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Abstract: Background: Increased maritime trade has led to a surge in drayage operations, causing
congestion and environmental issues in port areas. Truck Appointment Systems (TASs) are commonly
used to manage truck arrival rates, yet transparency and equity in slot allocation remain problematic,
fostering distrust between Licensed Motor Carriers (LMCs) and Marine Terminal Operators (MTOs).
Methods: This study proposes a polycentric approach to improve truck scheduling and ensure that
those impacted by decisions are involved in the decision-making process. A single-round auction
mechanism focused on optimizing the truck hauling process through a pricing policy that promotes
sincere bidding is introduced. The proposed approach employs an optimization strategy to achieve
equitable coordination in truck synchronization through means of adaptable capacity management.
Results: Numerical experiments assessing scenarios of noncollaborative behavior against partial
collaboration between MTOs and LMCs demonstrate the effectiveness of the proposed approach
in enhancing user satisfaction and terminal conditions for a case study focused on a medium-sized
terminal. Collaboration between trucking companies is shown to increase utility per monetary unit
spent on slot acquisition. Conclusions: The polycentric strategy offers a solution to TAS limitations by
ensuring stakeholder participation with respect to flexibility and transparency by ensuring that those
impacted by decisions are involved in the decision-making process.

Keywords: truck appointment systems; auction; scheduling; collaboration; marine terminal operators

1. Introduction

The continuously increasing growth of international maritime trade over the past three
decades has resulted in a significant upsurge in the volume of cargo being transported.
Cargo terminals, serving as exchange hubs for freight from one leg of the multimodal
chain to another, are under growing strain as the yearly cargo throughput across ports
has exceeded 10 billion, according to a recent review by [1]. Nevertheless, the maritime
freight industry encounters significant challenges, some of which are distinct from those in
other modes of transport. These challenges include port terminal congestion, labor strikes,
adverse weather conditions, shortages of shipping containers, and delays in customs
procedures [2,3]. From an operational standpoint, port congestion in maritime terminals
is a significant issue primarily driven by the unpredictability and increased flow of truck
arrivals, potentially resulting in substantial delays and environmental harm if not effectively
managed. This congestion not only leads to operational inefficiencies, strained community
relations, and sustainability concerns but also erodes the port’s competitive edge. This
problem has also been exacerbated by the adoption of multimodality. Multimodality has
contributed to expanding the global reach and reliability of freight transport, but it has also
resulted in an increase in drayage operations in ports, i.e., the transport of cargo over short
distances via ground. An example of such operations is the transport of cargo from the port
terminal to a close depot, in order to facilitate modal change, in the overall multimodal
cargo delivery process. Coordinating between different modes of transport is essential to
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alleviate congestion in marine terminals as it enables seamless transfer of cargo, reduces
dwell times, and optimizes the use of available infrastructure and resources, ultimately
improving the efficiency and sustainability of the entire supply chain.

A common measure to mitigate congestion used by ports is the implementation of a
Truck Appointment System (TAS). A TAS has the primary goal of reducing gate congestion
at port terminals by flattening the gate activity to an efficient and harmonious level [4].
Under more common TAS implementations, port operators indicate available time windows
with a fixed amount of appointments for trucks accessing terminals; hence, a port operator
practically regulates the arrival rates of incoming trucks. This provides substantial benefits
to all stakeholders, with port operators having a more robust and efficient environment
to coordinate, logistics companies being able to better schedule itineraries, and truckers
experiencing milder delays in terminal gate queues.

TASs have been the subject of active research since the beginning of the century,
with most implementations aimed at modifying external truck arrival patterns to align
them with available resources and terminal-imposed quotas [5,6]. Although TASs offer
significant benefits, they also present some limitations. One of the most significant issues
is the lack of transparency in their design, leading to a gap in trust between the involved
partners, particularly from Licensed Motor Carriers (LMCs) operating the trucks toward
Marine Terminal Operators (MTOs). This trust gap mainly arises from concerns about how
appointment quotas are established, whether special quotas exist for specific customers, and
the determination of fees [7]. Limited flexibility within the design of TASs is another major
issue. All actors involved in the system desire flexibility, with MTOs seeking more flexibility
from carriers in terms of service availability within the day. On the other hand, LMCs
are seeking more flexibility in appointment rescheduling and the ability for multilayered
planning, such as piggybacking appointments to schedule double moves. In the context
of truck scheduling, a double move is a delivery to a warehouse followed by a pickup
from the same warehouse, in order to reduce the number of empty truck trips and trucks
used. The reduction in empty truck trips, particularly in truck scheduling, has not been
extensively studied in the development of TASs [8].

