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Abstract: Background: As the Internet of Things (IoT) has become more prevalent in recent years,
digital twins have attracted a lot of attention. A digital twin is a virtual representation that replicates
a physical object or process over a period of time. These tools directly assist in reducing the manu-
facturing and supply chain lead time to produce a lean, flexible, and smart production and supply
chain setting. Recently, reinforced machine learning has been introduced in production and logistics
systems to build prescriptive decision support platforms to create a combination of lean, smart, and
agile production setup. Therefore, there is a need to cumulatively arrange and systematize the past
research done in this area to get a better understanding of the current trend and future research
directions from the perspective of Industry 4.0. Methods: Strict keyword selection, search strategy,
and exclusion criteria were applied in the Scopus database (2010 to 2021) to systematize the literature.
Results: The findings are snowballed as a systematic review and later the final data set has been
conducted to understand the intensity and relevance of research work done in different subsections
related to the context of the research agenda proposed. Conclusion: A framework for data-driven
digital twin generation and reinforced learning has been proposed at the end of the paper along with
a research paradigm.

Keywords: digital twin; data-driven technology; lean manufacturing; supply chain 4.0; reinforced
learning; simulation modelling; prescriptive analysis; systematic review

1. Introduction

Digital twin technology creates relatively close connectivity between both the virtual
and physical worlds, allowing you to monitor and command systems and components
remotely. Moreover, it is now possible to run simulation models to test and forecast
resource and process-related changes in various “what-if” scenarios. Hence, organizations
are now getting significant benefits from digital twin technology that assists in mapping
and analyzing details related to operations performance, product and service innovation,
and shorter on time delivery [1,2].

The above-mentioned concept is one among the Industry 4.0 tools. Industry 4.0 is
defined as the digitization of industrial processes, which incorporates the digitization of
data as well as physical attributes [3]. Industry 4.0 is a tool that enhances the technological
maturity level of any organizational system that allows for the adoption of digitalization,
integration, and automation in the production and supply chain network [2,3]. Further-
more, the fourth industrial revolution is centered on vertical and horizontal integration
of the value chain. Businesses can only sustain their market position in an increasingly
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competitive market by leveraging the benefits of synergy between production manage-
ment and logistics [4]. The benefits are realized through logistically integrated production
management, including the design of the information system required for planning and
execution [5]. Creating a near exact twin of a process or product with well-defined pa-
rameters and variables is digital twin. Simulation modelling is the tool to accomplish
a digital twin [2]. There have been extensive studies where simulation modelling and
the digital twin approach have been applied to study and analyze various operations
of production and supply chain systems and measure how they impact organizational
performance and development as a whole [6]. However, there are still minimal insights
and implications on the results obtained when digital twin technology is assisted with
various other I.R 4.0 tools [7]. Currently, various studies have focused on the ‘Know-How’
procedure that could help us build a descriptive model with historical data and conduct
only a what-if analysis by changing the variable values for certain operational parameters
in the simulation model [8]. Instead of historical data, efforts are being taken to capture
and retrieve real-time data using the internet of things and big data technology to feed
and simulate a prebuilt digital twin prototype mother file [9]. In this course of action,
several disruptions, buffers, delays, and challenges are met in the real-time scenario where
solutions for these challenges can also be assigned. Over a course of period these actions
can help create a series of patterns (scenario vs. solution) which can be useful to build a
prescriptive analytics platform. The authors of this study are keen on studying the devel-
opment of research in the above-mentioned theory. Authors argue that this combination of
digital twin and machine learning has largely been utilized in the medical field and but
less researched from the perspective of production, supply chain, and logistics.

Therefore, this study aims to conduct a systematic review of the literature to sys-
tematize and study the research findings and implications in the area of digital twin and
its benefits when it is coupled with reinforced machine learning to improve production
logistics and the supply chain. This research will answer the following research questions:
RQ1) What are the applications of digital twin simulation modelling in Supply chain and
logistics? RQ2) What is the impact of digital twin and reinforced machine Learning on sup-
ply chain and logistics? RQ3) What are the prospects and scope for prescriptive modelling
in supply chain and logistics? How will that ease the process of building a decision support
system for a supply chain or logistics 4.0? This paper has discussed the research problem
and purpose of study in the introduction part followed by a state-of-the-art literature
review discussing past research work and gaps. Based on the study, the authors have
proposed a conceptual framework in the discussion part and concluded research findings
and implications.

2. Literature Review

The digital transformation promises newer opportunities. However, only fewer
companies can set up Industry 4.0 based production systems [10]. The fourth industrial
revolution had an impact not just on the manufacturing sector, but also on the supply
chains that supported it. Industry 4.0 can only become a reality if logistics can provide
the necessary input components to production systems at the proper time, quality, and
location [11]. However, this can only be accomplished by using new technological solutions
to efficiently design and manage a more coordinated material flow. Industry 4.0 technology
adoption is becoming increasingly vital for businesses to optimize their manufacturing
processes and organizational structures. Companies, on the other hand, sometimes struggle
to create a strategy plan with newer business models. For a Logistics 4.0 transformation,
the firm’s tendency toward logistics 4.0 is determined by the existing use of technologies in
the logistics process, as well as the amount of investment towards innovation [12].

Nonetheless, there are several obstacles to overcome when implementing Industry 4.0.
For example, a lack of technological infrastructure makes implementation difficult. Fur-
thermore, there is a scarcity of professionals and knowledgeable staff in this field who can
establish a new system or renovate an existing one to achieve the best results [13,14].
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2.1. Relationship between Logistics 4.0, Supply Chain 4.0 and Industry 4.0

IR 4.0 has led to the digitization in supply chain and logistics has made way for the
evolution of logistics 4.0. Various tools and technological settings from the IR 4.0 have been
adopted in the supply chain and logistics setting or environment to leverage the benefits.
Digital twin technology offers risk free scenario analysis by developing a predictive and
prescriptive decision-making platform for the industry players and it is one of the core
technological tools in IR 4.0 [11].

