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Abstract: Color index and water content are important indicators for evaluating the quality of
fresh-cut potato tuber slices. In this study, hyperspectral imaging combined with multivariate analysis
was used to detect the color parameters (L*, a*, b*, Browning index (BI), L*/b*) and water content of
fresh-cut potato tuber slices. The successive projections algorithm (SPA) and competitive adaptive
reweighted sampling (CARS) were used to extract characteristic wavelengths, partial least squares
(PLS) and least squares support vector machine (LS-SVM) were utilized to establish regression
models. For color prediction, R2

c, R2
p and RPD of all the LSSVM models established for the five

color indicators L*, a*, b*, BI, L*/b* were exceeding 0.90, 0.84 and 2.1, respectively. For water content
prediction, R2

c, R2
p, and RPD of the LSSVM models were over 0.80, 0.77 and 1.9, respectively. LS-SVM

model based on full spectra was used to reappear the spatial distribution of color and water content in
fresh-cut potato tuber slices by pseudo-color imaging since it performed best in most cases. The results
illustrated that hyperspectral imaging could be an effective method for color and water content
prediction, which could provide solid theoretical basis for subsequent grading and processing of
fresh-cut potato tuber slices.
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1. Introduction

Potato is one of the largest food crop throughout the world. Potato is rich in carbohydrates,
potassium, vitamin C and vitamin B6, making it an excellent food source [1–3]. With the demands
by consumers, washed and sliced potato tubers are widely welcomed due to their convenience in
processing. The color and appearance characteristics of potato tuber slices directly affect the acceptability
of consumers. However, the integrity of potato tuber slices is destroyed due to the cutting process,
and the polyphenol oxidase is directly exposed to the air. The oxygen environment accelerates the
oxidation of phenolic compounds to form quinones-based polymers, which eventually lead to pigment
formation. This series of reactions are enzymatic browning [4]. Browning not only deepens the color
of potato tuber slices, but also impacts their sensory quality. Moreover, browning directly leads to
a decrease in consumers’ desire to purchase, causes nutrition loss, shortens shelf life [5]. Fresh-cut
potato tuber slices are also prone to water loss at room temperature condition, which accelerates
the decline of sensory quality. Therefore, the color and water content largely reflect the freshness of
fresh-cut potato tuber slices. Rapid detection of color and water content can help determine the quality
of fresh-cut potato tuber slices and provide a theoretical basis for quality monitoring and food grading.

Generally, water content is determined by drying method. Its value can be calculated from initial
and constant weight of the sample before and after being dried. The entire process takes a long time and

Foods 2020, 9, 94; doi:10.3390/foods9010094 www.mdpi.com/journal/foods

http://www.mdpi.com/journal/foods
http://www.mdpi.com
https://orcid.org/0000-0002-7582-9732
https://orcid.org/0000-0001-6752-1757
http://www.mdpi.com/2304-8158/9/1/94?type=check_update&version=1
http://dx.doi.org/10.3390/foods9010094
http://www.mdpi.com/journal/foods


Foods 2020, 9, 94 2 of 16

causes irreversible damage to the sample, making it hard achieving large-scale detection quickly. As for
color inspection, chromatic meter is an effective tool for characterizing the color of foods according to
the difference between the tested sample and the standard whiteboard in terms of hue, lightness and
chroma. However, existing commercial chromatic meters cannot perform global analysis of the entire
surface due to the fact that they measure only a few square centimeters at a time. Therefore, to obtain
a set of data that can effectively reflect the color of the whole sample, multiple measurements are
necessary and the average value is regarded as the representative data. Though this technique obtains
objective data, cumbersome operation limits its widespread application. Imaging technique, which is
nondestructive and convenient to operate, provides a new possibility for agricultural product quality
evaluation. Among these imaging techniques, computer vision is widely used, especially in moisture
and color detection [6–8]. However, computer vision only obtains the two-dimensional information of
samples in visible bands. As a combination of spectral technique and imaging technique, hyperspectral
imaging (HSI) not only obtains one-dimensional spectral information of samples both in visible region
and near infrared region, but also captures two-dimensional spatial information [9]. Compared with the
traditional methods, HSI is easy to operate, which contributes to analyze the content and distribution
of multiple components at the same time, making the whole detection process more efficient [10].
HSI has been used in various studies to detect moisture and color in recent years [11–14]. These
studies all showed the feasibility of characterizing water content and chromaticity by HSI. As for the
quality assessment of potatoes, HSI has been used in the following studies: prediction of pigment
content in purple-fleshed sweet potato tuber slices [15], sugar content detection [16], determination of
starch content [17], prediction of starch, soluble sugars and amino acids [18], identification of sliced
organic potatoes [19], prediction of sprouting potato eyes [20], evaluation of optimal cooking time
for boiled potatoes [21], classification of defective potatoes [22], as well as detection of blackspot [23].
Moreover, Sun et al. [24] utilized HSI to predict the moisture content and freezable water content of
purple-fleshed sweet potato slices during drying process. Arnold and DeBiasio [25] investigated the
potential of using near-infrared imaging spectroscopy to identify the browning areas in French fries.
Amjad et al. [26] used HSI to characterize the water content and chromaticity of potato tuber slices
during the convective hot air drying process. Moscetti et al. [27] further studied the changes of water
content and browning of potato tuber slices during hot-air drying by HSI, which both confirmed the
feasibility of applying HSI for determination of water content and color in potato tuber slices. However,
despite these miscellaneous applications, only few studies have focused on rapid visualization of
color and water content of fresh-cut potato chips simultaneously under normal temperature storage
conditions using HSI.

