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Abstract: Listeria monocytogenes is a food-borne pathogen often associated with ready-to-eat (RTE) food
products. Many antimicrobial compounds have been evaluated in RTE meats. However, the search for
optimum antimicrobial treatments is ongoing. The present study developed a rapid, non-destructive
preliminary screening tool for large-scale evaluation of antimicrobials utilizing a bioluminescent
L. monocytogenes with a model meat system. Miniature hams were produced, surface treated with
antimicrobials nisin (at 0–100 ppm) and potassium lactate sodium diacetate (at 0–3.5%) and inoculated
with bioluminescent L. monocytogenes. A strong correlation (r = 0.91) was found between log scale
relative light units (log RLU, ranging from 0.00 to 3.35) read directly from the ham surface and
endpoint enumeration on selective agar (log colony forming units (CFU)/g, ranging from 4.7 to 8.3)
when the hams were inoculated with 6 log CFU/g, treated with antimicrobials, and L. monocytogenes
were allowed to grow over a 12 d refrigerated shelf life at 4 ◦C. Then, a threshold of 1 log RLU emitted
from a ham surface was determined to separate antimicrobial treatments that allowed more than
2 log CFU/g growth of L. monocytogenes (from 6 log CFU/g inoculation to 8 log CFU/g after 12 d).
The proposed threshold was utilized in a luminescent screening of antimicrobials with days-to-detect
growth monitoring of luminescent L. monocytogenes. Significantly different (p < 0.05) plate counts
were found in antimicrobial treated hams that had reached a 1 log RLU increase (8.1–8.5 log(CFU/g))
and the hams that did not reach the proposed light threshold (5.3–7.5 log(CFU/g)). This confirms
the potential use of the proposed light threshold as a qualitative tool to screen antimicrobials with
less than or greater than a 2 log CFU/g increase. This screening tool can be used to prioritize novel
antimicrobials targeting L. monocytogenes, alone or in combination, for future validation.
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1. Introduction

Listeria monocytogenes is a gram-positive microorganism, found ubiquitously in the environment,
which causes the foodborne disease listeriosis. In 2019, the Center for Disease Control and Prevention
(CDC) reported 134 cases of listeriosis in the U.S with one of the highest case-fatality rates among
food-borne diseases–16% [1]. Ready-to-eat meat products support the growth of L. monocytogenes and
have been classified as high-risk food products since these products are commonly consumed without
any further treatment [2]. Listeriosis outbreaks have been linked to ready-to-eat (RTE) products, such as
fresh cheeses, luncheon meats, and fresh produce [3].

To control the growth of L. monocytogenes, RTE meat products are often formulated with
antimicrobial agents [4]. While there are many categories of commercially-available antimicrobials,
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novel antimicrobials are continuously being developed to meet evolving consumer demands while
continuing to be effective and affordable [5,6].

The classic method to evaluate antimicrobials in deli meats (the “ham slice method”) is
laborious [7–11]. This process uses a large amount of food product, such as many slices of ham,
and utilizes the traditional method of enumeration on selective media. Surface application of
antimicrobials on whole deli meat slices is done at various levels and combinations. Slices are
inoculated with L. monocytogenes, or the non-pathogenic surrogate Listeria innocua, and then stored
at refrigeration temperature. At selected time points, the meat slice is physically disrupted for cell
recovery, diluted with buffer, and the diluted solution is plated onto selective agar. After 24–48 h of
growth, the plate counts can be compared. This traditional enumeration method is destructive to the
food product and requires days to receive results of the antimicrobial effectiveness. This method is not
suitable for large-scale screening of antimicrobials, alone or in combination, in ham. Consequently,
when a large number of antimicrobials need to be screened, the optical density can be measured for small
volumes of broth with antimicrobials and inoculum after a ~24 h incubation period [12]. Problematically,
studies have highlighted the differences in L. monocytogenes sensitivity to antimicrobials in various
broths and food matrices [13]. Reasons for the differences include the presence of competing microbial
flora, impact of the food composition on antimicrobial function, temperature of the assay and changes
in the L. monocytogenes biology such as growing planktonically in broth whereas forming biofilms
on food matrices [13,14]. Screening followed by validation in food is becoming more prevalent as
synergistic relationships of antimicrobial combinations or antimicrobials with post-lethality treatments
are being targeted to lower the cost of the treatment while increasing effectiveness [7,15].

