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Abstract: Background: Human–robot collaboration is essential for efficient manufacturing and logistics
as robots are increasingly used. Using industrial robots as part of an automation system results in
many competitive benefits, including improved quality, efficiency, productivity, and reduced waste
and errors. When robots are used in production, human coworkers’ psychological factors can disrupt
operations. This study aims to examine the effect of employees’ negative attitudes toward robots on
their acceptance of robot technology in manufacturing workplaces. Methods: A survey was conducted
with employees in manufacturing companies to collect data on their attitudes towards robots and
their willingness to work with them. Data was collected from 499 factory workers in Istanbul using a
convenience sampling method, which allowed for the measurement of variables and the analysis
of their effects on each other. To analyze the data, structural equation modeling was used. Results:
The results indicate that negative attitudes towards robots have a significant negative effect on the
acceptance of robot technology in manufacturing workplaces. However, trust in robots was found to
be a positive predictor of acceptance. Conclusions: These findings have important implications for
manufacturing companies seeking to integrate robot technology into their operations. Addressing
employees’ negative attitudes towards robots and building trust in robot technology can increase the
acceptance of robots in manufacturing workplaces, leading to improved efficiency and productivity.

Keywords: industrial robots; negative attitudes; trust; human–robot collaboration; intention to use

1. Introduction

We are witnessing a new industrial revolution that has the potential to transform
industries worldwide. This revolution ushers in an era in which a bridge is built between
the physical and digital worlds, and human–machine interaction is enhanced through
intelligent machines, mainly as artificial intelligence advances [1]. This revolution, which
altered all aspects of society, also altered business models. Many firms in the manufacturing
and service industries are pursuing efficiency by optimizing their processes following
digital technologies [2]. It is true that automation has been used in manufacturing for
quite some time [3]. However, recent advances in robotics and artificial intelligence have
also impacted the service sector [4]. This has opened up enormous job opportunities
for people [5]. Artificial intelligence (AI) appears to be a crucial part of the revolution
we referred to above because it enables machines to collect and process data without
human intervention, allowing them to conduct tasks traditionally associated with human
intelligence, such as making decisions and solving problems [1].

Even though robots have been used in industry for some time now, it appears that
the current state of robotics technology and other social developments in the world (such
as COVID-19) will lead to even greater adoption of robots in the workplace [3]. With
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the advent of Industry 4.0 and its accompanying technologies, such as the IoT, big data
analytics, and cloud computing, all business procedures are rethought from the ground
up. Robotics, automation, and AI have given businesses a leg up in the marketplace and
helped them to stay in business [6].

Forward-thinking businesses frequently adopt new processes and technologies, often
as proactive marketing of new products, quality improvements, capacity increases, and
investment in innovative processes. For optimal performance, these businesses require a
wide range of technological tools [7]. Companies gain a distinct competitive edge from
robotic technology because of its increased productivity and adaptability in manufacturing
and service [6]. Innovative businesses are quicker to adopt new technologies. This innova-
tion economy relies heavily on robotics, AI, machine learning, and large amounts of data,
particularly in manufacturing [7].

A new approach to using industrial robots has emerged that allows for completing
previously reserved tasks while simultaneously increasing product quality and decreasing
production costs [8]. Human operators in manual manufacturing systems can use their
perception, planning, and movement abilities to handle various tasks, tools, materials, and
unforeseen changes. However, as physical, and mental fatigue set in, human operator
performance typically declines across the board [9]. To prevent accidents, robots in the con-
ventional model of automation work in isolation within predetermined spaces [10]. When
producing and assembling complex products in small batches, the traditional business
model’s inflexibility and accompanying higher costs are major drawbacks [8]. In addition,
when humans and robots work together, exhaustion is reduced. Industrial robots can
continuously perform their programmed tasks with accuracy, speed, and repeatability that
humans cannot achieve [11], allowing businesses to increase quality and efficiency without
sacrificing speed or adaptability.

The conventional model of industrial robot application has shifted from one in which
robots work independently in a closed cell, to one in which they collaborate with hu-
mans [10]. Robots can increasingly do jobs that were once thought possible only by
humans, and they no longer must be big, inflexible, and mechanical-looking. This trend is
expected to continue as technological developments in robotics make robots better suited
to human-centered work environments, boost their ability to perform tasks that humans
can, and familiarize the public with robots [12].

One of the most critical factors in the widespread adoption of robots for various
uses and tasks in the workplace is their ability to mimic human behavior. Studies of
how humans and robots can effectively communicate and work together are expanding
rapidly [13]. People’s perspectives and actions in response to industrial robots can be
understood through various innovation theories, such as the technology acceptance model,
the innovation diffusion model, the reasoned action theory, the planned behavior theory,
and the social-cognitive theory [14]. Even though robots have not entirely replaced humans,
as was once predicted [13], there are still some serious concerns to be addressed, as robots
are widely expected to become an integral part of the working world soon. These include
people’s fears of robots [15], people’s views on robots’ usefulness and ease of use [16], and
people’s plans for incorporating robotics into the workplace [6]. As new robot technology
could drastically alter the current business climate, it is expected that blue-collar workers
may be resistant to this change. The adoption of robotic technologies in blue-collar jobs is
primarily driven by people’s fear of automation and subsequent resistance to change [17].