Therefore, this study was performed to rapid screen of color and water content of fresh-cut potato
tuber slices using HSI coupled with multivariate analysis, so as to provide a certain reference for
potato quality evaluation. The specific objectives are: (1) obtain hyperspectral images of fresh-cut
potato tuber slices at the spectral range of 380–1030 nm; (2) identify the characteristic wavelengths
using successive projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS);
(3) compare the predictive ability of partial least squares (PLS) and least squares support vector machine
(LS-SVM) respectively and compare their performances based on the full spectra and the characteristic
wavelengths; (4) develop visualization map of color and water content distribution of fresh-cut potato
tuber slices.

2. Materials and Methods

2.1. Sample Preparation

The experiment was carried out using commercial potatoes (cultivar: Holland fifteen, geographical
origins: Weifang, Shandong Province, China) which were procured from the same supermarket at
different times. The potato tubers were cut into slices with a thickness of 3 mm along the long axis
using a stainless steel slicer. The potato tuber slices were placed in a plastic box wrapped with cling
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film to protect the slices from microbial contamination. Then the packaged potato tuber slices were
placed at room temperature (25 ◦C) for a certain placement time (0 h, 1 h, 2 h, 4 h, 8 h, 12 h, 24 h,
36 h) to simulate the shelf environment. After storage, hyperspectral image acquisition, chromaticity
measurement and water content measurement of the potato tuber slices were conducted.

In this experiment, 30 potato tuber slices from six different potatoes were set for each time gradient,
resulting in 240 samples in a total. The purpose of setting time gradient is to obtain representative
samples for color parameters and water content measurement. Due to the large individual differences
between the potatoes, the color and water content of samples set under different time gradients did not
change continuously. The changes of color and water content over time are not considered here.

2.2. Color Measurement and Water Content Measurement

After hyperspectral image acquisition, the potato tuber slices were arranged to perform color
measurement and water content measurement. A Chroma-Meter (CR-400, Konica Minolta Optics Inc.,
Tokyo, Japan) with the CIELAB color system was used to measure the color of potato tuber slices.
The measurement was conducted ten times at different positions of each sample and three readings of
luminance (L*), redness (a*) and yellowness (b*) were recorded. The average of these ten measurements
was selected as the chromaticity value of the sample. In addition, we used the average value of L*,
a* and b* to calculate the browning index (BI) [28] and luminance/yellowness ratio (L*/b* ratio) [27].

BI =
100× (x− 0.31)

0.172
, x =

a∗ + 1.75 × L∗

5.645 × L∗ + a∗ − 3.012 × b∗
(1)

Water content measurement was carried out by using a convective hot-air oven (BA0-150A,
STIK Ltd., Shanghai, China) and an electronic balance (BT125S, Sartorius Ltd., Beijing, China) with
a precision of 0.1 mg. The potato tuber slices were dried at 70 Celsius degrees (◦C) in the oven and
weighed with an electronic balance until reached a constant weight. Three replications were performed
for each measurement and took the average as the true value. We calculated water content (WC) by the
following formula,

WC =
wc −wd

wc
(2)

In the above formula, WC represents the water content (g water g wet matter−1), Wc and Wd
represent the weight of potato tuber slices before and after drying, respectively.

To build calibration models for color indexes and water content prediction, the potato tuber slices
were sorted according to the increasing order of the measured values of each parameter after outlier
removal. The middle sample of every three samples was selected into the prediction set, and the
remaining two samples were selected into the calibration set. Therefore, the number of samples in the
calibration and prediction set was 156 and 78 for each parameter, respectively.

2.3. Hyperspectral Image Acquisition

2.3.1. Hyperspectral Imaging System

Hyperspectral images acquisition was conducted by a laboratory-based line-scanning
hyperspectral imaging system. The system consists of an imaging spectrograph (ImSpector V10E;
Spectral Imaging Ltd., Oulu, Finland), a 672 × 512 (spatial × spectral) CCD camera (C8484-05,
Hamamatsu, Hamamatsu City, Japan) with a camera lens (OLES23; Spectral Imaging Ltd., Oulu,
Finland), an illumination unit of two 150 W tungsten halogen lamps (3900e Lightsource; Illumination
Technologies Inc.; West Elbridge, NY, USA), a displacement platform driven by a stepper motor
(Isuzu Optics Corp., Taiwan, China) and a computer equipped with a matched data acquisition
software (Xenics N17E, Isuzu Optics Corp.). The data acquisition was carried out in visible and
near-infrared region (Vis-NIR, 380–1030 nm) and reflectance mode was applied. Since the entire sample
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area was defined as the region of interest (ROI) and all the pixels in the image has their corresponding
spectra, the spectra of all the pixels in the ROI were obtained at once measurement.

