants were estimated using THQ. The THQ values were
calculated using the EPA [42] exhibit 1–3 equation, as follows:

THQ =
EDI
R f D

, (2)

where EDI is the chronic daily intake (expressed in µg·kg−1
·day−1), and the EPA RfDs are 1.0 and

20.0 µg·kg−1
·day−1 for Cd and Ni, respectively [24]. There is no EPA RfD value for Pb, but the United

States Food and Drugs Administration (US FDA) Interim Reference Level for lead is 3 µg·kg−1
·day−1

for children and 12.5 µg·kg−1
·day−1 for adults [25].

THQ values lower than one (1) indicate that consumers are unlikely to experience any adverse
health effects. If the THQ value is equal to or higher than one, there is a potential health risk.

The total cumulative health risk (TTHQ) was calculated by adding each metal’s THQ using the [41]
formula as follows:

TTHQ = THQ(Cd) + THQ(Ni) + THQ(Pb). (3)

For the evaluation, a greater TTHQ value means a greater level of concern.

2.4.3. Carcinogenic Risk

Carcinogenic risk (CR) is equivalent to the increased probability of an individual developing
cancer over his/her lifetime due to exposure to the metals included in this study. Lead’s CR was
estimated in accordance with the existing slope factor (SF) provided by the EPA [24], whereas Cd and
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Ni do not have SF values, thus CR could not be estimated. The following EPA [42] exhibit 1–3 equation
was used:

CR = SF× EDI, (4)

where SF is the carcinogenic slope factor of 0.0085 (mg/kg/day)−1 for Pb, and EDI is the estimated daily
intake of heavy metals (expressed in mg·kg−1

·day−1).
CR values lower than 10−6 were considered negligible, values between 10−6 and 10−4 were

considered within an acceptable range, and values higher than 10−4 were considered intolerable [41,42].

3. Results and Discussion

3.1. Sample Collection and Preparation Process

In the first stage of this study, three composite samples from the provinces of Los Ríos and Guayas
and two composite samples from El Oro were used, as they were considered the most representative
provinces in terms of banana production [43]. For each of the other provinces, just one composite
sample was used. The specimens were purchased in randomly chosen commercial establishments
located near production zones and that sold bananas for different producers. The subsamples were
classified, the composite samples were assembled, and the water content was determined in all the
samples. The water content ranged from 65.55–73.66% (average 71.17%).

3.2. Metal Determination

After the sample preparation process, the concentrations of Cd, Ni, and Pb were determined.
The linear regression coefficients (R2) were 0.997859, 0.999854, and 0.996738 for Cd, Ni, and Pb
respectively, and in all cases higher than the expected 0.99, showing the linear adjustment between
concentration and absorbance in the ranges of determination.

Each sample and its corresponding fortification were analyzed in triplicate. The results of the
samples and their quality controls are shown in Table 1. The concentration ranges found were between
9.3 µg·kg−1 and 47.3 µg·kg−1 for Cd, between 16.1 µg·kg−1 and 105.6 µg·kg−1 for Ni, and between
36.9 µg·kg−1 and 538.0 µg·kg−1 for Pb.

Table 1. Results summary of concentrations in original samples (Cc,µg·kg−1), rates of standard deviation
(RSD, %), and “in-house” accuracy (%) of cadmium (Cd), nickel (Ni), and lead (Pb) determinations in
Ecuadorian banana samples and the threshold values (µg·kg−1).

Provinces Samples Cd Ni Pb

Cc RSD Accuracy Cc RSD Accuracy Cc RSD Accuracy

Cotopaxi Cotopaxi 1 9.3 5.54% 95.22% 105.6 1.54% 107.31% 224.4 0.33% 93.50%
Bolívar Bolívar 1 32.5 5.38% 110.34% 27.7 5.93% 101.29% 420.9 1.88% 114.62%

Los Ríos
Los Ríos 1 20.1 7.73% 93.50% 23.2 3.61% 105.90% 107.7 3.27% 93.72%
Los Ríos 2 19.4 5.26% 95.73% 29.1 6.16% 83.96% 163.0 2.26% 115.31%
Los Ríos 3 30.2 5.93% 96.52% 21.5 6.87% 112.57% 193.5 2.63% 106.29%

Cañar Cañar 1 33.5 6.68% 119.78% 21.8 6.32% 80.63% 138.1 0.78% 108.48%
Azuay Azuay 1 26.0 5.55% 88.49% 29.8 0.83% 107.39% 36.9 0.81% 109.31%

El Oro
El Oro 1 29.8 5.39% 92.73% 24.9 6.40% 109.60% 208.2 3.47% 86.55%
El Oro 2 29.6 1.17% 86.47% 24.5 5.34% 87.06% 189.3 0.56% 82.68%