To that end, the primary goal of this study is the development of a TAS that addresses
these two gaps in current implementations. In order to increase transparency and flexibility,
inspiration is taken from polycentric systems of governance as a way to manage common
pool resources for competing actors in a decentralized manner. A polycentric system is
defined as a system of “many autonomous units formally independent of one another,
choosing to act in ways that take account of others, through processes of collaboration,
competition, and conflict resolution” [9]. A polycentric system has harmonized rules
based on local conditions and affirmation that those affected by the rules can participate
in modifying them [10]. Mapping relationships between all involved actors is necessary
under a polycentric system in order to create arbitration mechanisms for conflict resolution
and collaboration and enable the system to self-organize. Collaboration has been identified
in the literature as one of the key drivers to improve supply chain operations [11,12],
but its actual implementation is constantly facing setbacks due to acceptance issues by
stakeholders at the same level of the supply chain. However, a port environment is
increasingly suitable for such a collaborative form of management, as it is already partly
polycentric [13].

In the context of a TAS, the use of an auction is proposed to act as a capacity balancing
mechanism that adheres to polycentric principles for the determination and scheduling
of truck activities. The common resource at stake in the proposed auction is the right of
trucks to access the terminal during a specific time of day. The proposed auction acts
as a demand-varying toll during peak periods to alleviate congestion. This approach
ensures that the appointment process is determined equitably but also incentivizes logistics
companies (and by extension LMCs) to be more flexible, since their inflexibility could
result in additional costs. Moreover, to promote flexibility by MTOs, the optimization
of carrier-specific criteria in the TAS design is incorporated, namely the maximization
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of double moves. The proposed optimization strategy satisfies the polycentric system’s
requirement that those impacted by the rules (carriers, shippers, truck drivers, etc.) have
a say in modifying them, leading to more equitable coordination and synchronization of
arrivals. The TAS is designed with a focus on the truck hauling process, which is crucial for
logistics companies and LMCs. This emphasis can help boost acceptance of the developed
system among these stakeholders, while also providing opportunities for both parties to
show flexibility.

The contribution of this study is twofold. To the best of the authors’ knowledge, for
the first time, an auction mechanism for collaborative truck arrival management at a marine
terminal is presented. A negotiation protocol that governs participants’ interaction (LMCs
and MTOs) is defined, as well as a Winner Determination Problem (WDP) formulated as a
Mixed-Integer Linear Programming (MILP) model and a pricing rule that enforces sincere
bidding. Secondly, by means of an experimental framework, an exploratory analysis is per-
formed aiming at finding common ground solutions between MTO and LMC interactions
as a way to highlight opportunities for collaboration.

The rest of this paper is organized as follows. Section 2 provides an overview of the
state of the art regarding TAS models and algorithms. Sections 3 and 4 define the main
problem and methodology used to design the TAS and auction mechanism. Section 5 first
presents numerical results to assess the added value of the proposed approach, followed by
a sensitivity analysis to assess the effect of some input parameters on the solution quality.
Finally, Section 6 provides conclusions and future research avenues.

2. Literature Review
2.1. Truck Appointment Systems

The last two decades have seen significant growth in the literature on TASs, with a
primary focus on developing optimization models for managing truck arrivals based on
terminal-related objectives. A main aspect of most TAS implementations is the minimization
of deviation from the preferred arrival time of external trucks. For example, a simulation–
optimization model as a way to minimize inconvenience incurred by deviation from
preferred arrival times in parallel with truck turnaround times was proposed by [14].
However, the problems and consequences of port congestion are multifaceted; hence,
many different TAS implementations have been proposed to mitigate its specific issues.
In particular, associating the allocation of straddle carriers to different transport modes
using data on preferred arrival times of external trucks obtained from a TAS through a
MILP model was studied in [15]. The main objective of this model was the minimization
of terminal-related delays. The study conducted by [16] also delved into aspects of port
logistics beyond the arrival of external trucks. To minimize waiting times for both external
and internal trucks, they proposed a nonstationary queuing theory model that focuses
on improving the gate and yard operations. The optimization of the container relocation
process through a truck scheduling framework was considered by [17]. The authors
developed a proactive decision support system aimed at minimizing terminal-related
delays that takes into account essential parameters such as company preferences, yard
schedules, and terminal quotas.

A specific aspect of port logistics often addressed by TASs is the optimization of
drayage operations. Drayage is defined as “the transport of goods over a short distance,
typically from a port to a nearby warehouse or distribution center, by trucks or other
vehicles”. The implementation of a TAS that can lead to reduced operational time in
the drayage problem across various logistics companies was explored in [6,18] through
a purely centralized approach that considers both MTO and LMC interests. The effect
on drayage was also considered by [8]; however, focus was given to the minimization of
“empty running” within terminals as a way to reduce emissions within a marine terminal.
Empty running refers to the “transport of empty vehicles after they have been unloaded at
their destination”. Similarly focus was given on reducing empty truck trips to boost port
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operations by minimizing turnaround time while also optimizing truck deviation from
preferred arrival time using a combined data-mining and optimization approach in [19].