2.3.2. Imaging Acquisition and Calibration

The potato tuber slices were placed on a black plate on the mobile platform to move into the
camera field of view for hyperspectral image acquisition. In order to obtain a clear and non-deformed
hyperspectral image, the distance between the camera lens and the sampling plane was set to 14.5 cm,
the plate moving speed was 0.85 mm/s, and the camera exposure time was set to 0.14 s.

In view of the fact that the deviations produced by the detector itself and the interference caused
by the illumination, recording the white reference image (Iwhite) and the dark reference image (Idark)
under the same experimental conditions to correct raw images is necessary. The white and black
reference images were obtained from a collection of white Teflon bar images (about 100% reflectance)
and image which was captured in condition of turning off the light source and covering the camera
lens completely (about 0% reflectance). The calibrated image (Ic) was calculated as follow:

Ic =
Iraw − Idark
Iwrite − Idark

(3)

In the above equation, Ic, Iraw, Iwhite and Idark are the calibrated hyperspectral image, raw
hyperspectral image, the white and dark reference images, respectively.

2.3.3. Image Preprocessing and Spectral Extraction

The segmentation between potato tuber slices and background is an important start of extracting
spectral data. Each piece of potato tuber slice was defined as the region of interest (ROI), and the ROI
was firstly segmented using ENVI software (ENVI 5.1, ITT Visual Information Solutions, Boulder,
CO, USA). As the maximum difference between the background and the ROI area was observed
at 590 nm. The grayscale image of this wavelength was used to create a mask with a threshold of
0.1, which was applied to perform simple threshold segmentation on whole hyperspectral images
to remove the background information. Then, spectral extraction was carried out for the ROI area.
Removing the head-to-tail spectra with high noise levels, the spectral range for further analysis was
set as 477–947 nm (370 bands). The pixel-wise spectra in each ROI were preprocessed using wavelet
transform of Daubechies 9 with decomposition scale of 3 and area normalization. The spectra extraction
procedure was implemented in MATLAB R2015b (The MathWorks, Matick, MA, USA).

2.4. Data Analysis

2.4.1. Regression Models

Regression is a data analysis method that attempts to find out the correlation between two sets
of random variables. Through regression analysis, the correlation degree between the independent
variable X and the response variable Y can be found, so as to realize the prediction of the Y value
by analyzing the X value of new samples by establishment of the regression model f (x). Therefore,
the regression model based on calibration set can explain the relationship between the spectral
(X-variable) and the measured characteristic value (Y-variable), the response characteristic value of
the prediction set can be predicted by taking the corresponding spectra as the input of the model.
In this study, partial least squares (PLS) and least squares-support vector machine (LS-SVM) regression
models were built using the average spectra of all pixels in the sample area (X-variable) and the
corresponding chromaticity values (L*, a*, b*, BI, L*/b*) and water content (Y-variable), respectively.

PLS is a commonly used linear regression analysis method, which combines the functions of
multiple regression analysis and principal component analysis. PLS can be used for modeling analysis
under the condition that the independent variables have relatively serious multi-collinearity, and it is
applicable to the case that the number of samples is far less than the number of variables [29]. PLS can



Foods 2020, 9, 94 5 of 16

perform data processing on X-variables and Y-variables at the same time. The main information in
the two sets of matrices is extracted by optimizing the covariance of X-variables and Y-variables [30].
The establishment of the PLS regression model and ten-fold cross-validation were performed in the
Unscrambler X 10.1 (Camo AS, Oslo, Norway).

LS-SVM is an extension of the traditional SVM method. Different from the traditional SVM
model, LS-SVM mainly adopts the least square linear system as the loss function, which simplifies the
complexity of calculation. In addition, LS-SVM is able to analyze linear and nonlinear multivariable
problems accurately. In this study, radial basis function (RBF) was selected as the kernel function
to better deal with the nonlinear relationship between spectral and index values [30]. The setting
of regularization parameters gamma (γ) and RBF kernel parameters (σ2) are very important for
the establishment of LS-SVM model with high regression accuracy. In order to achieve the best
performance of the LS-SVM regression model, the regularization parameters gamma (γ) and RBF
kernel parameters (σ2) of the kernel function need to be optimized. In this study, through 1000
repetitions of modeling optimization, the optimal values of γ and σ2 were selected as the parameter
combination for constructing LS-SVM model and calculating the minimum root mean square error
(RMSECV) for cross-validation. In the process of validation, ten-fold cross-validation was adopted.
The establishment of LS-SVM model was followed the method in study [31].