Guayas
Guayas 1 17.4 7.43% 105.97% 30.5 6.87% 108.01% 276.5 3.74% 111.64%
Guayas 2 24.3 7.77% 87.96% 22.3 5.58% 116.60% 266.5 1.18% 83.36%
Guayas 3 17.9 5.95% 101.74% 21.6 5.74% 116.36% 40.1 3.16% 88.98%

Santa Elena Santa Elena 1 21.3 7.19% 82.90% 17.7 4.31% 85.99% 538.0 1.81% 84.27%
Manabí Manabí 1 47.3 4.07% 97.19% 30.8 4.84% 84.89% 128.8 2.93% 81.29%

Esmeraldas Esmeraldas 1 13.8 6.48% 86.64% 16.1 5.77% 96.12% 67.0 3.74% 81.96%
Santo Domingo Santo Domingo 1 14.9 4.62% 107.59% 19.4 4.38% 95.89% 72.9 0.51% 109.04%

Threshold values 50.0 a - - 300.0 b - - 100.0 a,c - -
a European Commission. Commission Regulation No 1881/2006 of 19 December 2006 [21]. b EPA-IRIS. Nickel,
soluble salts; CASRN Various. Integrated Risk Information System (IRIS) Chemical Assessment Summary [18].
c FAO/WHO General Standard for Contaminants and Toxins in Food and Feed CXS 193-1995 (Revision 2018) [22].
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All the calculations were done using Microsoft ®Office Excel 2016 (Microsoft Corporation,
Redmond, WA, USA).

Both Cd and Ni results were lower than the threshold values established in both European
Commission regulation [21] and the EPA-IRIS [18], respectively. For the Pb results, four of the
sixteen locations studied were lower than the respective recommended threshold values for European
Commission Regulation [21] and CODEX 193 [22]. The higher results were from the samples collected
in Bolivar and Santa Elena provinces, which had 420.9 µg·kg−1 and 538.0 µg·kg−1 of Pb, respectively,
approximately four and five times the 100 µg·kg−1 CODEX threshold value. The lowest values obtained
were in samples from Azuay province (36.9 µg·kg−1).

No previously published studies focusing on Ecuador exist to which this information can be
compared. Nevertheless, Felix et al. [44], in a study related to the concentration of toxic metals in
agricultural soils, found that the Pb content in sampled banana soils corresponded to a maximum value
of 5.36 mg·kg−1 from El Oro province, while the minimum was 0.55 mg·kg−1 from the province of Los
Ríos. In soils from Santa Elena (which was part of Guayas province at the time the study was conducted),
the Pb concentrations were near 2 mg·kg−1. As Felix et al. [44] mentioned, major concentrations of toxic
metals in soils allows for the metals to be taken up by plants, but this also depends on the production
areas’ proximity to roads and possible sources of hydrocarbon contamination.

In the Los Ríos, El Oro, and Guayas provinces, the RSD between samples were also calculated,
resulting in RSDs of 26.15% (three samples), 0.28% (two samples), and 19.31% (three samples),
respectively. We assume that this variability in the sample results is related to external factors, namely,
the contaminants to which each production location is exposed.

Other international studies have estimated Cd and Pb concentrations and used them for risk
assessment calculations, as shown in Table 2. The results obtained in the present study are consistent
with those from other studies. For Cd, the mean concentration of 24.0 µg·kg−1 was within the value
range reported for bananas in Serbia (<0.3 µg·kg−1) [9] and Jamaica (57.0 µg·kg−1) [3]. In the case of Ni,
the concentration obtained (29.0 µg·kg−1) was lower than samples from Bangladesh (37.0 µg·kg−1) [1].
For Pb content, the mean result was 192.0 µg·kg−1, higher than many other countries, but four times
lower than the concentration in Nigerian samples (460.0 µg·kg−1) [45].

Table 2. Comparison among similar studies done, a summary of cadmium (Cd), nickel (Ni), and lead
(Pb) mean concentrations (µg·kg−1), the estimated daily intakes (EDI, µg·kg−1

·day−1), target hazard
quotients (THQ, unitless), and carcinogenic risks (CR, unitless).

Country Metal Mean
concentrations EDI THQ CR References

Bangladesh
Cd ND NA 0 NA

[1]Ni 37.0 2.80 × 10−5 1.00 × 10−3 NA
Pb 3.0 2.20 × 10−6 6.00 × 10−4 1.90 × 10−8

Serbia
Cd <0.3 0.002 NA NA [9]
Pb 60.0 1.254 NA NA

Jamaica Cd 57.0 0.028 0.028 NA [3]
Pb 10.0 0.005 0.002 NA

Nigeria Cd ND NA NA NA [45]
Pb 460.0 0.0028 NA NA

Ecuador *
Cd 24.0 4.44 × 10−5 0.044 NA

The present studyNi 29.0 5.35 × 10−5 0.005 NA
Pb 192.0 3.52 × 10−4 0.099 3.77 × 10−7

ND: Not detectable, NA: Not available. * Mean values for 60 kg of body weight (generally used by the WHO for
calculation of Acceptable Daily Intakes (ADIs) and adopted in the work of some EFSA Panels [36].