Basically, logistics is the sub-component of supply chain and supply chain is the
sub-component of production management. A digitally equipped supply chain platform is
the backbone for Industry 4.0 to function. I.R 4.0 tools equip the supply chain and logistics
processes such as inbound logistics, warehouse management, intralogistics, outbound
logistics and logistics routing, etc. I.R 4.0 based protocols and tools such as Smart data
management, Internet of things, cloud computing and Blockchain accelerated the supply
chain and logistics processes to greater extent. These create an automated, intelligent
and increasingly autonomous flow of assets, goods, materials and information between
the point of origin and the point of consumption, and the various points in-between are
key. Supply chain logistics processes become more efficient, effective, connected, and
agile/flexible in order to meet the needs of market [7,10–12].

Logistics 4.0 sounds similar to the concept of I.R 4.0. Instead of referring to the
digitalization of industrial sector and processes it refers to the digitization of the physical
elements and mobility. Moreover I.R tools have improved the visibility, imparted smart
utilities, and adopted IoT in logistics. A state-of-the art logistics 4.0 scenario refers to the
condition in which it becomes capable of collaborating and integrating with Industry 4.0
procedures and systems. Logistics 4.0 seems like a lucrative value-added proposition for
all the businesses that wish to drift away from the complexities of a global supply chain
creating supply chain transparency, automation, and real-time tracking [10–13].

2.2. Digitalization of Supply Chain and Logistics

Previous conventional supply chain and logistics processes in the industrial scenario
had huge paperwork and manual interference. Recent inclusions such as data warehouse
and SAP systems have revolutionized the way in which shop floors, warehouses and
logistics entities work [12,15]. The static nature of visualizing a supply chain network
needed a dynamic way to view it for better decision making, especially the current and
future processes related to supply chain and logistics. It is now slowly possible only through
effective digital transformation of the supply chain and logistics. Digital transformation
is a key driver for Industry 4.0 that creates digitalized, interconnected, smart supply
chain, and logistics [15,16]. In global supply chains, it is obvious that countries and
logistics providers need to achieve a competitive advantage in terms of digitalization.
However, still more studies should focus on measuring the potential for innovation to
improve logistics efficiency [17]. In this context, particularly the term ‘Logistics 4.0’ receives
growing attention, in recent years, which in a way accentuates that logistics as a central
function plays an important role within the digital transformation of the manufacturing
sector and thus, the underlying Industry 4.0 vision [18]. They are built with data-powered
digital systems such as the internet of things, big data, and blockchain platforms with
hyperledger [19]. However, the environmental issues in the supply chain should also be
taken into account [20].

One such example is the digital learning factory that has been built by the Research
Center of Vorarlberg University of Applied Sciences for educating students and employ-
ees of industrial partners by devising learning scenarios and courses addressing a wide
variety of topics related to Industry 4.0 and showcasing the best practicing platform for
digitalization. In addition, novel methods and technologies for digital production adopt
cloud-based manufacturing, data analytics, and digital twins.



Logistics 2021, 5, 84 4 of 22

2.3. Real-Time Data-Driven Simulation Modelling

Use of historical data is becoming outdated and practitioners are looking for real-time
data. Therefore, the demographic data acquisition from different supply chain players or
stakeholders can also be utilized to obtain information such as the location of truck routes,
distribution centers, retail stores, and individual consumers to understand the logistic
systems [21]. These data can be directly fed into the Enterprise Resource Planning (ERP)
database and production system database to generate a usable XML visual basic file that
can be fed into the simulation software to create a digital twin.

To bolsters this, Goodall et al. (2019), [22] constructed a data-driven simulation model
to predict material flow behavior in remanufacturing processes by using data from digital
production systems (e.g., databases, traceability systems, process plans) to update and
automatically modify simulation constructs to reflect the real world or planned system.
The information was gathered through a Radio Frequency Identification (RFID) traceability
software platform at the factory. Tannock et al. (2007), [23] applied the same concept
in the supply chain of a civil aerospace sector. Qiao and Riddick (2004), [24] used a
neutral information representation tool based on the extensible markup language (XML),
to acquire information integration and exchange along supply chain applications. Similarly,
mass customization in manufacturing and supply chain needs data integrated simulation
systems. Qiao et al. (2003), [25] built a neutral model of shop information, based on the
XML, to exchange data between simulations and perform analysis according to the demand
fluctuations in the shop floor.

The product, product family, and related logistic resources like a truck, carriers, distri-
bution centers, production facilities, warehouses can be presumed to be agents that can help
create an agent-based model and replicate the behavioral pattern of the supply chain model.
Another tool that can be integrated within a Discrete Event or Agent Based simulation
models is the geographical information systems that allow use of the geographical maps
with exact coordinates. This is further applied to allot location and routes for distribution
centers, suppliers, trucks, etc. Product routing, supply chain optimization, Greenfield
analysis can also be done using Geographic Information Systems (GIS) acquired from the
logistics route database [26].

Discrete Event Simulations is used to adapt and mimic warehouse operations from
the producer’s perspective (Finished Product Des-patch & Product Recall), and a system
dynamics model can be integrated to display managerial decision making, consumer be-
havior, and cost associated with these operations [6]. As a result, an integrated or hybrid
modeling technique is utilized to virtually represent the dynamic nature of logistics mod-
els in terms of functionality as well as the cost incurred. Hybrid simulation modeling
can precisely capture complex behavior and changes in model design. Typically, simu-
lation is a representation of a system that is either going to happen in the future or is
already present. As a result, a data-driven decision-support system combined with IoT
connectivity will aid in feeding real-time data into a virtual real-time prototype [27]. A
centralized SCADA (Supervisory Control and Data Acquisition) system acts as the core
data hub [28]. As a result, these tools have enabled simulation modeling to obtain data from
real-time data warehouses, resulting in a logistics 4.0 environment. As a result, data-driven
simulation modeling generates scenario-based patterns that are employed by machine
learning algorithms to instruct the models to react to previously established patterns and
ascertained solutions.