Using industrial robots in manufacturing has received much attention in recent years,
and there has been much research on how humans respond to new technologies. The
advantages of industrial robots, such as increased efficiency and reduced costs, have made
them an attractive option for manufacturing operations. However, despite their benefits, the
adoption of industrial robots is still limited due to negative attitudes toward robots, and far
fewer studies have focused on how workers feel about robots in the workplace, especially
considering recent advances in robotics. Negative attitudes can lead to resistance to change,
which can hinder the adoption of industrial robots. To understand the abovementioned
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factors affecting the acceptance of industrial robots in manufacturing, we conducted an
empirical study. This study aims to investigate the impact of negative attitudes on the
acceptance of industrial robots. The following study questions were developed:

1. Do the negative attitudes of employees towards robots affect the acceptance of robots
in workplaces?

2. How does employees’ trust in robot technology affect their intention to use robots?

Section 2 of this research comprises a literature review. Section 3 will go into detail
about the materials and methods used. In Section 4, we present the data analysis results
from the survey. Finally, Section 5 discusses the study’s findings, and Section 6 concludes
the paper with the study’s implications and limitations, and provides some suggestions for
further research.

2. Literature Review and Hypothesis Development
2.1. Theoretical Framework
Industrial Robots

Robots are electromechanical structures built to perform a specific set of tasks, or to
conduct functions or behaviors per a predetermined set of rules specified by computer
software [12]. Regarding strength and endurance, humans are no match for robots. Perfor-
mance and quality are typically impacted negatively because of these constraints. To keep
up with the times in terms of sustainability and, at the same time, optimize the production
process [18] and the longevity of their products, some manufacturers have replaced human
workers in the field with robots [5]. Robots can be set to work around the clock to help
manufacturing companies increase output, efficiency, and profits. While automation has
altered manufacturing, it has also opened up vast new revenue streams [19]. Robots have
long been hailed for their ability to boost productivity, effectiveness, and quality in various
settings. Technology has played a crucial role in production for at least three decades [20].

Robots in manufacturing have many benefits, including improved efficiency, lower
risk of injury, and adaptability in terms of use and programming. To enhance manufac-
turing output, robots will need to perform several tasks, including keeping a close eye on
their surroundings, safely interacting with humans, collecting new skills and tasks, and
adjusting their behavior based on the circumstances. One of the essential uses for robots
in the industry is performing assembly work independently or with a human operator’s
assistance [21].

Factories are gradually replacing human workers with more productive and efficient
industrial robots to reduce production labor costs, which has led to the development of
more effective systems. Energy efficiency, time efficiency, cost effectiveness, and regulatory
compliance are all crucial parameters that must be programmed into a robot to achieve
maximum productivity with minimal input [5].

Industry 4.0 is, without a doubt, a significant factor shifting the role of robots. Industry
4.0, first discussed at the German trade show Hannover in 2011, is now a worldwide topic
of conversation that stimulates development across various industries by rethinking the
interconnections between humans, machines, data, and decisions [22]. Robots will need to
develop higher levels of intelligence to facilitate the advanced manufacturing environment
proposed by the Industry 4.0 paradigm [21].

Research in business management and related fields has developed conceptual models
that address the readiness for digitized work because of information systems powered
by international programs such as Industry 4.0. As a result, Industry 4.0 has ushered in
massive shifts in the workforce and brought humans and machines closer regarding their
physical, cognitive, and sensory capabilities. Industry 4.0 readiness models that focus on
the workforce highlight three main sets of factors: (1) social and collaboration competencies;
(2) technical knowledge, skills, and attitudes; and (3) openness to new knowledge and
flexibility in the workplace. A lesser emphasis should be placed on interpersonal and
intercultural competence [22].
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With the help of industrial automation, mass production can be performed with
high quality and productivity. Automation and manual labor complement one another
because both depend on the enhancement of labor productivity, which brings up the idea
of human–robot collaboration [18]. One of the most popular types of automation robots is
the collaborative robot. Collaborative robots can be more adaptable in manufacturing and
complete novel tasks thanks to their maturing technology. As an alternative, new sensor
designs and algorithms have been developed to make the first robots more amenable to high
volumes and minimal variables, opening up many potential new applications. As a result,
robots are becoming more commonplace in sufficient settings, including manufacturing [19].
The automotive and electronics industries are the primary incubators of this partnership.
Most automobile-related applications involve assembly processes in which robots perform
tasks that require high precision or that, if performed manually, would cause repetitive
strain injuries to workers, such as lifting and carrying heavy objects. Physically demanding
tasks are made more accessible by robots, such as the removal of doors and the loading of
seats, as well as the loading and moving of heavy wheels in tire shops [10].