The need for collaboration among actors in the development of TASs is evident in
increasing both transparency and flexibility by all actors. The effect of cooperation was
explored in [20] through the development and evaluation of forwarder-focused, terminal-
focused, and cooperative models that were evaluated through a Monte Carlo simulation. A
decentralized negotiation process was proposed by [21] as a way to establish a collaborative
appointment process between tracking companies and terminals. In [22], the authors
continued the work to propose an iterative collaborative scheme with embedded pricing
mechanisms. The use of pricing as a way to achieve system optimal appointments was
first studied by [23], who suggested a methodology to create time-varying tolls to smooth
arrivals in port areas. A two-phase optimization approach was used that first determined
the arrival pattern that led to system optimality. Then, the desirable pattern of time-varying
tolls with respect to the terminal operator was determined in order to shift arrivals to
the system optimum. However, the introduction of collaboration within TASs can also
lead to the adoption of revenue-neutral congestion measures, like tradable permits, as
explored by [24], which do not have the penalizing nature of the implementation of a toll
mechanism. The use of pricing for determining port access acts as a major inspiration for
the auction-based TAS developed in this study.

2.2. Auctions for Demand Capacity Balancing

To the best of the authors’ knowledge, no previous academic literature has utilized an
auction-based mechanism to manage arrivals within a TAS framework. However, auctions
have been examined for demand capacity balancing in various transport-related problems,
such as slot allocation for airlines in airport terminals, development of innovative urban
mobility schemes, the shipping sector, and supplier selection in supply chain optimization.
In [25], it was first suggested to utilize a sealed bid combinatorial auction to assign airport
time slots to competing airlines. As the goal is to maximize demand satisfaction in the
face of a capacity problem, the proposed auction requires the inclusion of contingency
bids. A case study for Hartsfield Atlanta International Airport [26] explored the use of
a combinatorial clock auction to enhance the use of airport time slots by maximizing
passenger throughput while ensuring safety capacity, thereby reducing congestion and
delays. The use of a Walrasian Auction to match supply and demand was explored
in [27], while the use of an ascending-bid multiunit auction was explored by [28]. In [29] a
quantity-contingent auction to allocate airport departure and arrival slots, while imposing
constraints on market power was proposed. A quantity-contingent auction is a type of
auction mechanism where bidders submit bids for a specific quantity of a good or service,
and the auctioneer selects the winners based on their submitted quantity and the prevailing
price. To ensure truthful bidding, the authors chose to use Vickrey–Clarke–Groves (VCG)
prices [30], which are known for being incentive-compatible, i.e, every participant can
obtain the best possible outcome for themselves by behaving in accordance with their
true preferences.

In the context of supply chain optimization, a two-stage auction mechanism for
selecting third-party logistics (3PL) suppliers in fourth-party logistics (4PL) operations
was proposed in [31], incorporating 3PL suppliers’ attributes for risk aversion as the first
step for multicriteria decision making. With respect to the berth allocation problem within
a marine terminal, an exploratory analysis of different auctions was performed in [32],
focusing on profit maximization of the terminal. Under a similar setting, an implementation
of a VCG auction for the problem of loading/unloading of ships was proposed by [33], as
an improvement to the First-Come-First-Serve approach. The same scheduling problem
was addressed by [34], who applied a multiperiod combinatorial auction able to handle
large-scale instances of ship arrivals. Considering urban mobility, the use of a permit
scheme to promote ride-sharing through a specific area was proposed in [35]. Permits were
distinguished to users that drive alone, use ride-sharing, or use public transport, and they
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could only be acquired through the auction mechanism with a VCG pricing policy. A VCG
mechanism for a car-sharing system with an embedded auction supporting multiple bids
by users was also proposed in [36]. The shared parking problem was addressed by [37],
through the development of two incentive-compatible double auctions. In general, the use
of VCG is predominant within the literature and acts as a motivating factor for applying it
within the developed TAS framework.

