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Abstract: Propolis is a natural brownish resinous substance collected by honeybees (Apis mellifera),
with a documented bioactivity against many microorganisms. In this study, the activity of propolis
was investigated using some strains of Pseudomonas spp., Enterobacteriaceae, Lactobacillus plantarum,
yeasts (Saccharomyces cerevisiae and Debaryomyces hansenii) and Fusarium oxysporum. Two approaches
were used (a modified microdilution protocol and viable count), and the microorganisms were
inoculated at two levels (low or high inoculum). The antimicrobial effect of propolis relies upon
several factors, like the kind of microorganisms (for example S. cerevisiae was more resistant than D.
hansenii, while Lactobacillus plantarum was never affected), the cell concentration (at high inoculum
higher amounts of propolis were required for an antimicrobial action), and the mode of action (a delay
of growth rather than a complete inhibition). The results of this paper point out, for the first time,
the antimicrobial activity of propolis against some spoilers, with a focus on the possible effect; thus,
they could be the background to designing an effective tool to prolong the shelf life of foods.
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1. Introduction

Products of natural origin have been used in traditional medicine for throughout history and
represent a potential source of new drugs. Propolis is an example of such a remedy with an interesting
antimicrobial activity known since the time of ancient Egyptians and Greeks [1].

The antimicrobial activity of propolis has been extensively reviewed by different authors; it is well
known that it is able to inhibit and/or control the growth of a wide range of microorganisms, either
Gram positive (Listeria monocytogenes, Staphylococcus spp., Streptococcus spp., Bacillus spp.) or Gram
negative bacteria (Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas aeruginosa),
as well as yeasts and molds (Candida spp., Aspergillus spp., Penicillium digitatum, Saccharomyces cerevisiae,
Cladosporium spp., Trychophyton spp., Alternaria alternata and Fusarium oxysporum) [2–8]. Propolis is
composed of more than 300 different components, like polyphenol (flavonoids, phenolic acids and
esters), phenolic aldehydes and ketones. The percentage of these substances is as follows: resins and
vegetable balsam 50%, Bee wax 30%, pollen 5%, essential and aromatic oils 10%, and some other
substances which include organic compounds as well [9]. The composition is affected by the extraction
methods; it is generally produced through an ethanol-extraction, although some steps (like maceration)
are variable [10].

The bioactivity relies upon different factors, like (a) origin: European propolis possess a different
range of bioactivity than Brazilian or Korean ones, due probably to the different qualitative composition
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in phenols; (b) the strain, as the effect is strongly strain-dependent; moreover, the inhibition of Gram
negative bacteria is controversial; (c) the protocol used to assess in vitro bioactivity, due to the low
solubility of some extracts; (d) the use in laboratory media or in foods, as it has been reported that
the essential oils and plant extracts can interact with food components; (e) the use of propolis as food
ingredients or loaded in a coating [11–17].

Generally, the antimicrobial activity of propolis has been assessed through the viable count and
the results reported as the decrease in cell count compared to the control; however, this approach has a
drawback, in that is it is not possible to pinpoint an effect different from the biocidal one.

The effects of plant extracts could be reversible and act on the biomass rather than on the viable
population; this effect was reported for different extracts and phenol-related compounds at low or
sub-inhibitory concentrations [18,19]. Thus, we propose two protocols to study the bioactivity of
propolis in lab media: the classical one based on the viable count at high concentrations and the
Growth index approach for relatively low amounts (200–1000 ppm) to build a comparative hit on the
resistance/susceptibility of some microorganisms to propolis as a prodromal step for application in
food processing.

2. Materials and Methods

2.1. Microorganisms and Media

Strains and their source are listed in Table 1. The following media were used: (i) Yeast Peptone
Glucose broth and Agar (YPG) (yeast extract, 10 g/L; bacteriological peptone, 10 g/L; glucose, 20 g/L;
agar, 12 g/L) for yeasts; (ii) Potato Dextrose Agar (PDA) for Fusarium oxysporum; (iii) MRS broth and
Agar (Oxoid) for Lactobacillus plantarum; (iv) Nutrient broth and Agar (Oxoid), for Pseudomonas spp.
and Enterobacteriaceae. PDA, MRS broth and Agar, and Nutrient broth and Agar are commercial
products (Oxoid, Basingstoke, UK).