Researchers have proposed optimized laboratory models of food products with a high-risk of
L. monocytogenes contamination, such as queso fresco [16]. These methods can be used to screen many
antimicrobials, including combinations, while avoiding reliance on a broth system. There have been
some ham-like models proposed in replacement of using whole ham slices [17–19], however, none have
been able to replicate the ham slice method. A model is needed to mimic the ham slice method while
increasing efficiency of antimicrobial screening.

A long-proposed mechanism to measure L. monocytogenes growth in food is a luciferase-based
reporter system [20,21]. Luciferases are enzymes that catalyze a reaction that produces visible light in a
process called bioluminescence. The lux genes responsible for bioluminescence have been transferred
and expressed in several microorganisms [22]. The luciferase reporter system has been modified for
gram-positive microorganisms and integrated into the chromosome of L. monocytogenes to measure
growth in a food matrix [23]. In that work, the relative light units (RLU) were correlated to the
traditional plate count colony forming units (CFU), to allow real-time analysis of L. monocytogenes
growth. However, the food matrix was destroyed to measure the light-emission from the cells.
This process has not been modified to screen antimicrobials targeting L. monocytogenes by reading light
directly from a food surface while not destroying the food matrix.

This study evaluates the use of a non-destructive luminescence screening tool for L. monocytogenes
growth in a miniature ham system. First, the method of measuring light emissions from the surface of
miniature ham disks in 96-well microplates was developed. The correlation of RLUs and CFUs was
found for multiple inoculation levels to determine the strongest correlation. Then endpoint RLUs and
CFUs were measured with limited antimicrobial treatments of known effectiveness (potassium lactate
sodium diacetate (PLSDA) at 1.75% and 3.50%, respectively). Finally, this method was validated by
screening two antimicrobials with known activity at three levels (Nisin (NI) at 100, 50, and 25 ppm
and PLSDA at 2.50%, 1.25%, and 0.63%) in a ham model to determine which antimicrobial treatments
allowed less than 2 log growth over 21 days. This high-throughput screening method can be utilized to
screen many novel antimicrobials or antimicrobial combinations and thus identify promising treatments
for further traditional validation with eventual implementation in deli meats.
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2. Materials and Methods

2.1. Sample Preparation

Ham was made at the University of Illinois Meat Science Laboratory, a commercial sales facility
regulated by the United States Department of Agriculture’s (USDA) Food Safety and Inspection Service
(FSIS). The ham formula was based on the retail ham sold by the Meat Science Laboratory. Sodium
hexametaphosphate (SHMP) (29 g) was added to a mixture of half ice and water (1.07 kg) until fully
dissolved. Then NaCl salt (160 g), Prague powder No. 1 curing salt (13 g), and sodium erythorbate
(5 g) were mixed into the brine. Dextrose (146 g) was added last to the brine. Lean pork leg inside cuts
(4.53 kg) were diced into 1 inch cubes and vacuum tumbled with the brine for two hours. The mixture
was stuffed into nylon casings and smoked at 170 ◦C heat for 7 h. After chilling, the ham was sliced
into 2.5 mm slices, individually vacuum sealed and frozen. The ham had a protein fat-free (PFF) of 22.3,
which is the protein content of the nonfat portion of the finished ham and reflects the amount of added
water. This determines the type standard identity of the product, with this product being labeled as
“ham”. This product had a final sodium content of 1.3% and a water activity (aw) of 0.963 ± 0.001
at 4 ◦C.