2.4. Applications of Reinforced Learning in Supply Chain and Logistics

According to Meng at al. (2013), [27] there are several methods to set up a data-driven
feed to simulation setting. One among them is generating XML visual basic code that can
feed in the data required for the software given that the software is capable of receiving it.
The inclusion of machine learning to build predictive analysis to enable automated logistics
route optimization and decision making are enabled with a series of datasets that are
utilized to build a descriptive, predictive, and prescriptive analytics platform with the help
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of regression/correlation-based supervised machine learning (deep learning) algorithms.
This action is further validated to and predict behavioral patterns [29,30].

Logistics 4.0 and its self-perception can transform and strengthen conventional lo-
gistics. Logistics has been a central pillar of the supply chain for the industry. Extremely
competitive and volatile logistics markets and large logistic networks need new approaches,
products, and services. Today’s customer behavior is leading to new strategic problems
and opportunities. For that, the idea of the cyber-physical system (CPS), wireless networks,
the Internet of Things and Services (IOT&S), Big Data/Data Mining (DM), and cloud
computing, etc., seems to be the possible technological answer. Its consequent application
ultimately leads to the need to revisit some core principles of conventional logistics [18,31].
To connect end-to-end logistics networks and meet complex manufacturing goals, it is
very essential to tap the benefits of elements such as IoT (Internet of Things), digital twin
simulation models, advanced robots, big data analytics, and virtual/augmented reality [32].

A logistic system needs to be optimized from both inbound and outbound that is
possible by intelligent systems, embedded in software and databases from which relevant
information is provided and shared through the Internet of Things (IoT) systems, to achieve
a major automation degree by creating a network where all processes can communicate
with each other, and enhance analytical potentialities throughout the supply chain. This
promotes a significant decision-making standard and reaches top quality and becomes
more and more flexible and efficient in the near future [33]. Song et al. (2020), [34] applied
simulation integrated reinforced learning to study the percentage increase of ride-sharing
in taxi service. They used taxi data from Seoul (South Korea) to determine optimal surge
rates for ridesharing services over a specific period. The reinforced learning strategy based
on centrality that governs the probability of the drivers’ destination decision was used.
Furthermore, passenger waiting time mediated the reward function.

Shen and Dai (2017), [35] applied the same principle in the container ship controller
systems with neural network technique. Abdelghany et al. (2021), [36] introduced an
innovative methodology for developing itinerary choice models (ICM) for air passengers.
A reinforcement learning algorithm looks for the values of the itinerary choice model’s
parameters while maximizing a reward function. The negative difference between the
estimated and observed system metrics is used to calculate the reward function.

Furthermore, Cavalcante et al. (2019), [37] proposed a new approach to analyze the risk
profiles of supplier performance under uncertainty by combining simulation and machine
learning integrated digital supply chain twins. These twins improved resilience by learning
and designing risk mitigation strategies in supply chain disruption models, re-designing
the supplier base, or judging the most important and risky suppliers. Similarly, more
studies should be focused on the development of a state-of-the-art IoT-assisted embedded
data-driven gateway that feeds online data to run the prebuild hybrid simulation models
or digital twins. All the required parameters/variables to simulate the logistic model’s
dynamic complexity in real-time will be set up in the model to connect to their respective
data and create simulation runs. By knowing the rubrics and dynamics of the logistic
model, an optimized real-time value-focused application platform can be suggested for
future research. Disruptions and related solutions (rewards) are applied to the models that
are further integrated with a reinforced learning algorithm that captures the patterns of
disruptions and give solutions to the same disruptions. Human intervention is avoided
and artificial intelligence takes over.

This research approach can widen up the scope and give insights in building so-
phisticated AI-based decision support systems for future logistics 4.0. Various real-time
industrial problems in the area of (1) Multi-mode transportation network optimization [38],
(2) Truck route network scenario planning and optimization [39], (3) Smart Warehouse Bin
Pick and Drop [6], Forklift Route Planning and Throughput, Automated Rack Storage and
Retrieval [40], and (4) Multiple Criteria based Smart Conveyor Design [41], etc.

Strategic and resilient simulation models or digital twins appear to be an efficient
and cost-effective tool for visualizing problems, proposing solutions, and practicing risk-
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free testing. They can virtually forecast optimal network design, inventory management
methods, supply and distribution systems, logistics (micro and macro), and other associated
systems [42,43]. Even though demand-specific uncertainties like work in process time, lead
time, supply chain queues, delays, etc., can easily be projected using a digital twin [44],
there is a need for perfect real-time data monitoring systems [45]. The manual data feed of
historical data following the know-how trend has become old. A stochastic mode of what-if
analysis with real-time online data is currently needed to analyze disruptions and measure
the resilience of a system [46,47]. To attain this, simulation modelling are integrated with
IoT to provide dynamic and virtual supply chains along with traceability and tracking
options [48]. IoT-based modelling allows supply chains to use virtualizations to actively
assist manufacturers in grappling with perishable products, volatile supply fluctuations,
safety, and sustainability specifications. Virtualization allows supply chain members to
track, manage, schedule, and automate logistics networks remotely and in real-time over
the Internet, focusing mainly on physical reality instead of post-data observation [49,50].

While the latest revolution on digital transformational provides new opportunities.
Logistics models are now re-evaluated by data-driven platforms. Extracting insights from
operational data assists in predicting uncertainties and reduce inefficiencies in logistics
operations by making them more resilient and sustainable [51]. But still, these are again
just know-how digital twins at that point in time. However, it is also important to measure
their behavioral dynamics when subjected to disruptions. Reinforced machine learning
has great potential here to absorb humungous patterns of data and create a prescriptive
analysis platform for logistics and build better decision support systems.