Table 1. Microorganisms.

Target Source

Pseudomonas putida (PSE8) Wild strain isolated from mozzarella cheese
Pseudomonas fluorescens (PSE5) Wild strain isolated from mozzarella cheese

Hafnia alvei (COL8) Wild strain isolated from mozzarella cheese
Enterobacter spp. (COL9) Wild strain isolated from mozzarella cheese

Lactobacillus plantarum (L12) Wild strain isolated from sourdough
Lactobacillus plantarum DSM1055 * Collection strain
Debaryomyces hansenii DSM3428 * Collection strain
Saccharomyces cerevisiae EC1118 ** Commercial wine strain
Fusarium oxysporum DSM2018 * Collection strain

* Deutsche Sammlung von Mikroorganismem und Zellkulturen’s collection- Braunschweig, Germany; ** Lallemande
(Canada).

2.2. Propolis

Propolis from an Italian pharmaceutical factory was used throughout this study; the concentration
of phenolic compounds was about 30%. Stock solutions (20,000–300,000 ppm; these concentrations,
as well as those reported in the following sections, were for the amounts of propolis in the solution)
were prepared in a hydro-alcoholic solution (1:1); ethanol (96%) was used as alcohol. One-hundred
or two-hundred µL of stock solutions were added to the samples in order to achieve the desired
concentrations (from 200 to 3000 ppm).

2.3. Growth Index of Bacteria and Yeasts

Aliquots of optimal media (20 mL; YPG broth for yeasts, Nutrient broth for Pseudomonas spp.
and Enterobacteriaceae, MRS broth for lactic acid bacteria) were supplemented with 200 µL of stock
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solutions to attain a final concentration of the extract ranging from 200 to 1000 ppm and inoculated to
3 log or to 5 log cfu/mL. Two kinds of controls were prepared: (i) media + hydroalcoholic solution
(growth of the target strains); (ii) broths supplement with either chloramphenicol (for the experiments
on bacteria, 200 mg/L) (Sigma-Aldrich, Milan) or cycloheximide (experiments with yeasts, 200 mg/L)
(Sigma-Aldrich) (samples with no growth). Both controls were inoculated to 3 or 5 log cfu/mL.

Samples were stored at 25 ◦C (yeasts and Pseudomonas spp.), 30 ◦C (lactic acid bacteria), and 37 ◦C
(enterobacteria). Microbial growth was evaluated after 24 and 48 h as absorbance at 600 nm with a
spectrophotometer UV-VIS DU 640 Beckman (Fullerton, California, USA).

The analyses were performed in duplicate and data were modelled as Growth Index (GI) [20]:

GI =
(

Abss

Absc

)
∗ 100 (1)

where Abss is the absorbance of the samples containing the different amounts of propolis and Absc the
absorbance of inoculated media containing only hydroalcoholic solution. The analyses were performed
in duplicate over two independent batches.

GI was read as follows [18]: GI < 25%, significant inhibition; 25% < GI < 75%, partial inhibition;
GI > 75%, growth similar to positive control.

For each time of sampling (after 24 or 48 h), GI was modelled as a function of propolis concentration
through the equation of Weibull, modified by Mafart et al. [21] and cast in the following form:

GI = GI0 −

( c
δ

)p
(2)

where: GI is the Growth index as a function of propolis concentration (dependent variable, %); GI0,
the GI of the positive control (broth+hydroalcoholic solution); c, the amount of propolis (independent
variable, ppm); δ, the amount of propolis (ppm) to achieve a reduction of GI by 1%; p, the shape
parameter (dimensionless), which gives some details on the shape of the kinetic: p < 1, upward curve;
p = 1, linear kinetic; p > 1, downward curve.

The parameter δ was the input for the evaluation of ∆25, that is the amount of propolis required
to reduce GI by 25% (δ × 25). Statistic was performed through the software Statistica for Windows,
ver. 7.0 (Statsoft, Tulsa Oklha).