2.2. Microorganisms and Growth Conditions

Listeria monocytogenes Xen19 was acquired from PerkinElmer (PerkinElmer, Waltham, MA, USA).
This strain was derived from the American Type Culture Collection (ATCC) 23074, with a copy of the
Photorhabdus luminescens lux operon in its chromosome, making it stable and constitutively expressed.
This strain was inoculated in a brain heart infusion (BHI) (Difco, Becton Dickinson and Co., Sparks,
MD, USA) from glycerol stocks stored at −80 ◦C. The bacterium was grown overnight in 10 mL BHI
broth for 18 h at 37 ◦C with an agitation of 250 rpm. The cultures were then passed to 5 mL BHI
media to grow for 24 h at room temperature (22 ◦C) without agitation, as adapted from Liu et al. [24].
The L. monocytogenes Xen19 overnight culture (~9 log CFU/mL) was then diluted in phosphate buffered
saline solution (PBS) (KCl 200 mg/L; KH2PO4, 200 mg/L; NaCl, 8 g/L; Na2HPO4, 1.15 g/L, pH 7.2,
MP Biomedicals, LLC, OH) to achieve the desired inoculation level, ranging from 2 to 8 log CFU/g,
specified in each experiment. These same conditions were used for a cocktail of L. monocytogenes strains
associated with foodborne disease outbreaks (L. monocytogenes NRRL B-33419, L. monocytogenes NRRL
B-33424, L. monocytogenes NRRL B-33420, L. monocytogenes NRRL B-33513, and L. monocytogenes NRRL
B-33104). Equal parts of the overnight cultures of the cocktail strains were mixed before diluting in
PBS. The strains used in this study are listed in Table 1.

Table 1. Listeria monocytogenes strains used in this study.

Strain Serotype Phenotype/Source of Isolation

L. monocytogenes Xen19 4b Bioluminescent; Derived from ATCC 23074
L. monocytogenes NRRL B-33419 * 1/2a Human, epidemic, sliced turkey
L. monocytogenes NRRL B-33424 * 1/2b Human, epidemic, chocolate milk
L. monocytogenes NRRL B-33420 * 4b Food, epidemic, RTE meat products
L. monocytogenes NRRL B-33513 * 4b Food, epidemic, pate
L. monocytogenes NRRL B-33104 * 4b Food, epidemic, Jalisco cheese

* The foodborne disease outbreak associated strains of L. monocytogenes used in the cocktail.

2.3. Description of Ham Model

Vacuum sealed 2.5 mm ham slices were defrosted at 5 ◦C for at least 12 h before using immediately.
A flame-sterilized 4.8 mm diameter circular die was used to punch uniform ham disks into microtiter
plates. White microtiter plates were used (96-well, white, clear-bottomed, Greiner bio-one, Monroe,
NC, USA) to analyze the bioluminescent L. monocytogenes and the cocktail strains. Each ham disc
weighed 88 ± 4 mg (Figure 1). Antimicrobials were diluted in sterile distilled water and 30 µL was
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pipetted onto the ham disk. The plate was centrifuged at 3220× g for 4 min at 4 ◦C (Centrifuge 5810 R,
Eppendorf, Hauppauge, NY, USA) to ensure all droplets of the antimicrobial were covering the ham
disk. Hams were inoculated with 30 µL of the diluted L. monocytogenes before centrifuging at 3220× g
for 6 min at 4 ◦C. Centrifugation was done to pellet the cells to the ham surface. Excess liquid was
removed from each well, with over half of the liquid recovered. This process was validated for the
initial inoculation amount to match the Day 0 ham measurement with enumeration by selective media.
A plastic lid was placed on the 96-well plate and sealed in an air-tight container also containing a
saturated salt solution of KNO3 (chosen for its similar water activity of 0.96 ± 0.01 at 10 ◦C) to prevent
the ham from drying with exposure to the environment, while taking measurements over the time
course. The container was stored at 5 ◦C for the number of days noted for each experiment.
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Figure 1. Schematic diagram of the experimental design to compare the growth of L. monocytogenes
Xen19 to a cocktail of 5 L. monocytogenes strains that have been previously related to foodborne outbreaks;
the experiment is to find the best correlation between relative light units (RLU) and colony forming
units (CFU) for the days-to-detect experiment.

2.4. Antimicrobials Used

Two commercially-available antimicrobials with GRAS status were used in this study. Nisaplin
(Danisco, Beaminster, UK) contains the bacteriocin nisin (NI) (2.5% w/w) and was diluted in sterile
distilled water. It has GRAS status for up to 220 parts per million (ppm) by FSIS on the surface of
cooked RTE meat products (GRAS No. 000065). The organic acid combination, L-potassium lactate
(54.5–57.5% w/w) and sodium diacetate (3.7–4.3% w/w) (PLSDA) (Opti.Form® PD 4, Corbion Purac,
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Amsterdam, The Netherlands) was used up to an upper limit of 3.5% w/w (company recommendation
for sliced ham). Both were tested by surface application in the model ham system.