Robots in factories are typically separated using lasers, fences, and other optical
barriers. The term “collaborative robots” (or “cobots”) describes robots designed to work
side by side with humans in a workplace. This strategy reduces the potential for harm
when humans and robots work together. Edges and corners have been rounded off to make
the cobot safer and less prone to causing injuries. In the event of unintended contact or
collision, a cobot’s built-in sensors can detect these forces and cause it to either cease or
return to where it parks. Furthermore, the operator can simply indicate to the robot the
desired motion, and the robot will faithfully replicate it. A new manufacturing era has
begun thanks to the robot’s copy accuracy, agility, and capacity to produce repetitive work
at human capabilities [23].

Collaborative robots, also known as cobots, are designed with user-friendly interfaces
to lessen the strain on human workers performing physical production tasks such as safely
handling hazardous materials or precisely executing repetitive actions. In addition, sensors
and software have improved direct human–robot interaction by enabling robots to interact
safely with humans, be manipulated intuitively, and engage in tasks without the risk
of physical contact or collision. As collaborative robots become more commonplace in
the manufacturing industry, the human–robot collaboration system presents itself as a
promising method for companies to boost output and worker safety while relieving them
of some of their workload [9].

Cobots appear in jobs that require close interaction between human workers and robots.
Partnerships between humans and robots are part of this field; in these arrangements,
humans oversee and direct robot operations and gain knowledge from their robotic partners.
Cobots excel because they maintain temporal and semantic consistency in their service
delivery. The safety zones change based on factors including how close people are to each
other, how fast the robot moves, and where the barriers are placed. Rapid and reliable
communication is required for the control system to take prompt action, such as ceasing
the cobot’s movement [19].

Considering these factors, the literature on the examination of industrial robots in
terms of the above-mentioned Industry 4.0 readiness models has just expanded. The
Unified Theory of Acceptance and Use of Technology (UTAUT) model [24] is widely used
to study the acceptance of technology in various contexts, including industrial robots. The
UTAUT model posits that those four factors—performance expectancy, effort expectancy,
social influence, and facilitating conditions—influence technology acceptance. Recent
studies have extended the UTAUT model to include new moderators and determinants,
such as emotional attachment, to better understand technology adoption, including the
adoption of robots in Industry 4.0 [25].
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2.2. Hypothesis Development
2.2.1. Negative Attitudes towards Robots

Given that robots will soon be commonplace in the workplace, whether workers
are prepared to embrace this change has become an essential question. Technophobia,
or a fear of technology, results from worries about introducing novel technologies such
as robots [6]. Sufficient evidence confirms that social psychological processes including
attitudes and trust are crucial factors in productive cooperation with robots and, ultimately,
their acceptance in everyday life. Aside from these well-studied elements, robotization
may also cause positive and negative emotional responses among workers [26]. People will
not likely form an emotional connection with or trust a robot if they are always concerned
about their safety around it. The inability to form a common identity and trust between
two actors because of their mutual fear of a common threat is a common problem in
interpersonal relationships [27]. When innovative technologies such as social robots are
integrated into the same workplace as humans, it changes the dynamics between humans
and their technological counterparts. Some workers may have a more challenging time
than others adjusting to this change. It can cause one to feel bad, affecting one’s mental
health [26].

Many blue-collar workers worry their jobs will be automated away. As a result,
concerns about technological unemployment are a significant barrier to the widespread
implementation of new technologies in the traditional labor sectors. People’s unwillingness
to embrace new technologies is another roadblock to adoption [17]. Employees feel in-
creasingly threatened by autonomous, mobile, and self-learning robots. Workers today are
understandably worried about the rise of robots, as they worry their skills will be rendered
obsolete and that they will be mistreated. Employees worry about robots in the workplace
because of their lack of emotional intuition, imagination, and empathy and because of the
need for retraining to comply with health and safety regulations and operate robots [6].

The general attitude toward technology is related to the attitude and behavior re-
sponses to a more specific situation involving that technology, which is consistent with
previous research and theories on technology acceptance. Therefore, a favorable outlook
on robots is significantly correlated with favorable reactions to interactions with robots in
the workplace [3]. According to the authors, building trust and identification within a team
can be aided by working with a robot towards a common goal [27].

Safety is of the utmost importance in robotics, as in all technology areas. Because of
the interdisciplinary nature of robotics, many security issues arise, including those related
to communication protocols, firmware, cryptography, data storage, mechanical designs,
control systems, and more [5]. The potential for harm must be assessed in any working
environment where humans and robots interact. Increasing automation, especially on
assembly lines, brings robots closer to human workers and allows them to perform more
complex tasks [28].

Research into human–robot interaction seeks to clarify fundamental questions about
human–robot relationships and to inform the development, design, and assessment of
human–robot systems [29]. According to studies and articles published in this area, trust is
a significant factor in determining whether or not people will adopt and use autonomous
technology [30]. Though automation systems have advanced, even the most advanced
systems are useless if users refuse to engage with them out of misplaced distrust. As a
result, researchers in the fields of automation and robot systems consider trust fundamental
to comprehending how people view and interact with robotic technologies [31].

Humans react differently to humanoid robots than they do to machine-like robots, and
those who can express human-like features are viewed as more trustworthy [30]. When
people place their faith in a cooperating robot, they are saying they will trust or believe in
the robot’s assistance. If a human does not trust the robot, they might not want to work
with it. Institutional faith in robots may also harm humans [32]. The risk of handing over
control of a process to a machine is inherent in using robots, which take over for humans
in various settings and contexts [30]. However, while human–robot interaction can make
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some people’s lives easier, it can also threaten human beings. When being directed from
one location to another, robots can easily cause catastrophic mishaps. As a result, sensors
and data processing methods have been used to solve security-related issues for the past
twenty years [33].