2.4. Viable Count of Bacteria and Yeasts

Aliquots of 10 mL of optimal media (YPG broth for yeasts, Nutrient broth for Pseudomonas spp and
Enterobacteriaceae) were individually inoculated to 5 log cfu/mL with the test strains and added with
100 µL of propolis stock solutions to attain a final concentration ranging between 1000 and 3000 ppm.
Two kinds of controls were prepared: (i) media + hydroalcoholic solution (100 µL in 10 mL); (ii) broths
supplement with wither chloramphenicol (for the experiments on bacteria, 200 mg/L) or cycloheximide
(experiments with yeasts, 200 mg/L). Both controls were inoculated to 5 log cfu/mL.

The samples were stored under static conditions and the growth of the targets was assessed after
24 and 48 h by plate count. The media were the following ones: (i) MRS agar, incubated at 30 ◦C for
48–72 h under anaerobic conditions for lactic acid bacteria; (ii) YPG agar, incubated at 25 ◦C for 48 h for
yeasts; (iii) Nutrient agar incubated at 25 ◦C for 48 h for Pseudomonas spp. or at 37 ◦C for 18–24 h for
Enterobacteriaceae. The analyses were performed in duplicate over two different batches.

Data were modelled as increase in viable count compared to the inoculum; this value was modelled
through MANOVA (multifactorial analysis of variance). The concentration of propolis, the kind of
microorganisms and time were used as categorical predictors. The critical p was set to 0.05.
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2.5. Antifungal Activity

The antifungal activity of propolis was tested towards F. oxysporum (DSM 2018). The mould
was grown on Potato Dextrose Agar (PDA) incubated at 25 ◦C for 5 days. A conidia suspension was
prepared by washing the mould grown on PDA plates with a Tween 80 solution (0.05% v/v) (C. Erba);
conidia suspension (107 conidia/mL) was filtered to avoid the presence of mycelium [22].

After the sterilization, aliquots of stock solutions were added to PDA (55 ◦C) in order to achieve
the desired amount of propolis (1000–1500–2000–2500–3000 ppm) (1 mL of stock solution in 100 mL
of medium); PDA + hydroalcoholic solution was used as positive control. Twenty µL of conidia
suspension were inoculated in the middle of plates. Incubation was carried out in the dark at 25 ± 2 ◦C
and colony diameters were measured in centimeters and compared with those on controls plates at
intervals of 2 days for 10–14 days in order to determine the radial growth.

The experiments were performed on three independent batches; for each batch, the analyses were
made in duplicate. Fungal growth was modeled by using a logistic equation, modified by Dantigny et
al. [23] and cast in the following form:

D =
Dmax

1 + exp[k(τ− t)]
(3)

where D is the diameter of the fungal colony over time; Dmax, the maximum diameter of fungal colony;
k, the rate of fungal growth (cm/day); τ, the time to attain a 1

2 of Dmax (day) and t the time (day).

3. Results and Discussion

Propolis, a natural product of honey bee, has been attracting the attention of researchers due to its
various biological activities and therapeutic properties. Flavonoids, aromatic acids, diterpenic acids,
and phenolic compounds appear as the principal components that are responsible for the biological
activities of propolis samples [24]. Many studies have documented the remarkable action of propolis
against viruses, parasites and many types of microorganisms (yeasts, and bacteria) [25].

The first experiment of this research was the evaluation of the antimicrobial activity of different
concentrations of propolis through a modified micro-dilution approach; the microorganisms were
inoculated at low and high levels and the Growth Index (GI) was evaluated, as reported by Bevilacqua
et al. [20]. The use of low and high inocula was chosen for modelling purposes; low inocula (GI approach)
are useful to build growth kinetics or dose/response curves when the main purpose is to study the
amount of antimicrobial at low doses and the expected outcome is a delay of growth rather than a
complete inhibition. On the other hand, at higher doses it is suggested to used high inocula, because a
possible outcome could be a death kinetic.

The microorganisms were chosen for different reasons: enterobacteria are generally the
target microorganisms for some foods (for example dairy products), according to EU regulations,
while Pseudomonas spp. are emerging spoilers, able to start the spoilage of a wide variety of foods [26].
Lb. plantarum was used as representative of lactic acid bacteria, because it is widespread in a variety
of foods and can be both a technological microorganism (for example starter culture for mozzarella
cheese) or a spoiler. Finally, yeasts and F. oxysporum were chosen because they can be found in meat
(D. hansenii), as well as in vegetables or in beverages (S. cerevisiae and F. oxysporum) [27,28].