2.5. Applications of Digital Twin in Macro Logistics

Reliable plans to outline the trucks’ routes are feasible by flexible and strong data-
driven decision-making processes both at the operational level or real-time. IoT devices
have the capability to enable this with ease. A simulation-based What-if scenario is
generated to simulate, predict, optimize, project, and measure resource performance [52].
Global positioning system (GPS) based IoT devices are capable of collecting a large amount
of data that were not fully utilized to optimize reaction times, a stochastic truck traveling
speed previously. This data can act as a direct feed to the simulation model to allow
risk-free truck route optimization according to the process constraints [53]. Simulation
strategies like discrete event simulation have been widely used to design flexible and
optimal resources. Previously, Meng at al. (2013), [27] developed a Unified Modelling
Language-based formal information model to generate simulation models via pre-built
Petri nets to address equipment scheduling issues. In another case, a severe traffic problem
related to efficiency in urban ports was addressed by Heilig et al. (2017), [54] with the same
method in which an algorithm was developed to build a cloud-based decision platform to
consider contextual data, including traffic data and the current positions of trucks allowing
ports to utilize potentials of digitalization and optimization issues.

2.6. Application of Digital Twin Technology in the Warehouse Operations
(Micro + Macro Scenario)

It can also be applied extensively in warehouse-based scenarios. The best example is
the optimization of automated modular conveyor systems in warehouses facing bottlenecks.
The unpredictability and intricate dynamics of the process can be captured by time-based
simulation modelling. These models are exposed to various scenarios after verification and
validation. In addition, if this is made completely data-driven, a cost-effective approach is
given to increase performance. This is the future of a stable standalone system of decision
support enabled by dynamic digital twin recreations [55].

To mention a few, Sahay and Ierapetritou (2013), [56] formulated a hybrid simulation
modelling approach by combining an iterative model with an agent-based simulation
model which can decide toward an optimal allocation of resources subjected to multiple
problems and constraints. Industry 4.0 has paved the way for a world where smart factories
will automate and upgrade many processes through the use of some of the latest emerging
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technologies. It can ease the automatable and tedious tasks, like the ones performed on
a regular basis for determining the inventory and for preserving item traceability [57,58].
Kim et al. (2020), [59] formulated optimal cut-off and pick-up time in the warehouse
as per the customer order responsiveness through priority-based job scheduling using
flow-shop models that can assist warehouse managers in decision making. The application
of stochastic simulation models for uncertain real-life operational environments contributes
to the practical gap and novelty.

To conclude on this case, a real-time industrial warehouse problem can be addressed,
or a prototype warehouse bin pick up and storage system in the logistics 4.0 lab that
is included with few modifications along with problem definitions and solutions. The
insights from the study conducted by Fragapane et al. (2019), [60] provided directions in
terms of the research objective and also use the process parameters that were used in the
statistical model. These methods can tackle many distribution warehouse issues without
the restrictions of traditional tools. Hybrid Smart Simulation can abstract distributed
autonomous entities that can interact with each other and their environment through
space and time, allowing to capture a lot of resource relation attributes such as work time
allocation of resources, automated guided vehicle (AGV) work scheduling, congestion
(buffer) wait time, process/cycle times, Forklift throughput, worker and machine speeds,
resource block behavior, Bin or Rack Storage, Designing Artificial Storage and Retrieval
System, etc.

Moreover, a hybrid modelling approach can also be adopted to virtually visualize the
dynamic nature of the system or logistics model covering all the functionalities. Complex
behavior and changes in model design shall be precisely captured by hybrid simulation
modelling. Usually, simulation is a display of a system that is either going to happen in the
future or that is already there. So, a data-driven decision support system + IoT integration
gateway module will be installed here in feeding real-time data to obtain a virtual real-time
prototype. Later, these data patterns are utilized to build a predictive analytics platform
with the help of reinforced/supervised machine learning algorithm. A real case logistics
system from the industry shall be first recorded and tabulated for primary data taking
either Case A or B systems into account.

For example, the product, product family, and logistic resources like a truck, carriers,
AGVs, and Conveyors, etc., are presumed to be agents to replicate the behavioral pattern of
the system under study. IoT devices assist in obtaining real-time data by directly retrieving
data from the resource blocks mentioned above to the embedded cloud server. If not, it can
also be retrieved from the Enterprise Resource Planning (ERP) database and production
system database to generate a usable XML visual basic or CSV file that are fed into the
simulation software. However, the latter has technological constraints if the host firm does
not have this setup.

The geographic information system feature in the simulation modelling software shall
assist in planning the optimal positioning of the distribution centers, transport routing,
milk runs, product routing, and supply chain optimization. After the completion of an
empirically verified digital twin, the parameters for disruptions and respective solutions
shall be included in the models to analyze different scenario patterns. These patterns are
separately retrieved to build Reinforced Learning Algorithms that help create a prescriptive
analytic platform that acts as a stepping stone for logistics 4.0 decision support systems.

There are several methods to set up a data-driven feed to simulation software. One
among them is generating XML visual basic code that can feed in the data required for
the software given that the software is capable of receiving it [27]. Therefore, the series of
datasets are utilized to build a descriptive, predictive, and prescriptive analytics platform
with the help of regression/correlation-based supervised machine learning (deep learning)
algorithms. The main aim of this review is to study past research on this idea and its
development and later systematize the data set for better implications.
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3. Methodology

The Scopus database was selected for the data set retrieval since it consists of a wide
range of published data in large volume compared to other databases. A strict keyword
search strategy was applied to cover papers on both ‘digital twin’ and ‘supply chain’
from the database. These keywords were added in the title-abstract-keyword option in
which both journal and conference-related papers published in the English language were
selected. Initially, 154 items were identified. Duplicates were removed and articles with
only close relevance to the application of digital twin in the supply chain were identified
by thoroughly reading the title and abstract of all the papers. The authors finally identified
96 journal articles and conference proceedings that met the criteria. The search strategy
followed the Prisma systematic review protocol. Papers with commendable research and
implications were identified by the authors to conduct a systematic review. The keyword
search and criteria applied are given below and Figure 1 portrays the methodology adopted
for this systematic review adopted from.
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(TITLE-ABS-KEY (digital AND twin) AND TITLE-ABS-KEY (supply AND chain))
AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”)) AND (LIMIT-TO
(LANGUAGE, “English”)) AND (LIMIT-TO (SRCTYPE, “j”) OR LIMIT-TO (SRCTYPE, “p”))
AND (LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “COMP”) OR LIMIT-
TO (SUBJAREA, “BUSI”) OR LIMIT-TO (SUBJAREA, “DECI”) OR LIMIT-TO (SUBJAREA,
“ENER”) OR LIMIT-TO (SUBJAREA, “ENVI”) OR LIMIT-TO (SUBJAREA, “SOCI”)).