According to theories of human behavior, prior attitudes and beliefs about a topic
significantly impact how that topic is discussed and acted upon. The likelihood that an
individual will engage in a particular behavior in the future is directly correlated with
the degree to which they hold favorable attitudes or beliefs regarding that behavior. In
particular, this holds when trying to foresee how people will engage with technology in the
future. It is also argued that people are more likely to want to work with robots again if
they feel safe doing so while performing a task with the robot [27]. Concern for one’s safety
and comfort in the presence of a robot and apprehension about potential harm resulting
from the robot’s own mistakes are all expressions of security in human–robot interaction.
Accessibility, a field of view, posture, gaze direction, and distance from a robot are all
factors that can impact this scenario [34]. Therefore, users will not want to use robots when
perceiving the risk mentioned above [31]. The following hypothesis has been formulated
in this context:

Hypothesis 1 (H1). Negative attitudes towards robots significantly affect the intention to accept
robots in workplaces.

2.2.2. Trust in Human–Robot Collaboration

In the traditional master–servant relationship, robots have been relegated to sub-
servient roles. Recent advances in robotics, however, have allowed for the creation of
socially interactive robots; as a result, robots are now permitted and even encouraged to
serve as considerate, adaptable, and dependable helpers instead of slave-like ones [31].

One of the most crucial factors in determining how well a robotic system performs is
the degree to which people have faith in its ability to perform its intended task. Trust plays
a role in whether or not operators adopt new technologies; thus, it is essential to investigate
the factors that inspire trust in emerging robotic systems [29].

Workplaces that involve humans and robots working together to accomplish a com-
mon goal are examples of human–robot collaboration. Thanks to progress in robotics,
humans can now collaborate with robots. Together, humans can offload mundane tasks to
robots [27]. To improve teamwork between humans and robots, researchers have focused
on teaching both groups to develop a theory of mind based on social-cognitive mechanisms
and the concept of common intention. While both agree that humans and robots should
work together, the former also advocates for robots to be able to read human emotions
from, for example, facial expressions and body language. Because of the rarity of the use of
robots, however, it is essential to ensure the public’s acceptance of this practice, where trust
plays a crucial role [35].

A successful human–robot collaboration production system must ensure the safety of
human operators above all else. Any production system that involves human and robotic
collaboration must guarantee a collision-free zone at all times. However, model-based
control technologies are typically employed in developing industrial robot control systems.
Traditional industrial robots do not account for humans or other moving objects when
performing assembly tasks. Therefore, in a human–robot collaboration production system, a
safe working environment free from collisions is not currently provided by industrial robot
systems. Some researchers have proposed sensor-based safety systems to guarantee the
security of human–robot collaboration production systems. Real-time distance monitoring
between humans and robots is made possible by depth sensors. If a robot gets too close to
a human while they are working together, it can be ceased or made to back away. On the
flip side, the approach will reduce the effectiveness of collaborative assembly because of
the constant starting and stopping of the robots [36].
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Those who feel more socially present during human–robot interaction are more likely
to view robots as credible social actors and disregard their artificial nature. Furthermore,
people who experience a strong sense of social presence are more likely to have favorable
impressions of the robot because they will see it as an embodied artificial social actor with
human characteristics [31].

For robotics to have a future, it must work in tandem with humans [37]. When humans
and robots work together, there is trust because everyone expects the robot to perform
to a certain standard [35]. Safety regulations have long limited industrial human–robot
interaction due to industrial robot size, weight, and potential danger [38]. Protecting people
is the top priority in any setting where humans and robots coexist [37]. As a result, for
a human–robot team to succeed, its human members must have faith that their robotic
teammate will look out for the team’s best interests and safety [35]. While robots are highly
adaptable, humans on the move may end up in their workspace [37]. Therefore, effective
human–robot interaction relies on a well-calibrated level of trust on both sides. The results
of a conversation change depending on whether or not trust is present [35]. Workers who
rely on human assistance with robots will be more open to using robots. Therefore, the
following hypothesis was formulated:

Hypothesis 2 (H2). Trust in human–robot collaboration positively affects the intention to accept
workplace robots.

Accordingly, the research model is shown in Figure 1.
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3. Materials and Methods
3.1. Sample and Data Collection

Respondents were given a questionnaire adapted to measure the research variables.
The data were obtained from the employees of the manufacturing companies located in
Istanbul, which are included in the top 500 companies list published annually by the
Istanbul Chamber of Industry. The research sample comprises 499 individuals from
27 businesses contacted through convenience sampling. During February and March
2022, data were gathered through online and in-person surveys.
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3.2. Measurement Instrument

The participant questionnaire used for this investigation was subdivided into two
separate components. In the first portion of the survey, participants are asked a series
of questions designed to reveal their demographics. In the second part of the study, the
researchers investigated the parameters of the research model by measuring 27 items (see
Appendix A, Table A1). In the second part of the research project, the participants’ levels of
agreement with each statement were evaluated using Likert scales, which have five levels
of agreement.