2.5. Determination of Growth at the End Point

A 12-day endpoint was determined based on U.S. government recommendations for safe deli meat
storage. The Food and Drug Administration (FDA) Food Code 2013 suggests that opened RTE food
products, including deli meats, in a food establishment stored at 5 ◦C or less be held for a maximum of
7 days. Additionally, the United States Department of Agriculture (USDA) Refrigeration and Food
Safety (2015) recommends that a consumer should keep fully-cooked deli ham slices for no more
than 3–5 days in their refrigerator before discarding. Using the greatest amount of time for each
federal recommendation, a time course of 12 days was implemented for thawed and oxygen-exposed
ham slices.

Luminescence readings were taken with a luminometer (FilterMax F5 Multi-Mode Microplate
Reader, Molecular Devices, San Jose, CA, USA) that detected all light in the visible spectrum between
400 and 750 nm from the ham surface. Row optimization, an integration time of 2000 ms, and a
read height of 1 mm were set in the Softmax Pro 7 software (Molecular Devices, San Jose, CA, USA).
Wells with uninoculated ham was set as the blanks in the software.

At some time points, hams were destructively sampled with traditional enumeration, after reading
the luminescence from the ham, to allow for comparison between RLU and CFU (Figure 1). This was
done by aseptically removing the miniature hams from the 96-well plate and suspending 1:10 in PBS in
a 1.5 mL Eppendorf tube. The miniature hams were disrupted by vortexing (Vortex-Genie 2, VWR,
Rochester, NY, USA) for 5 min to remove the cells from the ham surface, giving recovery that was
not statistically different from a stomacher. Additional serial dilutions in PBS were made to the ham
solutions. Then 50 µL of the appropriate dilutions were enumerated by plating on Polymyxin Acriflavin
Lithium-chloride Ceftazidime Esculin Mannitol (PALCAM) Listeria-Selective agar (EMD-Millipore)
with the Listeria selective supplement (EMD-Millipore) in duplicate with a spiral plater (Eddy Jet-Spiral
plater, Neutec group inc., Farmingdale, NY, USA) and incubated at 37 ◦C for 48 h prior to counting
with a colony counter (The IUL Flash and Go, Neutec group inc., Farmingdale, NY, USA).

The growth after 12 days on ham of the bioluminescent strain was compared to a cocktail of
L. monocytogenes strains associated with foodborne disease outbreaks with enumeration by plating
(Figure 1). The initial inoculum was 4.8± 0.2 log CFU/g for the cocktail strains and L. monocytogenes Xen19.

For determining the preliminary luminescent RLU threshold using the miniature ham model,
a control ham, and hams with 1.75% and 3.5% PLSDA were measured with a luminometer and by
traditional plate counts at days 0, 6, and 12. This experiment was done in triplicate. The starting
inoculation was 6.0 ± 0.2 log CFU/g.

For the application of the model for antimicrobial screening, the hams were tested with six
technical replicates and the experiment was done in biological duplication, with a starting inoculation
of 5.9 ± 0.2 log CFU/g. The RLU was read once a day for 21 days, encompassing the 12-day anticipated
shelf life plus additional time for an outgrowth signal to develop in the growth-inhibited treatments
(Figure 1). When the average light signal reached 1 log RLU, three of the replicates were aseptically
removed and enumerated by serial dilutions and plating on selective medium as described above.
The remaining three hams continued to have light measurements taken until Day 21.

2.6. Data Analysis

JMP Pro 13 statistical software (SAS Institute, Cary, NC, USA) was used for all data analysis.
An ANOVA analysis was performed to determine statistical differences (p < 0.05) between pathogen
growth on treated and untreated hams (treatment effect) inoculated with an L. monocytogenes cocktail or
L. monocytogenes Xen19 (strain effect), and their interaction. This experiment was performed in triplicate.
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The Pearson correlation coefficient was calculated to evaluate the inoculum level that had the
highest linear correlation between log (CFU) and log (RLU) in ham over a 12-day time course.
The experiment was performed in technical duplicates and biological triplicates.