2.4.2. Wavelength Selection

Spectral information in continuous bands is obtained by HSI. Each pixel in the hyperspectral
image has a corresponding spectral value at each band, and an image contains hundreds or thousands
of pixels, which makes it cover a large amount of data. However, massive data not only provides
useful information for regression modeling, but also contains redundant, collinear information and
noise. These parts of information will reduce the accuracy of the model and slow down the speed
of subsequent modeling and analysis. Therefore, wavelength selection is essential to pick up the
wavelengths with the minimum collinearity, the least redundancy and the main effective information
for multiple regression modeling. In this study, successive projections algorithm (SPA) and competitive
adaptive reweighted sampling (CARS) were used to select the characteristic wavelengths.

SPA is an effective forward variable selection method. It can extract effective information from
highly collinear variables and minimize the influence of collinearity [32]. Thereby, the characteristic
wavelengths are extracted from the full bands, most of the redundant information in the original
spectral matrix is eliminated and the modeling conditions can be improved. The basic principle of
SPA is to simply project a set of wavelength subsets in the vector space and select the wavelength
subset with the least redundancy. In this study, the number of selected variables was selected at the
range 5–30.

CARS is a variable selection method that combines adaptive reweighted sampling (ARS) and PLS.
The main principle of the CARS algorithm is to preserve the wavelength with larger absolute weights
of the regression coefficients in the PLS model as a new subset by adaptive weighted sampling, remove
the wavelength with smaller weights, and then build the PLS model based on the new subset [33]. After
multiple cyclic iteration, the wavelength subset with the smallest RMSECV in PLS models was selected.

2.4.3. Model Evaluation

Evaluating the performance of the constructed model with appropriate indicators is a crucial
part of assessing its practical application ability. The reliability and robustness of the model can be
assessed by the model performance evaluation. In this study, the coefficients of determination (R2)
in calibration, validation and prediction set (R2

c, R2
cv and R2

p, respectively), root mean square error
(RMSE) of calibration, validation and prediction set (RMSEC, RMSECV and RMSEP) and residual
prediction deviation (RPD) were used to evaluate model performance. The closer R2 of the model is to
1, the closer RMSE is to 0, the higher the value of RPD, indicating that the variables are more capable to
explain the response value, which also means that the performance of the model is better. According
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to the reference [34], the value of R2 between 0.61 and 0.8 demonstrates that the model is capable
for prediction. An R2 of 0.81–0.9 indicates that the model shows good performance, and its value
above 0.9 manifests the prediction ability of the model is excellent. The smaller the RMSEs, suggesting
the better the model’s fitting ability. RPD is the ratio of standard deviation (SD) of the prediction set
to RMSEP. Its value below 2.0 indicates the model is incapable to perform quantitative prediction,
a value of 2.0–2.5 means that the model can be applied to prediction and a value above 2.5 proves
the prediction ability of the model is good [34]. R2, RMSE, and RPD of the calibration, validation,
and prediction set were calculated using the following equations.

R2 = 1−

∑n
i=1(ŷi − yi)

2∑n
i=1(ŷi − ymean)

2 (4)

RMSE =

√∑n
i=1(ŷi − yi)

2

n
(5)

RPD =
SD

RMSEP
(6)

where n is the number of samples in corresponding sample set, ŷi is the predicted value of the ith
sample obtained by the regression model, yi is the value of the ith sample measured by the reference
method, and ymean is the mean value of the measured value.

3. Results and Discussion

3.1. Color Parameters and Water Content Distribution

Table 1 shows detailed statistical data on the color index and water content of all fresh-cut potato
tuber slices. Among all the color indicators, range of L* value covered 43.794–64.738, the larger the L*
value indicated the higher the brightness of potato tuber slices. The range of a* value was −3.096 to
2.050, and the scale of a* value suggested the degree of the red or green of the sample. Negative values
indicated that the potato tuber slices were greenish, positive values indicated that the potato tuber slices
were redder conversely. The b* value revealed the yellowish or blue level of the sample. The range of b*
was 11.247–20.681. The larger the b* value, the more obvious the yellow color of the sample. The results
were similar to the existing research [27], within the normal range. Since the color change was mainly
caused by browning reaction on the surface of potato tuber slices, the browning index was also used to
evaluate the surface color in this study. The greater the browning index, the more pronounced the
browning of the surface. In the research of Moscetti et al. [27], quality inspection of potato was carried
out during hot air drying process, L*/b* was also used as an indicator to evaluate the color of potato
tuber slices. L*/b* decreased as the color deepened. The water content of all fresh-cut potato tuber
slices ranged from 0.753 to 0.879, covering the water content of fresh-cut potato tuber slices after being
placed at 25 ◦C for 0h to 36 h. It was worth noting that the high standard deviation of each indicator
indicated the high difference in fresh-cut potato slice samples. Reasonable chemical value distribution
facilitated the establishment of a highly robust model. In addition, the range of chemical values of
calibration set included that of prediction set, and the mean value and standard deviation of chemical
values did not show significant deviation between the calibration set and prediction set.
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Table 1. Statistical information of potato tuber slices in the calibration and prediction sets.