The questionnaire was adopted from the studies listed below to measure three
variables:

1. Negative Attitude toward Robots (NATR); Nomura (2020) [15]; based on fourteen
items.

2. Trust in Industrial Human–Robot Collaboration (THRC); Charalambous et al., (2016) [39];
based on ten items.

3. Behavioral Intention to Accept Robotics at Workplace (BIAR); Sinha et al., (2020) [6];
based on three items.

3.3. Analysis Method

The research comprised two distinct stages of data examination.
Validity and reliability of the construct were examined in the first stage. This con-

clusion is the product of exploratory and confirmatory factor analyses, both of which
contributed to its formation. Validation of the observations for factor analysis was ac-
complished using the Kaiser–Meyer–Oklin (KMO) and Bartlett sphericity tests. When the
KMO value falls between 0.5 and 0.7, it is deemed acceptable; between 0.7 and 0.8, it is
deemed good; and when it exceeds 0.8, it is deemed excellent. The correlation matrix and
the results of the Bartlett sphericity test both suggest that factor analysis can be performed
with relative ease, showing that the sample size is sufficient [40]. To ensure that all the
study’s variables could be evenly distributed across all the structures, the CFA method was
used. Goodness-of-fit values of the scale and correlations between the variables were deter-
mined to assess construct validity and reliability. In order to determine the measurement
instrument’s overall significance, we calculated the composite reliability of the factors and
the average of variance (AVE) that could be attributed to them [41]. When the structure
value is more significant than 0.70 [42] and the explained variance is greater than or equal
to 0.40, it is considered to have an acceptable level of structural reliability [43]. In addition,
skewness and kurtosis values were investigated to guarantee that the data followed a
normal distribution.

In the second step of the process, the analysis was performed using the structural equa-
tion model developed in the first stage to check whether or not the H1 and H2 hypotheses
were correct. Structural equation modeling is a type of general statistical analysis that seeks
to do three things: (1) establish linear associations between independent and dependent
variables; (2) estimate the effects of all variables on one another; and (3) investigate the
connections between overt and covert factors [44]. One of the most significant advantages
of SEM over other methods is that measurement errors are effectively taken into account in
the analysis. Being a statistical technique, it allows for precise evaluation of the interde-
pendent effects of various structural elements. Furthermore, structural equation modeling
(SEM) employs a variety of quantitative statistical tests to investigate the convergent, dis-
criminant, and internal consistency validity of a construct [41]. Different goodness-of-fit
indices and the statistical functions they provide are taken into account when deciding
whether structural equation models are a good fit for the data. Most commonly employed
indices include the Chi-square statistics, RMSEA (Root-mean-square error approximation),
GFI (Goodness-of-fit index), CFI (Comparative Fit Index), NFI (The Normed Fit Index),
and TLI (Tucker–Lewis Index) [45]. The Normed Fit Index and the Tucker–Lewis Index are
two alternative indices that have been proposed. Models are considered to be a good fit for
the data when their CFI, NFI, and TLI values are close to 1, which is a value that shows
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perfect fit. RMSEA values showing excellent fits are those equal to or less than 0.05, and
values showing an acceptable fit fall between 0.08 and 0.10. Values showing a poor fit fall
above 0.10 [46].

4. Results

Some demographic characteristics of the participants are given in Table 1.

Table 1. Demographic Characteristics of Respondents.

Frequency Percent

Female 244 48.9
Male 255 51.1

Total 499 100.0

18–25 128 25.7
26–35 173 34.7
36–45 142 28.5
46–55 41 8.2
56 and above 15 3.0

Total 499 100.0

Primary education 45 9.0
High school 227 45.5
College 61 12.2
Faculty 135 27.1
Master/Doctorate 31 6.2

Total 499 100.0

Worker 319 63.9
Technician/Foreman 121 24.2
Engineer 59 11.8

Total 499 100.0

Before putting the research model to the test, we ensured the scales we were using
were reliable and valid. To what extent the latent structure of the variables contributes
to the total variance is indicated by the Kaiser–Meyer–Olkin (KMO) value. For adequate
sampling, it needs to be as high as possible (>0.70) [47]. Then, the research scales were
examined for their construct validity and reliability. Exploratory and confirmatory factor
analyses, as well as reliability analyses, were conducted for this purpose. Table 2 displays
the results of the EFA performed on the scales.

Table 2. Exploratory Factor Analysis.

Negative Attitude toward Robots Fac. Load. Skew. Kurt. Mean Std. Dev.