GI is a tool to point out a significant inhibition due to an antimicrobial compound, if compared to
the positive control; it is time-dependent, as it generally changes throughout time if the effect of the
antimicrobial compound is reversible.

Therefore, in this paper a static approach was used and for each time of sampling GI was modelled
as a function of propolis concentration; the use of a static approach (description of a situation for a
defined time) was proposed elsewhere as a tool to exclude time-dependence [29]. Generally, GI at 48 h
were used as input data for modelling except for S. cerevisiae (GI at 24 h). Figure 1 shows GI profile at
48 h for pseudomonads and enterobacteria for low inoculum; all strains experienced an upward linear
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kinetic with a decrease in GI when the propolis amount increased (GI was 32%–48% at 1000 ppm),
thus suggesting that propolis did not cause a complete inhibition but a significant delay of growth.
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with Δ25 ranging from 77 ppm (Ps. fluorescens) to 186 ppm (Ps. putida). Finally, Δ25 was 23.50 ppm 
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Figure 1. Dose response profile (Growth Index vs. propolis concentration) for pseudomonads and
enterobacteria after 48 h. The lines represent the best fitting of data through Weibull model. col8, H.
alvei; col9, Enterobacter spp.; pse5, Ps. fluorescens; pse8, Ps. putida. Micro-dilution approach for low-level
inoculum (3 log cfu/mL).

Figure 2 shows the GI profiles for yeasts (low inoculum). S. cerevisiae was more resistant than
D. hansenii as it experienced a downward curve after 24 h; this curve was characterized by a shoulder
length of 645 ppm, that is the growth was not affected up to this critical break point. After 48 h, GI of
S. cerevisiae was not affected by propolis, while D. hansenii showed an upward curve with a significant
negative correlation GI/propolis concentration.
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The lines represent the best fitting of data through the Weibull model. S.c., S. cerevisiae; D.h., D. hansenii.
Micro-dilution approach for low-level inoculum (3 log cfu/mL).

The fitting parameters of the Weibull equation and ∆25 are shown in Table 2. ∆25 was strongly
species-dependent and was <10 ppm for both enterobacteria; pseudomonads were more resistant,
with ∆25 ranging from 77 ppm (Ps. fluorescens) to 186 ppm (Ps. putida). Finally, ∆25 was 23.50 ppm for
D. hansenii. Modelling was not performed for Lactobacillus spp., because the strains always experienced
a GI of 90%–100% (data not shown).
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Table 2. Parameters of Weibull equation: δ, amount of propolis (ppm) to achieve a reduction in Growth
Index of 1%; p, shape parameter (p < 1, upward curve; p > 1, downward curve); ∆25, amount of propolis
(ppm) to achieve a reduction of Growth Index of 25%; R2, determination coefficient. Micro-dilution
approach for low-level inoculum (3 log cfu/mL).

Microorganism Time δ p ∆25 R2

D. hansenii 48 h 0.94 ± 0.11 0.65 ± 0.09 23.50 0.935
S. cerevisiae 24 h 645.73 ± 69.04 9.20 ± 2.10 /† 0.977

48 h - - - -
Ps. fluorescens 48 h 3.07 ± 0.22 0.74 ± 0.05 76.75 0.909

Ps. putida 48 h 7.44 ± 1.25 0.84 ± 0.01 186.00 0.962
H. alvei 48 h 0.01 ± 0.01 0.29 ± 0.01 <10 0.990

Enterobacter sp. 48 h 0.04 ± 0.01 0.42 ± 0.03 <10 0.941

† Not evaluated.

When the microorganisms were inoculated at high levels, they never experienced inhibition and
the GI at 1000 ppm was 76%–89% (data not shown). The GI in the samples with antibiotic was always
0%, both at low and high inocula (data not shown).