4. Results

The trend in publication as shown in Figure 2 clearly shows that the notion ‘Digital
twin’ got its popularity in the year 2019 and was studied extensively in 2020 and 2021.
However, the publications in (2021–2022) subject to change and it is not the final data (Note:
In Figure 2, the 2021 (red dot) and 2022 (yellow dot) are incomplete and the counts were
calculated only until October 2021).
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Simulation modelling (digital twin) has become one of the pillars of Industry 4.0. The
technological insights this tool brings that ease the decision-making aspect in the business
area are phenomenal. The authors further tabulated the number of publications based on
the sources which are shown in Table 1 (only Journal sources). The Journal sustainability,
applied sciences, IEEE access and International Journal of Supply Chain Management,
Computers in Industry, and Transportation Research Part E: Logistics and Transportation
Review have published quality papers on this area.

Table 1. Source of publication (Journals).

S.No Journal No of Publications

1 Sustainability (Switzerland) 5

2 Applied Sciences (Switzerland) 4

3

IEEE Access, EAI Endorsed Transactions on Energy Web, Energies,
International Journal of Supply Chain Management, Computers in Industry,

Transportation Research Part E: Logistics and Transportation Review,
Academy of Strategic Management Journal

2

4

Mobile Networks and Applications, Computers and Chemical Engineering,
International Journal of Web Engineering and Technology, Recent Patents

on Mechanical Engineering, Entrepreneurial Business and Economics
Review, Resources, Conservation and Recycling, IET Collaborative

Intelligent Manufacturing, Operations Management Research, Advances in
biochemical engineering/biotechnology, International Journal of

Mathematical, Engineering and Management Sciences, International Journal
of Pavement Research and Technology, Industrial Management and Data

Systems, Food and Bio products Processing, International Journal of
Integrated Supply Management, Case Studies on Transport Policy,

International Journal of Production Research, Sensors (Switzerland),
Production Planning and Control, Journal of Cases on Information

Technology

1

Table 2 shows the top ten highly cited authors and their corresponding research work
and targeted research area. Each data set was closely reviewed and the subject area of
research was tabulated and plotted as Figure 3 which also portrays the percentage of type
of publication (Journal or Conference proceeding). Conference publications are sought by
the researchers and given equal importance to project new ideas, frameworks, and research
agendas. A huge amount of research has been seen in the Engineering and Computer
science area. Still, the scope for applications and leveraging the benefits of digital twin
technologies has not been seen in energy, environmental sciences, social sciences, business
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economics, and decision sciences. In the country-wise numbering, United States leads
the list followed by Germany, Italy, Russian Federation, United Kingdom, France, and
Switzerland as shown in Table 3.

Table 2. Area of Research Targeted vs. Author vs. Research work done (top 15).

Author Area of Research Research Done Number of Citations

[61] COVID 19 supply chain disruption
(Global Supply Chain)

Developed simulation models to articulate
epidemic-related aspects and their relevance to

supply chain disruption risks.
381

[37] Machine Learning and Supplier
Selection

Forecasted the disruption probabilities to assess
the risk profiles of supplier performance under
uncertainty by applying machine learning and

digital supply chain twins.

89

[2] Supply chain disruption in Industry 4.0
using digital twin

Applied digital supply chain twin in supply chain
risk management and related disruptions to allow

predictive and reactive decision making.
86

[62] Supply Chain Resilience in COVID 19
pandemic

Modelled the ripple effect of an epidemic outbreak
in the global supply chain considering various

aspects of disruption.
60

[63] Additive Manufacturing and Digital
Twin

Developed an additive manufacturing and digital
twin technology in aircraft production and

inventory management.
59

[64] Manufacturing and remote sensing

Proposed remote testing and maintenance of
manufacturing equipment with the support of

digital twin technologies during natural disasters
and other scenarios.

25

[65] Construction engineering

Presented a novel proof-of-concept framework for
implementing building information modeling

(BIM) Digital Objects (BDO) to automate
construction product manufacturers’ processes
and augment lean manufacturing using digital

twin technology.

24

[66] Blockchain technology

Demonstrated the implementation of a portable,
platform-agnostic and secure Blockchain Tokenizer

for Industrial IOT trustless digital twin
applications that were tested on two supply chain

scenarios.

23

[67] Product Development Studied data-driven digital twin technology in
product lifecycle management (PLM). 20

[68] Cold Supply chain

Developed a digital fruit twin, based on
mechanistic modelling and simulated the thermal
behavior of mango fruit throughout the cold chain,
based on the measured environmental temperature

conditions.

17

The authors were keen on studying the integration of machine learning with simu-
lation modelling and found eight research works with their respective research areas as
shown in Table 4. Authors reviewed dataset on machine learning integrated digital twin
applications and tabulated in Table 4 to get insights for RQ2 and 3. Later the same review
method was adopted to tabulate Table 5 by dividing the data set into different stages of
the production supply chain. Authors reviewed dataset on the application of simulation
modelling on different stages of supply chain to get insights for RQ1 and 4.
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Table 3. Documents vs. Territory.