An ANOVA analysis was done for the days-to-detect experiment to compare plate counts between
all treatments, with the end goal of comparing the treatments that reached the 1 log RLU increase
threshold (control, PLSDA 0.6%, PLSDA 1.25%, and NI 25 ppm) with the treatments that did not reach
the 1 log RLU increase threshold at 21 days (PLSDA 2.5%, NI 50 ppm, and NI 100 ppm). Once the
ANOVA showed a significant treatment effect, an unbiased all-pair comparison was performed using
Tukey-Kramer test with a significance level of α = 0.05. After this analysis, the treatments that exceeded
1 log RLU were grouped together. The hams were tested with six technical replicates and the experiment
was done in biological duplication.

3. Results

3.1. Growth Comparison of the Bioluminescent Strain to Foodborne Disease Associated Strains

The growth of L. monocytogenes Xen19 was compared to a 5-strain cocktail of L. monocytogenes
strains after 12 days using enumeration by plating with no antimicrobial treatment and PLSDA at
3.50% (Figure 2). The change in growth was examined and analyzed with the 12-day end-point plate
count (Ni) being subtracted from the starting count at Day 0 (N0). An ANOVA indicated significant
statistical differences between hams treated with 3.5% PLSDA and the non-treated ones (p < 0.05),
which was to be expected. However, no statistical differences (p = 0.98) were found between hams
inoculated with the L. monocytogenes cocktail and the ones inoculated with L. monocytogenes Xen19,
nor was the interaction effect significant (p = 0.40).
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Figure 2. Comparison of growth after 12 days (Ni–N0) at 5 ◦C with a cocktail of L. monocytogenes
associated with foodborne disease outbreaks and L. monocytogenes Xen19 on a miniature ham model.
The initial inoculum was 4.8 ± 0.2 log CFU/g. ANOVA analysis found no significant difference between
the cocktail of L. monocytogenes and L. monocytogenes Xen19 controlling for treatment effect (p = 0.98).

3.2. Correlation of Colony Forming Units and Relative Light Units

To determine the best correlation between CFUs and RLUs, both parameters were measured and
plotted against each other. For this purpose, multiple L. monocytogenes inoculation levels were tested in
triplicate over a 12-day time course (Figure 3). Figure 3A shows the correlation between CFU (log) and
RLU (log) with limited antimicrobial treatments (Control Day 0, Control Day 12, PLSDA 1.75% Day 12,
and PLSDA 3.50% Day 12) with inoculations ranging from 2 to 8 log CFU/g. The inoculation levels
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with the best initial correlation coefficients (5 and 6 log CFU/g) were then brought forward into more
trials. Figure 3B shows the consequent prediction models of 5 and 6 log CFU/g inoculations for RLUs
and CFUs in trials using controls, PLSDA at 1.75% and 3.50%, and NI at 110 and 220 ppm. The 6 log
CFU/g inoculation level gave the best correlation of CFUs to RLUs (r = 0.91). Therefore, the variance is
well explained by the model. A 6 log CFU/g inoculation level was brought forward into the rest of
the experiments.
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3.3. Preliminary Relative Light Unit Threshold Determination with Limited Antimicrobial Treatments

To determine if measuring light emission of L. monocytogenes Xen19 could produce a preliminary
RLU threshold to separate treatments that exhibited growth or not, a control ham and hams treated
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with either 1.75% or 3.50% PLSDA were measured at days 0, 6, and 12 (Figure 4). The RLU trend in
samples with or without treatments followed what was expected with the control ham emitting the
most light, followed by the lower level of PLSDA, and the higher level of PLSDA emitting very little
light. This was the same trend as the traditional plate counts. Whereas only the plate counts had
significant differences with and without treatments at Day 6, both plate counts and RLU had significant
treatment differences at Day 12 (p < 0.05).
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with no antimicrobial treatment. The line at 1 log relative light unit (RLU) is proposed to distinguish
samples with L. monocytogenes growth above 2 log CFU/g. The error bars are the standard deviation of
the samples.

The line in the RLU graph at 1 log RLU was proposed to distinguish between the samples that
showed minimal growth at best and samples that notably grew. In this experiment, the 1 log RLU
threshold would accurately classify the control ham as showing over a 2 log CFU/g increase after
12 days, and the ham with PLSDA at 1.75% and 3.5% as having less than a 2 log CFU/g increase.
This threshold was brought forward into further experiments.