The effect of propolis for the high inoculum level was studied by increasing the amount of the
extract; however, a different approach was used (plate count), because a high amount of propolis
caused a strong browning of some media (mainly Nutrient broth). The data of viable count were
standardized as increase in viable count after 24 or 48 h (∆C) and analyzed through a multifactorial
ANOVA (MANOVA). Lactobacillus spp. always experienced a viable count of 9 log cfu/mL and did not
show any kind of inhibition; therefore, their data were not used for statistic (data not shown).

∆C was generally positive, thus suggesting that populations increased throughout time. However,
MANOVA was affected by both propolis concentration and time, as well as by their interactive
terms (propolis concentration*time, time*microorganism, propolis concentration*time*microorganism)
(p < 0.05). The results of MANOVA are shown in the figures for the decomposition of the statistical
hypothesis (Figure 3A–C).
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As expected, ∆C was a function of propolis amount (Figure 3A) with a negative correlation; in fact,
∆C decreased when propolis concentration increased, thus suggesting that higher amounts of propolis
could be more effective in controlling the growth of some strains. Figure 3B shows the effect of time,
with a “false” negative correlation time/bioactivity of propolis, as suggested by the increase in the
viable count over time; this effect was due to the fact that propolis generally caused a delay of growth
and probably determined an increase in the lag phase or a reduction in growth rate in the bacterial
or yeast-kinetic.

Finally, Figure 3C shows the effect of the kind of microorganism; this figure could be used to point
out a kind of resistance hit: D. hansenii was less resistant than S. cerevisiae. Among bacteria, Pseudomonas
spp. were more resistant than enterobacteria; for enterobacteria, H. alvei was more resistant than
Enterobacter sp.

Concerning the anti-yeast effect, De Castro et al. [30] suggested that 0.125% (1250 ppm) propolis
could be an adequate choice as a sub-inhibitory concentration for S. cerevisiae, thus confirming the
strong resistance of this species as found both for GI and viable count. The authors suggested a dual role
for propolis treatment as an agent that induces apoptosis and secondary necrosis; in addition, propolis
inhibited respiration in S. cerevisiae. Regarding D. hansenii, Sidra [31] reported 0.4 and 0.8 mg/mL
(ranging from 400 to 800 ppm) as the Minimum Inhibitory Concentrations (MIC) in orange and apple
juice, respectively.

For the antibacterial effect of propolis, it is generally assumed that that Gram positive bacteria
are sensitive to low propolis concentration and Gram-negative bacteria could be only inhibited with
higher propolis dose [25]; therefore, few data are available on Gram negative and some results could
be found on pathogens (Yersinia enterocolitica, Ps. aeruginosa, Escherichia coli, Salmonella sp., etc.) [32–35].
However, to the best of our knowledge, few data are available on the spoilers, such as Pseudomonas
spp., which are a challenge for food producers.

It has been suggested that the resistance of Gram-negative bacteria could be due to the presence
of efflux pumps preventing the intracellular entry of propolis constituents. The weak effect on
Gram-negative bacteria may also be explained by the fact that propolis contains mainly plant-derived
resin constituents and that resins are secreted by plants to mostly protect from Gram-positive
pathogens [36].

The data of this research suggest that propolis could be used for the inhibition of Gram-negative
bacteria, although pseudomonads require medium-to high levels, thus confirming the resistance of
pseudomonads to extracts [37,38]. Some authors studied the mode of action of propolis towards Ps.
aeruginosa and found that propolis impaired the growth, the production of biofilm and the capacity to
release molecules, such as phenazines and eDNA with a possible role of complex phenols [39].

Although the effect of propolis on Gram negative was reported as low or moderate, the data of
this research showed a strong effect on the delay of growth kinetic for enterobacteria, due probably to a
higher sensitivity of the tested strains. For these microorganisms, multiple effects could be responsible
for the antibacterial activity, including the inhibition of cell division, and protein synthesis [9].

Another effect found on the tested target was the dependence of the antimicrobial effect on the cell
concentration, as at high inoculum, an effect of propolis was found only at high doses. This is a new
evidence and further investigations are required. Finally, the resistance of Lb. plantarum to propolis
was probably the result of the high resistance of this species to phenols (complex or simple phenolic
compounds) reported elsewhere by the authors [40].