Country Number of Documents

United States 17

Germany 15

Italy 10

Russian Federation, United Kingdom 8

France 7

Switzerland 6

Australia, China, Hungary 5

Mexico 4

Brazil, Netherlands, South Africa 3

Finland, Norway, Romania, Singapore Slovenia, Spain, Sweden 2

Austria, Belgium, Estonia, Ethiopia
Greece, Hong Kong, India, Japan

Kazakhstan, Latvia, Lithuania
Macao, New Zealand, Poland
Portugal, South Korea, Turkey

United Arab Emirates

1
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Table 4. Machine Learning integrated with Digital Twin in Supply Chain.

Author Research Work Research Area

[69]

Machine learning methods were evaluated to estimate smooth and
unpredictable demand in a real-world use case scenario, and a set of measures

and requirements were proposed to gain a full comprehension of demand
forecasting model performance.

Demand Forecasting in Automotive Sector

[39]

Presented a revolutionary data-and-model-driven architecture to enable urban
distribution strategic planning, allowing stakeholders to construct warning

systems and make the optimum use of available assets by combining
optimization, machine learning, and simulation models.

Urban Mobility Planning

[70]
Using a conceptual control strategy offering predictive tactical awareness for
robot pelletizing cells, a model-driven DT setup with embedded simulation

quicker than real-time was paired with a data-driven Digital Twin.
Robotics in Manufacturing

[71] Created a physical distribution digital twin model with the goal of using it to
manage trade system functions in collaboration with digital cyberspace. Cyber trade

[72]
Employed real-time simulation and task scheduling algorithm to demonstrate
how data from interconnected, unsupervised, and smart supply chains may

be incorporated into the heterogeneous data ecosystems.
Supply chain and Industry 4.0

[37]
Created a hybrid approach that incorporates simulation and machine learning,

and investigated its implications to data-driven decision-making help in
robust supplier evaluation.

Supplier Management

Table 5. Application of DT in Different Supply Chain Stages.

Author Procurement Production/Manufacturing Warehousing Logistics and
Transportation Research Work

[73] �
Discrete event simulation was used to

investigate the impact of the COVID-19
pandemic on food retail supply chains resilience.

[74] �

Developed a simulation model for a sterile
pharma products factory line to investigate the
sensitivity of steps involved, cycle design and

batch change circumstances, multiple shift
models, scheduling methodologies, and
transportation failure risk assessments.

[68] �

Based on the measured environmental
temperature conditions, a digital fruit twin

based on mechanistic modeling was created to
simulate the thermal behavior of mango fruit

across the cold chain.

[75] �

In a multi-level Cyber-physical Systems
structure, a cyber-physical logistics system

(CPLS) was proposed that coordinated with the
agent of the systems to give technical
functionalities for the robust supply

chain management.

[76] �

A method for automatically discovering
manufacturing systems and generating

appropriate digital twins to accurately assess
system performance was proposed.

[77] �

Integrated Digital-Twin with metaheuristic
optimization and a direct Simulink model for

printed circuit boards (PCB)
design and processing.

[78] �
Presented a case from the automobile industry

and analyzed data exchange requirements using
IoT, digital twin, and cyber-physical systems.
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Table 5. Cont.

Author Procurement Production/Manufacturing Warehousing Logistics and
Transportation Research Work

[79] �

Proposed different identification approaches to
combine and facilitate an efficient and reliable

identification scheme for asset tracking in
logistics using digital twin technology.

[39] �

Proposed a novel data-and model-driven
framework to support decision-making for
urban distribution to solve complex vehicle

utilization problems and fleet cost.

5. Discussion

After a detailed systematic review and reading, insights in line with past studies
have been discussed below in the following sections to answer the research questions.
Furthermore, major barriers and scope for digital twin integrated with data-driven sim-
ulation modelling and digital twin technology is portrayed along with a conceptual and
operational framework.

(RQ1) What are the applications of digital twin simulation modelling in Supply chain
and logistics? (RQ2) What is the impact of digital twin and reinforced machine Learning
on supply chain and logistics? (RQ3) What are the prospects and scope for prescriptive
modelling in supply chain and logistics? How will that ease the process of building a
decision sup-port system for a supply chain or logistics 4.0?

5.1. Applications of Digtial Twin Simulation Modelling in Supply Chain and Logistics

Simulation is a significant tool for analyzing supply-chain behavior, often in terms
of throughput, cost, delivery reliability, variability, and risk. It allows potential model
settings to be tested against potential upcoming supply-chain scenarios. The building and
application of a model in traditional discrete-event simulation approaches is a complicated,
multi-stage, iterative process. Such model configuration modifications are especially
common when evaluating design possibilities for a large organization [23]. Several recent
academic contributions have emphasized increasing process automation using built-in
models. The information that describes the model’s characteristics is stored in such a
way that it is utilized directly by a modelling software to produce the necessary models,
which is a fundamental aspect of such methods. Relational databases, such as SQL, are
commonly used for this purpose, with XML schemas used to send the data to the simulation
software. The procedure is further automated if the necessary data for the models are
gathered from existing data sources, like a company’s enterprise requirements planning
(ERP) system. Bills of materials (BOM), resource capabilities, process timeframes, and
customer and supplier information are examples of such data. Examples of data-driven
simulation applications that make use of several commercial simulation programs have
been provided [80].

Moreover, supply chain design is re-amended using data-driven modeling and simu-
lation that can act as a decision-support tool. The data might be stored in the primary entity
or in a “collaboration hub”, an independent portal organization that allows interaction
between partners in a larger enterprise. These data can be downloaded from the ERP sys-
tem, saved in an appropriate file format to utilize the information to link elements and set
parameters in the simulation model, which can be automatically generated. Nonetheless, a
level of data validation is needed to be performed concurrently [3].