Indicator Sample Set Number Range Mean Standard Deviation

L*
Cal a 156 43.794–64.738 57.548 3.328
Pre a 78 45.497–64.681 57.561 3.301

a*
Cal 156 −3.096–+2.050 −1.277 1.308
Pre 78 −3.045–+1.886 −1.278 1.31

b*
Cal 156 11.247–20.681 15.703 1.98
Pre 78 11.581–20.567 15.704 1.977

BI
Cal 156 22.720–37.097 29.106 3.343
Pre 78 22.752–36.278 29.104 3.357

L*/b* Cal 156 2.921–4.401 3.696 0.315
Pre 78 3.011–4.248 3.696 0.312

water content
Cal 156 0.753–0.879 0.811 0.0209
Pre 78 0.758–0.876 0.811 0.021

a: Cal represents the calibration set, Pre represents the prediction set.

3.2. Spectral Profiles

Figure 1 shows the preprocessed reflectance spectra of all fresh-cut potato tuber slices. Since the
noise was significant at the head and tail of the spectra, only the spectra in the range 477–948 nm was
considered. The spectral trends of all samples were basically the same, but the reflectance in the range
of 650–750 nm showed some differences. On the one hand, the reason might be that potato tuber slices
were taken from multiple potatoes, and the individual differences between samples were quite large.
On the other hand, it might be caused by changes in the water content and surface color of fresh-cut
potato tuber slices during placement process. A valley (678 nm) and a peak (705 nm) were observed
in some spectral curves. From the perspective of visible light, 678 nm and 705nm were associated
with redness. Moreover, the wavelengths near 678 nm and 705 nm were also designated as the fourth
overtone of C–H stretch [35]. All the wavelengths contained a mass of complex information about
the color and composition of the samples. Multivariate analysis method was applied to explore the
relationship between spectra and color indexes (L*, a*, b*, BI, L*/b*) and water content of fresh-cut
potato tuber slices.
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3.3. Regression Models

3.3.1. Regression Models for Color Prediction

In this study, PLS and LS-SVM were used to establish prediction models of the color indexes L*,
a*, b*, BI and L*/b* respectively. SPA and CARS were applied to select the characteristic wavelengths.
Based on above methods, Prediction models were built based on the full spectra and the selected
characteristic wavelengths (shown in Table S1 in Supplementary file) respectively. Table 2 shows the
prediction results of L*, a*, b*, BI, L*/b* values. In terms of the prediction of L*, a*, b*, BI, L*/b*, PLS and
LS-SVM models based on full spectra and characteristic wavelengths all obtained good performance.

Table 2. Prediction results of L*, a*, b*, BI, L*/b* value by partial least squares (PLS) and least squares
support vector machine (LS-SVM) models using full spectra, wavelengths selected by successive
projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS).

Models Data Type N.V. b
Calibration Validation Prediction

R2
c RMSEC SDC R2

cv RMSECVSDCV R2
p RMSEP SDP RPD

L* value prediction

PLS
Full 370 0.841 1.324 3.051 0.816 1.562 2.894 0.738 1.710 3.007 1.758
SPA 23 0.838 1.333 3.047 0.802 1.622 2.717 0.736 1.723 2.993 1.736

CARS 43 0.907 1.013 3.169 0.870 1.316 2.848 0.801 1.470 2.919 1.985

LSSVM
Full 370 0.938 0.827 3.174 0.814 1.437 3.126 0.858 1.298 3.010 2.319
SPA 23 0.937 0.832 3.177 0.828 1.377 3.116 0.848 1.336 2.913 2.181

CARS 43 0.932 0.865 3.165 0.834 1.353 3.089 0.851 1.305 3.061 2.345

a* value prediction

PLS
Full 370 0.943 0.312 1.270 0.947 0.335 1.247 0.945 0.312 1.272 4.078
SPA 15 0.928 0.351 1.260 0.931 0.381 1.255 0.941 0.318 1.255 3.949

CARS 24 0.946 0.304 1.272 0.949 0.326 1.251 0.954 0.283 1.254 4.428

LSSVM
Full 370 0.976 0.201 1.281 0.949 0.294 1.276 0.956 0.274 1.289 4.704
SPA 15 0.964 0.248 1.277 0.950 0.290 1.275 0.957 0.271 1.284 4.731

CARS 24 0.966 0.239 1.281 0.950 0.292 1.279 0.957 0.272 1.275 4.686

b* value prediction

PLS
Full 370 0.887 0.663 1.865 0.858 0.825 1.674 0.881 0.689 1.949 2.827
SPA 21 0.899 0.628 1.877 0.862 0.816 1.695 0.887 0.679 1.982 2.918