The antifungal effect of propolis was tested towards F. oxysporum by assessing the radial growth
on plates. Figure 4 shows some examples of fungal kinetics; they generally experienced a logistic-like
shape, characterized by a three-phase kinetic (a lag phase, an exponential growth phase and a steady
state); thus, they were modelled through a logistic function (the equation of Dantigny et al. [23]).
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Figure 4. Growth kinetic of F. oxysporum on plates as a function of propolis concentration; the points
represent the average of three determinations. Lines are the best fit through Dantigny model.

For fungi, the fitting parameters of a sigmoid have a different meaning if compared to a bacterial
kinetic; Dantigny function has a main parameter, that is the time to attain a 1

2 of the maximum diameter
(τ), which is an estimation of both the first step (no growth) and fungal growth rate (exponential phase)
(Table 3). τ was 4.98 ± 0.44 days in the positive control and increased to 7.20 ± 0.11 days on PDA +

1000 ppm propolis and 8.40 ± 0.06 on PDA + 1500 ppm propolis; a further increase of propolis did not
significantly act on τ.

Table 3. F. oxysporum τ (time to attain a 1
2 of the maximum diameter) (day) on PDA + propolis (5–15%).

Mean values ± standard error. R2, determination coefficient of Dantigny model. The letters indicate
significant differences (one-way ANOVA and Tukey’s test, p < 0.05).

Propolis Amount τ R2

0 (control) 4.98 ± 0.44a 0.985
1000 ppm 7.20 ± 0.11b 0.997
1500 ppm 8.40 ± 0.06c 0.999
2000 ppm 8.33 ± 0.08c 0.998
2500 ppm 8.42 ± 0.08c 0.998
3000 ppm 8.29 ± 0.09c 0.997

The results on the antifungal activity are generally in line with the literature. According to
AL-Ani et al. [25], propolis possess a moderate antifungal activity. Ôzcan [41] reported that the
concentration of 4% of propolis extract is able to inhibit F. oxysporum f. sp. melonis by 50%. In another
study [42], 5 mg/mL (5000 ppm) of ethanol extract of propolis completely inhibited the radial growth of
F. oxysporum on solid media (PDA). Various compounds like phenolics and flavonoids are responsible
for their antifungal activity by affecting the permeability of the cytoplasmic membrane, which leads to
the total leakage of the cellular constituents such as nucleic acids, proteins and inorganic ions such as
phosphate and potassium, leading to complete cell death [43].

Generally, the effects of propolis resulted in a delay of fungal or bacterial growth, as suggested by
the reduction in GI as well as by the increase in τ for F. oxysporum; however, further investigations
are required to elucidate some key-points related to food applications. An open question is the
evaluation of MIC, NIC (Not Inhibitory Concentration) [44] and the dose/response profile. The results
of this paper suggest a MIC > 3000 ppm, with an NIC ranging from 10 ppm (reduction in GI by 25%
for enterobacteria) to 645 ppm (shoulder length of S. cerevisiae). The high MIC suggests a possible
application in designing food-packaging materials or edible coatings, rather than use as ingredients in
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food formulas. In fact, the high doses required for propolis bioactivity are not compatible for a direct
application, due to the possible strong impact on the organoleptic characteristic of foods.

On the other hand, the filming properties of propolis [45,46], along with the delay of some spoilers
as suggested in this paper, could be the background to design an active packaging for dairy products,
meat, or vegetables.

4. Conclusions

The antimicrobial effect of propolis relies upon several factors, and this research contributed to
point out some of them. First, the effect was strongly related to the kind of microorganisms; for yeasts,
D. hansenii was more affected than S. cerevisiae. Concerning bacteria, Lb. plantarum was never affected,
while propolis controlled the growth of both Pseudomonas and Enterobacteriaceae. Another significant
effect was related to cell concentration, because at high inoculum no (or very mild) effect was found;
finally, propolis delayed the radial growth of F. oxysporum, as suggested by the increase in the parameter
τ. The results of this paper point out, for the first time, the antimicrobial activity of propolis against
some food spoilers, with a focus on the possible effect (that is, the delay of growth rather than a
complete inhibition). However, further investigations are required to point out an exact definition
of the dose response/curve of propolis (MIC), as a prodromal step for a possible application in food
industry (packaging, new edible coatings).
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