There are two ways to build simulations: modular simulation and data-driven sim-
ulation. Modular simulations provide general templated modules that may be reused to
simulate the behavior of a given domain element using specialized simulation structures,
which are often controlled using a Graphical User Interface (GUI). However, research is
being conducted to simplify this to particular functions incorporating parameters related
to reverse logistics and lean production [4].
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Data-driven simulations are models that are fully parameterized, allowing data to
be entered and changed outside of the simulation. Rather than relying on assumptions
or manually timed operations, historical process data uses data gathered from shop floor
activities to enter data into a simulation. This data is utilized in manufacturing simulations
to calculate processing times and decision probabilities, as well as the variance in these
outputs. These attributes generate an automated model generation module [7,81]. A self-
contained software component that acts as an application programming language capable
of data gathering, retrieval, and sorting can be written in an independent programming
language to the simulation, allowing reuse within different applications. SQL and Python
software are adopted in these areas [22]. This sub-section has discussed on the application
of simulation modelling (digital twin) in supply chain and logistics gives brief answers to
the RQ 1.

5.2. Barriers in the Application of Digital Twin

Companies need to assess if a suitable communications infrastructure is already in
place for successful data collection before embarking on a digital twin initiative. Even if
enough data is available, organizing and analyzing it to generate values will be a challenge.
To prevent convoluting processes, it is critical to examine a firm’s current digital capabilities.
Similarly, maintaining software, developing simulations, and followed by constructive
data analysis require a strategic approach. It is extremely challenging to find the assets
and processes that have the most potential for value generation and then launch a pilot
study. It is also difficult to model systems that encapsulate real-time work-in-progress as it
evolves and scales over time. This necessitates a certain amount of IT up-gradation and
maturity with interlinked simulation models.

5.3. Impact of Reinforced Machine Learning on Supply Chain and Logistics

ML outlines the importance of when to construct systems that develop themselves
automatically over time. It is one of the most quickly expanding technological disciplines,
straddling computer science and statistics and teetering on the brink of artificial intelligence
and data science. Python modules, such as the Scikit-Learning module, can interface
with a large variety of cutting-edge ML techniques for medium-scale supervised and
unsupervised issues. Other packages, like Numpy, Matplotlib, and Pandas, are also
used for data preparation, analysis, and presentation. Zero or missing values are seldom
found in simulation results [70]. Usually, data in normal instances is likely to diverge
from a well-behaved normal distribution, the supervised machine learning [SML] model
does not employ any past information about system behavior to better reflect a realistic
situation [37,82]. Nonetheless reinforced learning algorithm refers to the previous pattern
of data to help in decision making [4].

Specifically related to this concept, [37] demonstrated Ad-hoc customer-supplier re-
lationship management using a data-driven technique-based simulation modeling and
completely unbiased supervised machine learning. The digitalization of industrial re-
sources was regulated by the inclusion of an Internet of Things device, which provided
synthetic data to train ML models. Additionally, the usage of rule-based systems incorpo-
rating various learning algorithms improved the performance of the system. This might
imply that using learning subsystems via meta-learning could give even better results,
especially when modeling in more complicated settings.

5.4. IoT Assisted Data Retrieval and Usage

IoT-based sensors that capture operational behaviors of resources and processes, as
well as their functional properties, are required for the creation of a digital twin. Reli-
able and secure data transport from physical devices to the digital world is provided via
communications networks. A digital platform that combines shop floor sensor data with
high-level business data to function as a modern database server like enterprise resource-
based software. Advanced machine learning algorithms are used to extract actionable
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insights from these data sources for data-driven decision-making. The level of sophisti-
cation and detail of your digital twin models depends on the availability and maturity of
your IT infrastructure [27,29,30,37].

To uncover bottlenecks, improve operations, and reinvent product development, digi-
tal twin technology provides unprecedented visibility into assets and production. In the
manufacturing sector, companies can instantly spot faults and variations in their operations
thanks to predictive maintenance, which allows us to acquire a complete perspective of the
health and performance of infrastructure. Spare component repair and replacement can be
scheduled ahead of time to reduce time-to-service and avoid costly asset breakdowns. Pre-
dictive maintenance with Digital Twins can help OEMs generate new service-based revenue
while also improving equipment reliability [83,84]. Reinforced learning integrated with
digital twin can solve issues related to route mapping [85], warehouse lead time [86,87], de-
mand forecasting [69], inventory planning [88], Orders Backlog Reduction [83], Logistical
uncertainties & communication gaps [7]. The data-driven technology further enhances the
scope by creating virtual real-time supply chain planning & optimization, capacity utiliza-
tion/throughput rate, distribution and backlogs, better demand management, geographic
route map integration, and estimation of financial and operational Performance Indicators
This sub-section has discussed on the collective benefits through integrating digital twin
and machine learning in supply chain and logistics that briefly answers RQ2.

5.5. Prospects and Scope for Prescriptive Modelling in Supply Chain and Logistics—An
Operational Framework

After a thorough literature review, the authors propose a framework on how real-time
data are utilized to generate data feed to the simulation model to create a real-time digital
twin. This procedure can replicate the real-time scenario up to satisfactory levels [69].
These twins can mimic different problematic scenarios and corresponding responses that
are fed by the human operator to overcome them. Later, this pattern over a period of time
can be effectively captured, recorded, and retrieved to build a reinforced machine learning
platform for smart decision-making in the supply chain sector. The authors propose a logic
and framework on this context in Figures 4 and 5 below.
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5.6. Applications of Reinforced Learning and Digital Twin in Micro and Macro Logistics

Revolutionizing logistics and supply chain management in smart manufacturing is
one of the main goals of the Industry 4.0 movement. Emerging technologies such as au-
tonomous vehicles, Cyber-Physical Systems, and digital twins enable highly automated
and optimized solutions in these fields to achieve full traceability of individual products.
Tracking various assets within shop floors and the warehouse is a focal point of asset man-
agement; it aims to enhance the efficiency of logistical tasks. Global players implement their
solutions based on the state-of-the-art technologies. Small and medium companies, how-
ever, are still skeptical toward identification-based tracking methods, because of the lack of
low-cost and reliable solutions. This paper presents a novel, working, reliable, low-cost,
scalable solution for asset tracking, supporting global asset management for Industry 4.0.
The solution uses high accuracy indoor positioning—based on Ultra-Wideband (UWB)
radio technology—combined with RFID-based tracking features [79]. Therefore, authors
have discussed on the future prospects of prescriptive modelling from a digital twin
and reinforced learning context in supply chain and logistics that briefly answers to the
RQ 3 and 4.