3.3. Quality Control

Blanks, triplicates of non-fortified samples, and each sample’s fortifications were used as
quality controls.
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The RSD values obtained were lower than 7.77% for Cd, lower than 6.87% for Ni, and lower
than 3.74% for Pb, in accordance with the recommended AOAC (2002) value of 8% for repeatability
RSD [35].

Regarding accuracy, the results obtained were between 82.90% and 119.78%, between 80.63% and
116.60%, and between 81.29% and 115.31% for Cd, Ni, and Pb, respectively. All the accuracy values
were within the AOAC (2002) accuracy recommendations of between 75.00% and 120.00%.

3.4. Health Risk Assessment Results

EDI values were calculated for different body weights (12, 25, 60, and 70 kg) for all the samples
analyzed, and the results of Cd, Ni, and Pb were between 0.015 µg·kg−1

·day−1 and 0.434 µg·kg−1
·day−1,

between 0.025 µg·kg−1
·day−1 and 0.968 µg·kg−1

·day−1, and between 0.058 µg·kg−1
·day−1 and

4.932 µg·kg−1
·day−1, respectively. In Cd and Ni cases, the results were below the EPA RfD references of

1.000 µg·kg−1
·day−1 and 20.0 µg·kg−1

·day−1, respectively [24]. In the case of Pb, two results were higher
than 3.0 µg·kg−1

·day−1 (US FDA interim reference values for toddlers and children), and these values
were 3.858 and 4.932 µg·kg−1

·day−1 in the Bolivar and Santa Elena samples, respectively, for toddlers
(12 kg BW). In the case of children (25 kg BW) and adults (60 and 70 kg BW), all results were lower than
3.0 and 12.5 µg·kg−1

·day−1 reference values (US FDA), respectively [25]. The Cd and Ni exposures are
quite low than the RfD values, in both cases. The lead results are shown in Figure 1.
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Figure 1. Lead exposure values calculated with sample metal concentrations (µg·kg−1
·day−1) compared

with the oral reference dose (RfD) of each metal that could be safely consumed daily (µg·kg−1
·day−1)

for different body weights (kg).

For the calculated THQ values, the results were between 0.015 and 0.434 for Cd, between 0.002
and 0.088 for Ni, and between 0.019 and 1.644 for Pb. All the THQ values for Cd and Ni were under
the established criteria, but in the case of Pb, for toddlers (12 kg BW), the THQ of the Bolivar (1.286)
and Santa Elena (1.644) province samples were higher than 1. This fact is also evident with the EDI
results, higher than the US FDA interim reference values for children of 3.0 µg·kg−1

·day−1.
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The TTHQ results were obtained from the sum of each metal’s THQ corresponding to each body
weight and sample location. The highest value obtained for all the body weights were for the Santa
Elena province. The results were 1.85, 0.89, 0.37, and 0.32 for 12, 25, 60, and 70 kg, respectively.

The CR was determined for all the samples. For the Pb results, 93.75%, and 37.50% of the sample
results for the body weights of 12 and 25 kg, respectively, were higher than 10−6 but lower than 10−4.
These results are within the acceptable range as no samples were higher than the intolerable limit
of 10−4 [41,42].

4. Conclusions

This study determined the concentrations of three toxic elements in bananas produced and
commercialized in Ecuador, which are among Ecuador’s most exported products. The samples
analyzed do not present a non-carcinogenic risk for human health in the cases of Cd and Ni. For Pb
every result was within the acceptable range for the carcinogenic risk, but two samples presented THQ
values higher than the US FDA Interim Reference Values in the calculations for toddlers (12 kg BW).
These results show that exposure to Pb deserves particular attention, principally in the case of samples
from the Bolivar and Santa Elena provinces, where banana consumption by toddlers could pose a
potential health risk .

Comparison with available international studies focusing on risk assessment for toxic metal intake
revealed differences among the concentrations of these contaminants in the samples analyzed in the
present study. This result could be mainly attributed to variations in the natural compositions of soils
as well as to differences in consumers’ dietary habits.

Future investigations are necessary to estimate the THQs more accurately for the three metals,
and the CR for Pb, to understand the probability of ingesting levels of these metals in which its
concentrations are above the safe thresholds, letting to establish a more comprehensive view of the
safety of Ecuadorian food products.
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