3.4. Application of the Model to Antimicrobial Screening

To test if this model could be applied to a higher-throughput screening approach with antimicrobials
targeting L. monocytogenes using the proposed threshold of 1 log RLU, many levels of antimicrobials
(NI at 100, 50, and 25 ppm, and PLSDA at 2.50, 1.25, and 0.63%) were surface applied to the hams in
96-well plates and light emission was tested daily for 21 days. When the average RLU of the sample
was greater than 1 log, it was enumerated by plating. At the end of 21 days, the rest of the samples that
did not reach 1 log RLU were enumerated by plating, and these results are shown in Table 2.

The control was the first to reach the threshold at 10 days, followed by PLSDA at 0.6% at 11 days,
PLSDA 1.25% at 15 days, and NI 25 ppm at 17 days (Table 2). An ANOVA test was used to confirm that
the treatments that reached 1 log RLU threshold (control, PLSDA 0.6%, PLSDA 1.25%, and NI 25 ppm)
were significantly different (p < 0.05) from the treatments that did not reach that threshold (2.5% PLSDA,
50 ppm NI, and 100 ppm NI). Post-hoc analysis using the Tukey-Kramer test determined that the
treatments that did not reach the 1 log RLU threshold had significantly different mean plate counts than
each other and to the treatments that exceeded the 1 log RLU threshold (p < 0.05). In addition, the mean
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plate counts at the time point where the treatments first exceeded 1 log RLU were not significantly
different (p > 0.05).

Table 2. The number of days to reach the threshold of detection for antimicrobial treatments targeting
L. monocytogenes Xen19 *.

RLU Threshold Status Antimicrobial Treatment Plating Days Average Plate Counts (log CFU/g)

Reached 1 log RLU Control 10 8.49 ± 0.18 a**
PLSDA 0.6% 11 8.37 ± 0.20 a

PLSDA 1.25% 15 8.22 ± 0.29 a

NI 25 ppm 17 8.13 ± 0.23 a

Did not reach 1 log RLU PLSDA 2.50% 21 7.50 ± 0.39 b

NI 50 ppm 21 6.56 ± 0.48 c

NI 100 ppm 21 5.28 ± 0.24 d

* Initial inoculum of 5.9 ± 0.2 log CFU/g. ** Means were analyzed by a Tukey-Kramer test. Means not connected by
the same letter are significantly different (p < 0.05) and are indicated by different letter superscripts.

The samples that reached an average of 1 log RLU, showed over a 2 log CFU/g increase
(>8 log CFU/g). The samples that did not reach 1 log RLU over 21 days were the hams with PLSDA at
2.50%, and NI at 50 and 100 ppm. In addition, their corresponding plate counts were below 8 log CFU/g.
Figure 5 shows the RLU measurements over 21 days for each sample. The black horizontal line at
1 log RLU represents the threshold when the samples were enumerated by plating. The threshold
accurately classified the samples that grew beyond 2 log CFU/g and the samples that did not.
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Figure 5. Using relative light units to distinguish growth/limited growth at a 1 log RLU threshold with
multiple antimicrobials targeting L. monocytogenes in a miniature ham model. Plate counts at the first
day with growth or at the end of 21 days are shown in Table 2.

4. Discussion

In this study, a luminescence-based screening was developed for rapid insight into the growth of
L. monocytogenes in deli-meat. The correlation of plate counts and luminescence was determined to
be the strongest (r = 0.91) at a 6 log CFU/g inoculation, an inoculation level that has been previously
used for microbial testing [25] and is high enough to be able to read from a porous ham surface.
While this inoculation level is admittedly high, our results with NI and PLSDA match the literature
in that 50 and 100 ppm NI and 2.5% PLSDA were able to limit L. monocytogenes growth on ham for
21 days [26–28]. A light emission threshold was proposed for antimicrobial screening to indicate
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antimicrobial treatments that allowed a significant increase of L. monocytogenes and would not need
further analysis. The model was then utilized to screen antimicrobials at various levels by measuring
light-emission daily to determine when the antimicrobial treatment allowed Listeria growth to pass
the proposed threshold. It was determined that at 1 log RLU, the sample had increased over 2 log
CFU, indicating this model can be a tool to screen antimicrobials with less than or greater than a
2 log CFU/g increase. The treatments that do not hit the RLU threshold could be brought forward to
traditional testing methods, such as the ham slice method, making this model a rapid preliminary test
for screening a large number of antimicrobial treatments.