6. Conclusions

Previous studies are mainly focused on simulation modelling to understand only
know-how procedure using historical data, but they do not explore real time simulation
modelling or digital twin generation using IoT assisted real time data that can be fed into the
simulation models to generate patterns of occurrences or scenarios. Studies must also focus
on how this real time data patterns can be recorded to teach a machine learning algorithm
to behave and function and act as a reinforced or prescriptive learning platform. This
research area shall help greatly to revolutionize dynamic capability and decision-making
level in the supply chain and logistics.
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Moreover, the fourth industrial revolution also demands the same level of maturity in
digitalization to ensure the transparency and integration of business processes and related
value chain and the supply network. Firms can only thrive in the market by exploiting
the proper and balanced vertical and horizontal integration opportunities that prevail
in production management and logistics. Finding out that optimal integration point is
very crucial to leverage the best of Industry 4.0 [5]. Modern information and computer
technologies are the driving force to digitalize production logistics. Among them, the
Internet of Things (IoT) plays a major role to connect the external data with the internal
resources [15], which assists in the digital transformation of production and logistics into a
digitalized, interconnected, intelligent factory with smart logistics [16].

Firms are striving to attain a competitive advantage by leveraging the benefits of
smart logistics with a high-performance index. They are investing highly in data-enabled
technologies and establishing proper interconnectivity and integration to ensure superior
value creation and increase flexibility [89]. Industry 4.0-based production logistics outplay
traditional production logistics in terms of productivity, flexibility, and costs [60]. These
aspects make a supply chain into a hybrid supply chain 4.0 in which the atmosphere must
have interoperability and information transparency technical assistance. Nothing but the
analytical support by the system for humans in making decisions and solving problems. It
denotes the ability to assist humans with tasks that are too difficult or physically risky for
them to complete on their own. Furthermore, decentralized decision-making technology is
the ability of cyber-physical systems to make simple judgments on their own and become
as autonomous as feasible, especially in micro logistics facilities.

IoT offers dynamic ‘reconfigurability’ of supply networks, especially by re-examining
service-level agreements with upstream and contracted suppliers; supply network design,
towards achieving lean, agile, resilient, and green supply chains. In this context, logistics
will be addressed under the term “Logistics 4.0”. From a technological and in-line processes
perspective, it must be noticed, the Logistics 4.0 aim is not to replace humans in their works,
but to avoid inaccuracies and to have faster processes where the information is shared
effortlessly in real-time. It will be always needed the involvement of people controlling
the processes and taking control of any system failure. The intelligent data-driven hybrid
IoT integrated simulation-based real-time logistics models backed up by a prescriptive
analytic platform built with machine learning shall help attain optimized smart scenario
planning for logistics 4.0. Integration of data-driven hybrid simulation modelling shall
portray the digital twin of the system under study to understand the dynamics of risk,
costs associated, wastes in the timeline and assist in generating numerous patterns with
problems and solutions (along with the solutions, which would act as a reward parameter
to feed into the reinforced learning algorithm). A state-of-the-art decision support system
to enable logistics 4.0 for numerous applications are developed along with a predictive
analytics platform built using machine learning algorithms. Different logistics systems
shall give different implications.

However, recent strict regulations and competitive economics worldwide, and a grow-
ing number of companies are committed to a combination of good manufacturing practices
along with automation to maintain the highest quality of the product [90]. Logistics 4.0,
which is a primary entity or backbone of industry 4.0 can bring this revolutionary change.
IoT integrated hybrid simulation-based approach shall provide detailed insights on the
dynamic changes in the system on a real-time basis. Moreover, the data-driven gateway
setup can provide optimal assistance to maintain resilience and sustainability in the sys-
tem. These behavioral dynamics and corresponding decisions are tabulated to build a
prescriptive analytic platform through a reinforced learning algorithm. Moreover, very
little attention is given towards the digitalization of logistics 4.0 with a huge managerial
and practical gap. This study shall also contribute greatly to the body of literature in the
area of Logistics 4.0.

Innovation in the business model for sustainability and circularity is still fragmented.
A dynamic capacity-based perspective analysis is required to resolve this problem and
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there is a lack of systematic solutions [91]. To build feasible and resilient smart, sustainable
production and supply chain systems as functioning virtual models with socio-economic
impact more mixed-method research methodologies are needed. Additional research work
is needed to propose solutions to private or government bodies to develop a circular
value chain and address citizens’ day-to-day problems. The growing significance of novel
technologies became apparent as well most recently by the COVID-19 pandemic [92].
Therefore, information technologies and related solutions play an active and crucial role
in the provision of needed logistics and transport services. For instance, geographic
information systems (GIS) and Big Data analytics can be applied to balance the supply and
demand of limited material resources—e.g., medical supplies. Next to this, digital supply
chain twins shall be used to support decision-making, since the first epidemic outbreaks.
The effectiveness of a smart system directly relates to the level of technological readiness.
Data driven digital twins backed by reinforced learning have revolutionary scope in the
supply chain segment.

This study has reviewed the Scopus database only, however using this database we
have explored a wide range of previous studies related to the topic of research. Nonetheless,
there could be distorted or incomprehensive views which is a limitation of this study.
Moreover, the keyword “digital twin” was included under the umbrella keyword “supply
chain” and keywords such as “logistics 4.0” and or “manufacturing 4.0” were not used.
However, authors have thoroughly gone through the initial dataset to filter the most
relevant publications in line with the research agenda.
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