NATR1 0.748 0.418 −1.026 2.62 1.265
NATR2 0.816 0.284 −1.105 2.69 1.283
NATR3 0.824 0.381 −0.904 2.60 1.197
NATR4 0.832 0.654 −0.679 2.31 1.245
NATR5 0.646 0.404 −0.778 2.64 1.183
NATR6 0.704 0.417 −1.001 2.48 1.273
NATR7 0.686 0.716 −0.188 2.36 1.107
NATR8 0.782 0.618 −0.508 2.40 1.179
NATR9 0.817 0.455 −0.633 2.52 1.162

NATR10 0.849 0.707 −0.534 2.39 1.215
NATR11 0.862 0.524 −0.767 2.45 1.202
NATR12 0.840 0.698 −0.433 2.39 1.169
NATR13 0.841 0.516 −0.712 2.49 1.188
NATR14 0.764 0.400 −0.942 2.54 1.250

KMO: 0.956 Approx. Chi-Square: 5441.442 df:91 sig.: 0.000 Total Variance Explained: % 62.276
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Table 2. Cont.

Trust in Industrial Human–Robot
Collaboration Fac. Load. Skew. Kurt. Mean Std. Dev.

THRC1 0.836 −0.832 −0.068 3.59 1.105
THRC2
THRC3 0.813 −0.774 0.127 3.55 1.047
THRC4 0.805 −0.667 −0.214 3.50 1.095
THRC5 0.820 −0.678 −0.517 3.51 1.238
THRC6 0.807 −0.554 −0.503 3.57 1.157
THRC7 0.846 −0.534 −0.404 3.59 1.124
THRC8 0.703 −0.354 −0.823 3.35 1.195
THRC9 0.691 −0.333 −0.858 3.34 1.198

THRC10
KMO: 0.889 Approx. Chi-Square: 2621.444 df:28 sig.: 0.000 Total Variance Explained: % 62.764

Behavioral Intention to accept
robotics in the workplace Fac. Load. Skew. Kurt. Mean Std. Dev.

BIAR1 0.844 −0.573 −0.597 3.51 1.164
BIAR2 0.901 −0.692 −0.347 3.53 1.146
BIAR3 0.900 −0.747 −0.209 3.59 1.148

KMO: 0.717 Approx. Chi-Square: 698.730 df:3 sig.: 0.000 Total Variance Explained: % 77.756

Except for the second and tenth items of the Trust in Industrial Human–Robot Col-
laboration factor, all factor loads were above 0.50. Here, we excluded them. Above 0.70
was the KMO value. Results from the Barlett sphericity test were found to be statistically
significant. Since the sample size is large enough, factor analysis can be performed. The
results showed that the various scales could account for more than half of the variation.
Kurtosis and skewness values were calculated to be from −2 to +2. The data are normally
distributed, as showed by this result.

The weighing scales were subjected to CFA after the EFA had been completed. Table 3
displays the obtained goodness-of-fit values.

Table 3. CFA Goodness of Fit Values.

Variable χ2 df χ2/df GFI CFI NFI RMSEA

Criterion ≤5 ≥0.85 ≥0.90 ≥0.90 ≤0.08
Negative Attitude
toward Robots 310.352 75 4.138 0.916 0.957 0.944 0.079

Trust in Industrial
Human–Robot
Collaboration

65.147 16 4.072 0.97 0.981 0.975 0.079

Behavioral Intention to
Accept Robotics in the
Workplace

0 0 - 1 1 1 0

The results of the CFA indicated the scales had sufficient goodness of fit.
After completing EFA and CFA, the scales’ reliability was evaluated.
Table 4 displays the results of the reliability analysis and the component validity test,

including the alpha coefficient value, average variance explained, and composite reliability.
Regarding reliability, the analysis yielded alpha values greater than 0.70. This result

shows the validity of the scales. If the obtained AVE is greater than 0.50 and the CR is
greater than 0.70, then the scales are valid and reliable.

After completing the construct validity and reliability analyses, a structural equation
model analysis was performed to test the hypotheses. The model under analysis is depicted
in Figure 2.
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Table 4. Validity and Reliability.

Variable AVE CR Cronbach’s Alpha

Negative Attitude toward Robots 0.59 0.952 0.953
Trust in Industrial
Human–Robot Collaboration 0.55 0.905 0.913

Behavioral Intention to accept
robotics in the workplace 0.671 0.859 0.856
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Table 5 displays the model’s goodness-of-fit statistics.

Table 5. The Goodness of Fit Values of the Research Model.

Variable χ2 df χ2/df GFI CFI NFI RMSEA

Criterion ≤5 ≥0.85 ≥0.90 ≥0.90 ≤0.08
Modal 667.153 266 2.508 0.9 0.958 0.933 0.056

The analysis revealed that the model satisfied the necessary goodness-of-fit conditions.
Table 6 displays the outcomes of the model’s analysis.
The findings showed that negative attitudes toward robots had a negative effect on

workers’ willingness to integrate them into their daily routines. Furthermore, trust in
human–robot cooperation positively impacted behavioral intention toward acceptance of
robots in the workplace. The data analysis verified both H1 and H2.
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Table 6. SEM Regression Results.