The proposed model of miniature hams and a luminescence assay optimizes the use of both the
food product and antimicrobials. The model allows for many more hams to be screened than the
ham slice method while avoiding using a broth system, which does not mimic the food matrix [14].
This combines the high-throughput nature of a broth system while replicating a whole ham slice.
Hams with varying formulas including natural ingredients (such as celery powder and cherry powder),
higher water content (products labeled “ham with natural juices” or “ham with water added”),
or reduced-sodium ham can be easily compared between hundreds of antimicrobial treatments.
This method could also be potentially applied to other solid food products. The non-destructive nature
of the luminescent assay allows repeated measurements to be taken, which is useful when working
with novel compounds that require labor-intensive synthesis [29]. It was found that reading the
luminescence off the top of an evenly surface-coated ham disk allows for instant qualitative insight on
antimicrobial effectiveness, whereas traditional enumeration techniques require an additional 2 days
for enumeration.

Comparing luminescence between antimicrobial treatments gave similar trends as for the
traditional enumeration method of selective plating. Selective plating showed significant differences
between the control hams and hams with antimicrobial treatments on Day 6 while the luminescence
reading did not until Day 12, indicating that the plate counts can significantly measure smaller cell
number changes than what is possible for luminescence with the current assay. This is in accordance
with the mechanism of luminescence, which relies on metabolic activity and will produce the most
light when the bacteria are in log phase, rather than lag phase or stationary phase [30]. This method is
presumed to compare between treatments that have allowed Listeria to enter log phase and those that
are maintained in lag phase.

The application of the model to high throughput antimicrobial screening showed a threshold in
light emission could be set that would represent an accurate cell number increase of L. monocytogenes.
On the respective days that each treatment reached an average of 1 log RLU, there was over a
2 log CFU/g increase in cell population. Threshold values have been previously established to screen
irradiated food using photo-stimulated luminescence [31,32]. Bioluminescent Listeria has been utilized
for high-throughput competition assays in milk [33], while other studies have utilized luminescent
Salmonella for detection assays in homogenized chicken meat [34]. Riedel et al., 2007 [23] utilized
luminescent Listeria in a food matrix, however, the food products were destroyed for light-emission
readings and this was not utilized for antimicrobial screening. According to the authors’ knowledge,
this is the first time the luciferase system has been applied to rapidly screen antimicrobials from a food
matrix in a non-destructive manner. While other proposed reporter systems have used fluorescent
proteins, such as green fluorescent protein (GFP) [35], a benefit of using the luciferase-based reporter
system rather than a fluorescent protein is that it avoids naturally occurring fluorescence that can lead
to high background levels during in vitro and in vivo fluorescence measurements [36].

While L. monocytogenes Xen19 has been validated to exhibit growth trends similar to a cocktail
of foodborne disease outbreak associated strains in our study, use of this method would not give a
full insight into how antimicrobials will affect the growth of all Listeria strains. However, since this
model uses a commercially-available bioluminescent strain, the process can be quickly replicated
as L. monocytogenes Xen19 can be easily purchased and requires no further genetic engineering.
This luminescence assay should be a preliminary screening tool that avoids using a broth system,
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where promising antimicrobial treatments are then further tested with traditional methods, as the model
also cannot distinguish between bacteriostatic and bactericidal antimicrobial treatments. The greatest
advantage of this assay is its extreme high-throughput nature, although this also limits the sensitivity.
To potentially increase the sensitivity of the assay or lower the threshold of light-emission to indicate
growth, this assay could be adapted to be destructive to the hams, such as removing the cells from the
food surface in a buffer and reading the luminescence from the buffer as have been done previously [23].
This adaptation, however, would increase the assay time and lower the throughput, which was not the
focus of this study.

5. Conclusions

A rapid, high-throughput and non-destructive assay was developed for insight about the growth
of L. monocytogenes in deli-meat. A novel technique was proposed with miniature ham disks in
96-well plates and light-emission read from the food surface. It was determined that at 1 log RLU,
the sample had increased over 2 log CFU, indicating this model can be a qualitative tool to screen
antimicrobials with less than or greater than a 2 log CFU/g increase. This method can be adapted for
novel antimicrobial screening for deli meat products or other solid food surface products to determine
promising possibilities that should be brought forward for further testing with traditional methods.
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