CARS 24 0.929 0.526 1.908 0.910 0.658 1.839 0.900 0.623 1.874 3.008

LSSVM
Full 370 0.962 0.383 1.930 0.909 0.597 1.938 0.924 0.546 1.942 3.560
SPA 21 0.941 0.481 1.913 0.912 0.587 1.908 0.922 0.556 1.923 3.461

CARS 24 0.959 0.399 1.927 0.909 0.597 1.920 0.924 0.548 1.895 3.457

BI value prediction

PLS
Full 370 0.911 0.993 3.191 0.896 1.197 3.068 0.898 1.083 3.364 3.107
SPA 17 0.887 1.121 3.148 0.862 1.379 3.030 0.887 1.141 3.333 2.920

CARS 25 0.902 1.045 3.174 0.884 1.263 3.034 0.890 1.125 3.351 2.978

LSSVM
Full 370 0.958 0.685 3.248 0.924 0.922 3.231 0.940 0.823 3.328 4.047
SPA 17 0.950 0.742 3.242 0.923 0.924 3.243 0.932 0.875 3.353 3.831

CARS 25 0.958 0.686 3.256 0.932 0.869 3.244 0.929 0.899 3.297 3.669

L*/b* value prediction

PLS
Full 370 0.904 0.097 0.299 0.885 0.118 0.289 0.872 0.114 0.300 2.634
SPA 18 0.915 0.092 0.301 0.905 0.107 0.289 0.883 0.111 0.299 2.706

CARS 30 0.938 0.078 0.305 0.928 0.093 0.294 0.929 0.087 0.296 3.390

LSSVM
Full 370 0.957 0.065 0.305 0.919 0.089 0.305 0.947 0.073 0.292 4.023
SPA 18 0.954 0.068 0.305 0.922 0.088 0.305 0.948 0.072 0.293 4.093

CARS 30 0.948 0.072 0.304 0.927 0.085 0.304 0.940 0.078 0.299 3.847

b: N.V. is the number of variables. SDC, SDCV, SDP: Standard deviation of the predicted values of the calibration set,
validation set, and prediction set.
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For the prediction of L*, the performance of PLS models was less than satisfactory, with R2
p in the

range of 0.736-0.801 and RPD in the range of 1.736–1.985. Compared with PLS models, LS-SVM models
performed better, with R2

p in the range of 0.848–0.858 and RPD in the range of 2.181–2.345. In all
the models for L* prediction, the similar results obtained by LS-SVM model using the characteristic
wavelengths selected by CARS and LS-SVM model based on full spectra were generally good. The R2

c,
R2

cv, R2
p and RPD of these two models both exceeding 0.93, 0.81, 0.85 and 2.3, which illustrated the

great performance of the model. Besides, standard deviation of the predicted values of the calibration
set, validation set, and prediction set obtained by LS-SVM models were close to standard deviation of
the measured values.

In the prediction of a*, R2
c, R2

cv, R2
p of all models exceeded 0.9 and RPD exceeded 3.9, exhibiting

excellent performance. In addition, standard deviation of the predicted values obtained by all models
and that of the measured values was quite close. The overall performance of LS-SVM models was
better than that of PLS models. All the LS-SVM models achieved good results, with R2

c, R2
cv, R2

p and
RPD were over 0.96, 0.94, 0.95 and 4.6. The results indicated that the model could effectively perform
the prediction of the a* value of fresh-cut potato tuber slices.

For b* prediction, R2
c, R2

cv, R2
p of all models were greater than 0.85. LS-SVM models outperformed

PLS models. The performance of the LS-SVM model based on characteristic wavelengths selected
by CARS were similar to the LS-SVM model based on characteristic wavelengths selected by SPA.
LS-SVM model established by full spectra yielded the best results. The R2

c, R2
cv, R2

p and RPD were
up to 0.962, 0.909, 0.924 and 3.560 respectively.

As for the prediction of BI, PLS and LS-SVM models both showed good performance, R2
c, R2

cv,
R2

p of all models exceeded 0.86, and the RPD range was 2.920–4.047. Both in PLS model or LS-SVM
model, standard deviation of the predicted values of prediction set obtained by these two models
were similar to standard deviation of the measured values. LS-SVM model built with full spectra
performed best, with R2

c, R2
cv, R2

p and RPD were up to 0.958, 0.924, 0.940 and 4.047, indicating that
the robustness of LS-SVM model based the full spectra.

For the prediction of L*/b*, R2
c, R2

cv, R2
p of most models exceeded 0.9, and RPD yielded 2.6.

Among all the models for L*/b* prediction, the performance of the LS-SVM model based on the
characteristic wavelengths selected by SPA and LS-SVM model based on full spectra were generally
good, with R2

c, R2
cv, R2

p and RPD over 0.95, 0.91, 0.94 and 4.0 respectively. Besides, standard deviation
of the predicted values of the calibration set and validation set obtained by these models were similar,
and both of them were similar to standard deviation of the measured values. These results indicated
that multivariate analysis of PLS and LS-SVM were conducive to characterize the color of fresh-cut
potato tuber slices effectively.