Est. S.E. C.R. P

BIAR <— NATR −0.067 0.027 −2.191 0.028
BIAR <— THRC 0.953 0.101 11.544 ***

*** p < 0.001.

5. Discussion
5.1. Theoretical Implications

In this study, we investigated employees’ intentions to use industrial robots in their
workplaces. To begin, we used a research model to analyze how employees’ perceptions
of robots and the reliability of their interpersonal interactions with robots affected their
interest in using industrial robots. Competition in the market and among businesses has
increased in recent years as a result of factors including rising consumer awareness [48],
the growing trend of mass privatization of products [49], and epidemics, crises, and market
fluctuations [50]. Companies are under pressure to differentiate themselves from the com-
petition by providing customized products to customers in record time. This situation calls
for a highly adaptable and productive manufacturing process. Human–robot collaboration
has emerged as a new paradigm in manufacturing thanks to the combination of humans’
flexibility and robots’ efficiency. However, it is challenging for a robot to communicate with
and work alongside humans. For working together as a group, humans have the option
of using their voices, gestures, and actions to convey meaning. However, without context
awareness, robots working alongside humans cannot communicate effectively [49].

More and more researchers are focusing on context-awareness in the human–robot
collaboration system to boost robots’ cognitive abilities and bring them closer to their aim of
autonomous learning and decision-making. In addition, there has been a rise in the number
of studies investigating using brain signals to control robots. Human and robotic labor can
be better distributed, and operational efficiency can be maximized with the help of digital
twin technology applied to human–robot collaboration scenarios. However, technical
hurdles still exist when mapping real and virtual space for engineering applications [51].

As we argued in the hypotheses, in this case, the trust employees have in robots will
positively impact the use of robots in the workplace. Furthermore, the opposite will be
confirmed if employees have negative attitudes toward robots. The reports [12,15–17,24]
all provide evidence supporting this conclusion. There are numerous studies examining
the psychological aspects of human–robot interaction [52–61]. Most of these studies are
based on scenarios where people might avoid interacting (for example, studies involving
the service industry where the human side is customers, patients, etc.). There are few
studies involving scenarios in which humans must interact with robots (integration of robot
workers in the manufacturing industry). We believe that our research findings contribute
to the existing body of knowledge regarding this subject.

5.2. Managerial Implications

Some suggestions for the field accompany the theoretical findings of this study. Keep-
ing up with the rapid pace of technological development is essential for the success of
businesses today [17]. Industrial production is evolving under the umbrella of Industry
4.0, which uses systems such as big data and the IoT [62], which requires the adoption of
smarter, more flexible systems such as multi-purpose robots that do not require task-specific
programming [63]. Hedelind & Jackson [20] argue that companies with higher labor costs
can be challenged by those who use more automated production systems.

Industrial robots are common in factories worldwide [64]. Digital transformation
has introduced a new dimension to the traditional division of labor between humans
and innovative technologies [17]. With the advancement of technology, the human–robot
cooperation system is being highlighted in daily applications and especially in industrial
scenes [65]. There is no need to keep humans and robots on separate teams in collaborative
manufacturing, as both can work together in the same environment at the same time [66].
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Smart factories, in particular, cannot get by without robots, but they also benefit from
enhanced human–robot collaboration. Humans and machines must work side by side
in today’s smart factories. Robots can augment human senses and capabilities to free up
human beings for more nuanced and mental labor. In addition, robots should be built to
provide the right amount of assistance to human workers as they perform a task, thereby
maximizing efficiency [67].

Businesses serious about integrating industrial robots into their operations must audit
how their staff thinks and feels about robots, both in the complex and soft sciences. Physi-
cal factors show that the time-honored practice of isolating industrial robots from human
workers for their protection has some practical applications. Let us say it turns out that
recent advances in socially interactive robots can be combined with efforts to develop more
collaborative robots. If that happens, human beings will have no choice but to collaborate
even more closely with robots than they have in the past. However, responses to robots in
the workplace can be influenced by social and psychological processes, including the fear
of being replaced by robots. Thus, employees must adapt to new social and psychological
challenges when interacting closely with robots [26]. This conclusion is supported by both
our research and previous ones. In some types of hybrid manufacturing, the industrial
robot’s workspace will not have a protective enclosure. Using industrial robots to aid
human workers in a collaborative production environment is essential. Human–robot
collaboration increases manufacturing flexibility and productivity by combining the adapt-
ability of humans with the efficiency of industrial robots. However, industrial robots must
perform assigned tasks to ensure operator safety during production operations. Therefore,
for the sake of human–robot collaboration applications’ security, industrial robots need
sensing and decision-making capabilities [64]. Having large datasets from a physics-based
simulation or a real-world experiment is also necessary for teaching robots how to adapt.
Collecting data in a simulation is typically more efficient and less expensive than in the real
world [63].

Robotic systems can make up for what humans lack in strength and precision with their
advantages in fatigue resistance, speed, repeatability, and productivity. There are numerous
ways in which human beings and robots complement one another [65]. Robots have greater
adaptability than humans because they can be programmed to function outside of typical
human limitations. They are flexible workers capable of handling various responsibilities
in different settings. Because of their superior performance in dangerous environments,
robots can replace humans in many high-risk occupations. Because of how vital worker
safety is to most businesses, this feature is useful. As a result, it will significantly cut down
on the number of workplace accidents and the costs associated with them [12].

Regarding teamwork, human–robot communication is widely regarded as the missing
link that unlocks latent human and robotic potential [65]. Robots can be more powerful
and accurate, while human operators can bring problem-solving expertise to the table.
Combining the efforts of humans and robots can boost manufacturing efficiency even
further [66].

However, the trust humans have in robots is an issue that cannot be ignored once
it impacts productivity. When people cannot foresee a robotic system’s actions, their
confidence levels drop. Similarly, when people lose faith in the robot, they no longer
believe it is trustworthy. Thus, human–robot teams can only function appropriately if
members’ faith in the robots’ abilities is adequately calibrated [35]. Further, it is crucial to
raise staff’s understanding of the relevant technology. There needs to be a more intensive
training program for blue-collar workers in this area. Intuitive robot systems, for which
they can learn to program and operate, are just one example. Feelings of insecurity can
be exacerbated when digital technologies are introduced into previously human-only
workplaces. Blue-collar workers are the ones who stand to lose their jobs first because of
the rise of such technologies [17].
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6. Conclusions

This study investigated the effects of employees’ negative attitudes towards industrial
robots and their trust in human–robot cooperation on their intention to use industrial robots.
As a result of the structural equation model analysis, it was determined that the negative
attitudes toward robots significantly affected the intention to use them. It was found that
trust in human–robot cooperation also significantly affects the intention to use them.

The results of the research show that the psychological state of employees in work-
places related to robot technology affects their level of use of this technology. This finding
shows that different dynamics (employees’ attitudes and the confidence they feel), rarely
mentioned in the literature, motivate and demotivate employees to use industrial robots.
The findings of this study provide important insights for organizations seeking to adopt
industrial robots in manufacturing. Negative attitudes towards robots can hinder their
adoption, and organizations should take steps to address these attitudes. One way to
address negative attitudes is to provide training and education to employees about the
benefits of industrial robots. Trust in robots is also important for their acceptance, and
organizations should focus on building trust among employees.

This study contributes essentially to the literature and differentiates it from existing
studies. Companies that want to integrate robotic technologies into their processes should
especially consider the psychological state of their employees. In order to ensure successful
integration, training on industrial robots should be provided, and psychological support
should be provided to the employees.

This research has several limitations. The most significant limitation of this study
is the use of questionnaires to collect data, as the information obtained is limited to the
questions asked. Getting the sample from a single country is another limitation of the
study. This study is concentrated on the manufacturing sector. For future research, we
propose reexamining the study variables and modeling samples from various developing
countries and industries. In future studies, the effects of variables within the scope of
technology acceptance models (such as performance expectancy, effort expectancy, social
influence, perceived ease of use) on behavioral intention can be investigated. One of the
limitations of this study is that the sample was determined from companies operating
in the electronics and machinery manufacturing sector. In future studies, sectors such as
the automotive sector, where the use of robots is quite intense, can be examined. When
researchers with access to larger samples conduct cross-country comparisons, the cultural
aspect of robot acceptance will become apparent. It is believed that country comparisons
will make significant contributions to the literature. If we note another situation that can be
considered as one of the limitations of the study, analyses related to demographic variables
were excluded in order not to lose the focus of the study and because it could be the subject
of another one. Future research could also investigate the impact of specific personalities on
the acceptance of industrial robots in the context of human–robot collaboration. It would
also be interesting to examine whether there are significant differences in robot acceptance
between sexes and in connection with age and level of education. Finally, further research
could focus on the emotional attachment of employees towards robots and how it affects
their acceptance.
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Appendix A

Table A1. Measurement Instrument.

Negative Attitude toward Robots

NATR1 I would feel uneasy if robots really had
emotions.

NATR2 Something bad might happen if robots
developed into living beings.

NATR3 I would feel relaxed talking with robots. *

NATR4 I would feel uneasy if I was given a job where I
had to use robots.

NATR5 If robots had emotions, I would be able to
make friends with them. *

NATR6 I feel comforted being with robots that have
emotions. *

NATR7 The word “robot” means nothing to me.

NATR8 I would feel nervous operating a robot in front
of other people.

NATR9
I would hate the idea that robots or artificial
intelligences were making judgments about
things.

NATR10 I would feel very nervous just standing in front
of a robot.

NATR11 I feel that if I depend on robots too much,
something bad might happen.

NATR12 I would feel paranoid talking with a robot.

NATR13 I am concerned that robots would be a bad
influence on children.

NATR14 I feel that in the future society will be
dominated by robots.

Trust in Industrial Human–Robot Collaboration

THRC1 The way the robot moved made me
uncomfortable *

THRC2 The speed at which the gripper picked up and
released the components made me uneasy

THRC3 I trusted that the robot was safe to cooperate
with

THRC4 I was comfortable the robot would not hurt me

THRC5 The size of the robot did not intimidate me

THRC6 I felt safe interacting with the robot

THRC7 I knew the gripper would not drop the
components

THRC8 The robot gripper did not look reliable

THRC9 The gripper seemed like it could be trusted

THRC10 I felt I could rely on the robot to do what it was
supposed to do
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Table A1. Cont.

Behavioral Intention to accept robotics at workplace

BIAR1 I am likely to interact with robotics in my
workplace.

BIAR2 I will feel happy to interact with robotics in my
workplace.

BIAR3 I am willing to accept robotics in my
workplace.

* Reverse questions.
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