In addition, it can be observed that the number of characteristic wavelengths selected by SPA
and CARS was different, and the performance of the model established using the full spectra and
the characteristic wavelengths showed slight difference. With SPA applied, the variable input was
reduced 93.8–95.9% of the full spectra. Similarly, the variable input was reduced 88.4–93.5% of the full
spectra by CARS. The performances of the PLS models and the LS-SVM models established by the
characteristic wavelengths were comparable to or better than models based on the full spectra, which
verified the effectiveness of the variables utilization by simplifying the input. Wavelengths selection
contributed to avoiding the interference caused by redundant information and noise. Moreover, most
models that utilized the characteristic wavelengths selected by CARS outperformed models that used
wavelengths selected by SPA. In the prediction of a*, compared with the RPD (3.949) of the SPA-PLS
model, the RPD of CARS-PLS model was significantly improved to 4.428. The same phenomenon was
also observed in the L*/b* prediction.

In terms of model selection, all the models built by LS-SVM for all color index prediction were
superior to the corresponding models established by PLS. In short, the nonlinear LS-SVM models
performed better than the linear PLS models. This might be due to the outstanding processing ability
of LS-SVM in linear and nonlinear problems, which contributed to not only handling the linear
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relationship between color index and spectra, but also better revealing the nonlinear relationship
between the two. Therefore, LS-SVM was more suitable for the prediction of color index in fresh-cut
potato tuber slices.

3.3.2. Regression Models for Water Content Prediction

Table 3 shows the results of models for water content prediction. Overall, the model for water
content prediction performed less satisfactorily, with R2

c, R2
p and RPD ranging from 0.751–0.825,

0.718–0.794 and 1.675–2.018, respectively. The model performance of LS-SVM was significantly better
than PLS, RPD was improved from 1.700 of CARS-PLS model to 1.978 of CARS-LS-SVM. In the similar
study on the water content prediction of purple-fleshed sweet potato tuber slices [23], both R2

c and
R2

p of PLS model reached 0.9, which were better than the prediction model in this study. The possible
reason was that Sun et al. [24] explored the water content during drying process, and the gradient of
water content was large. While we predicted the water content of the samples under room temperature
storage conditions, the difference in water content between samples was relatively small. Besides,
the number of characteristic wavelengths selected by SPA and CARS was different. The variable input
was reduced to 5.4–5.9% of the full spectra by wavelength selection. The performance of the models
established based on the characteristic wavelengths selected by CARS and SPA were comparable to or
better than models based on the full spectra model based on the full spectra. In addition, standard
deviation of the predicted values of the calibration set, validation set, and prediction set obtained by
all models were close to that of the measured values.

Table 3. Prediction results of water content by PLS and LS-SVM models using full spectra, wavelengths
selected by SPA and CARS.

Models Data Type N.V. b
Calibration Validation Prediction

R2
c RMSEC SDC R2

cv RMSECVSDCV R2
p RMSEP SDP RPD

PLS
Full 370 0.777 0.010 0.018 0.620 0.014 0.018 0.718 0.011 0.020 1.781
SPA 20 0.751 0.010 0.018 0.624 0.014 0.017 0.719 0.011 0.019 1.675

CARS 22 0.788 0.010 0.019 0.692 0.013 0.017 0.721 0.011 0.019 1.700

LSSVM
Full 370 0.812 0.009 0.018 0.692 0.012 0.018 0.778 0.010 0.020 2.006
SPA 20 0.803 0.009 0.018 0.653 0.012 0.019 0.794 0.010 0.019 2.018

CARS 22 0.825 0.009 0.018 0.713 0.011 0.019 0.791 0.010 0.019 1.978

b: N.V. is the number of variables. SDC, SDCV, SDP: Standard deviation of the predicted values of the calibration set,
validation set, and prediction set.

Among the wavelengths selected by SPA and CARS (shown in Table S1 in Supplementary
file), the wavelengths between 477–740 nm could be related to color information [36]. The selected
wavelengths around 760 nm could be attributed to the absorption by O-H bonds [37]. The selected
wavelengths near 840 nm may be attributed to the combinations of C-H stretching and C-H bending
vibrations [38]. The selected wavelengths in the range from 880 nm to 890 nm could be attributed
to the third overtone of C-H stretching [38]. In addition, the selected wavelengths near 906 nm and
928 nm could also be attributed to the third overtone of C-H stretching [38].

The quality change of potato during storage is a complicated issue. In addition to color index
and water content, microorganisms are also one of the main factors affecting its quality. Studies have
shown that with the extension of storage time, the microbial growth shows an increasing trend [39,40].
More work needed to be done to further study the effect of microbial growth on the quality during
storage of potato tuber slices.
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3.4. Visualization

The above results revealed that the color and water content of fresh-cut potato tuber slices could
be evaluated quickly and effectively by HSI with the aid of multivariate analysis. In most cases,
the performance of LS-SVM model based on full spectra was superior to other models. Therefore,
LS-SVM model based on full spectra was utilized for visualization of the color index and water content
of fresh-cut potato tuber slices. First, wavelet transform and area normalization preprocessing were
performed on each pixel of the ROI, and then input the preprocessed spectra into the trained LS-SVM
model, finally the color and water distribution of the entire sample were visually displayed.

3.4.1. Color Visualization

The results of pixel-by-pixel prediction of the color distribution of fresh-cut potato tuber slices by
the LS-SVM model are shown in Figure 2. The potato tuber slices were successfully separated from the
background by means of multiple regression analysis, and the color bar corresponds to the continuous
value of each color index within a certain range. Each pixel has a different color value from others.
For fresh-cut potato tuber slices with higher values, more red pixels could be observed, while lower
values correspond to more green pixels and blue pixels.
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For the prediction of L*, b*, BI and L*/b*, although the values of each pixel are different, it presents
a relatively uniform distribution in the whole ROI area. However, it can be seen from Figure 2 (a*)
that the part near the middle of the potato sample is found to be darker, corresponding to a higher
redness, which is mainly related to the location of browning. In addition, the main purpose of the
chromatic aberration method commonly used is to evaluate the overall characteristics of the sample.
Though calculating the average of the color values corresponding to each pixel may lose some spatial
information, it is more feasible in practical application. In Figure 2, the P* value is the predicted average
value of all pixels and the T* value is the actual value measured by the chromatic aberration method.
According to the Figure 2 (L*), the values of L* measured by the chromatic aberration method were
56.320, 57.118, 58.396 and 60.090, respectively, which were similar with the average values of all pixels
predicted by the LS-SVM model based on full spectra (56.455, 59.545, 61.151 and 60.877). The same
phenomena could also be seen from the prediction of other color indicators (a*, b*, BI, L*/b*) in Figure 2,
reflecting the validity and accuracy of LS-SVM models based on full spectra. As for BI, the higher
the browning degree of the samples, the higher the BI value, which directly reflect the freshness of
the fresh-cut potato tuber slices to some extent. Conversely, a higher L*/b* value indicates a higher
brightness, a lower yellowness and a lower browning degree of potato tuber slices. The object oriented
color prediction map based on LS-SVM model built with full spectra shows great potential to visualize
color attributes, which will greatly facilitate the real-time nondestructive measurement in color of
agricultural products.

3.4.2. Water Content Visualization

Visualization of water content distribution helps to quickly evaluate the water content of fresh-cut
potato tuber slices. In this study, the LS-SVM model based on full spectra was used to calculate the
predicted values of each pixel in hyperspectral images of fresh-cut potato tuber slices. Figure 3 shows
the prediction map of water content distribution of four randomly selected samples. It can be seen
from Figure 3 that the red pixels correspond to the tissues with higher water content, while the green
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and blue pixels indicate lower water content. Calculating the average values predicted of all the pixels
is a good way to know the overall water content of the sample, which is usually the main concern in
practical applications, rather than the specific location of the water distribution. The measured values
of water content in the four samples were 0.785, 0.796, 0.801 and 0.863, respectively, they were quite
similar to the average predicted values (0.793, 0.781, 0.794 and 0.812), with a minimum error of only
0.87% and a maximum error of 5.91%. It is shown that the water content of fresh-cut potato tuber slices
can be predicted accurately based on the pixel information provided by HSI. The method has a great
potential to detect the water content of potato tuber slices in real time, avoid the irreversible damage
caused by traditional chemical methods and improve the detection efficiency and accuracy.
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4. Conclusions

In this study, hyperspectral imaging system within the wavelength range 400–1000 nm coupled
with multivariate analysis was applied for color index (L*, a*, b*, BI, L*/b*) and water content prediction
of fresh-cut potato tuber slices. SPA and CARS were used to extract characteristic wavelengths, PLS and
LS-SVM were used to establish regression models. Overall, the LSSVM models performed better than
the PLS models. For color prediction, R2

c and R2
p of all the LSSVM models established for the five

color indicators L*, a*, b*, BI, L*/b* were exceeding 0.90 and 0.84, respectively. All these results showed
satisfactory performance of the models. For water content prediction, R2

c, R2
p, and RPD of the LSSVM

models were over 0.80, 0.77 and 1.9, which was good but still need to be improved. LS-SVM models
based on full spectra were used to visualize the spatial distribution of color and water content in
fresh-cut potato tuber slices by means of pseudo-color imaging since LS-SVM models based on full
spectra had the best performance in most cases. The good performance of hyperspectral imaging
assisted by multivariate analysis demonstrated its effectiveness for color and water content prediction
of fresh-cut potato tuber slices. In future studies, we will try to establish prediction models by deep
learning methods to improve the performance of the models, and continue to explore the change of
color and water content of fresh-cut potato tuber slices during shelf storage, in order to provide some
references for relevant researches.
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