3. Problem Definition

This study focuses on tackling the issue of truck scheduling at a marine terminal
through the creation of a TAS, with a particular emphasis on planning and managing the
truck hauling process. Transporting goods and cargo through trucks involves moving
them across various sites, such as distribution centers, customer sites, and port terminals,
making the truck hauling process a crucial component of logistics and transport operations.
Ensuring the smooth execution of this process is vital for companies in these industries.
To achieve this, companies need to coordinate various tasks, such as scheduling, cargo
loading and unloading, drayage, and packing. By doing so, these companies can enhance
their operational efficiency and improve customer satisfaction. For the purposes of this
study, customers are defined as either shippers, who are responsible for organizing and
transporting goods from one location to another, or consignees, who are the intended
recipients of the goods.

In this method, all incoming truck arrivals are associated with two distinct types
of jobs: imports and exports. Export jobs are referred to as “pickup jobs”, since they
require the pickup of goods from the shipper prior to travel to the terminal (to be exported).
Conversely, import jobs are referred to as “delivery jobs”, since they involve the delivery of
goods to the consignee after accessing the terminal. The available job types considered in
the TAS are visually depicted in Figure 1. A delivery job comprises traveling to the terminal,
gate clearance, loading, transport to the consignee, and unpacking, whereas a pickup job
involves traveling to the shipper, packing, transport to the terminal, gate clearance, and
unloading. The time cost of returning to the original depot is not factored in for either
job type. It is evident from the figure that empty trucks are used for at least a portion
of the transport process for both job types, resulting in a potentially higher number of
trucks being required for a given set of jobs. To address this issue, a double move can be
performed if a pickup and delivery job can be performed sequentially. Only cases where a
delivery job follows a pickup job are considered, but not the other way around. This allows
a single truck to be used for two jobs, without the need for additional transport costs.

T

D1

C1

C2

D2

D3
C3A

C3B

Empty Truck

Loaded Truck

Delivery

Pickup

Double Move

Figure 1. Schematic representation of different job types: Job 1 (red) is a delivery job from terminal T
to consignee C1, originating from depot D1. Job 2 (green) is a pickup job from shipper C2 to terminal
T, starting at depot D2. Job 3 (blue) is a double move by a truck starting from depot D3 that first visits
shipper C3A and then consignee C3B.

The design goal is to create a TAS that optimizes the order of truck arrivals at the
terminal gate based on requested job activities. The aim is to maximize the satisfaction of
logistics companies and improve terminal conditions for all stakeholders. To achieve this, a
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transparent auction mechanism determined through system-wide utility optimization is
proposed. Additionally, the impact of flexibility is measured and a collaboration framework
among companies to explore solutions that are agreeable to all parties involved is initiated.
The final TAS is realized through a specific methodological framework, which is detailed in
Section 4.

4. Model Description

This section presents the methodological framework used to define the auction-based
TAS. First, all the necessary concepts and processes to operate the TAS are explained,
starting with the various components of the auction mechanism, including the main sets,
parameters, and assumptions of the model (described in Section 4.1), the WDP formulated
as a MILP (explained in Section 4.2), and the incentive-compatible price rule (elaborated in
Section 4.3). To ease understanding, Figure 2 presents an overview of the processes that are
part of the appointment system.

Submit Preference 

Statement 

Submit Slot 

Request

Customer 

Locations
Depot Location

Initialize

Transport costs

Travel Schedule & 

Costs

Terminal conditions

Initiate Auction

Investigate 

Compromises

Finalize Pricing

Compute Job 

Costs

Assign to Truck

Willingness to Pay 

per time-window

Receive Slot 

Requests

Receive Bids

State Willingness 

to Collaborate

Company Terminal

Optimized 

Schedule

Finalized 

Schedule

Figure 2. Underlying processes and inputs/data of the developed TAS. Processes are denoted by
rounded white rectangles, while data are denoted by gray rectangles.

The process begins with companies initializing their job costs by utilizing inputs such
as their depot and customer locations, along with associated deadlines for each job. This
step is essential in determining lower and upper time limits for each job and overall drayage
costs, as well as the flexibility of each job. Once these inputs are established, the company
can proceed by submitting slot requests for each job they intend to perform during the
day. A slot is the right of access for a truck within a specific time period for a given time
window, ranging from the time of arrival at the terminal to the time of gate clearance. The
slot request is similar to an appointment process used by current TAS implementation
and requires the company to provide designated information, such as the truck’s plate
number, trucker ID, booking number, and, in this particular case, the lower and upper
time bounds for job execution, along with the computed transport costs from the previous
step. The transport costs primarily pertain to the duration it takes for trucks to arrive at
the terminal, without requiring reference to any internal trucking details. The stated lower
and upper time limits offer the chance for companies to be rewarded by showing flexibility
in planning their jobs. Tighter bounds increase the chances of a company being serviced
within a specific time window but also increase time costs or may result in determining no
feasible assignment for that job. Looser bounds, on the other hand, can result in lower time
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costs and increased chances of a successful job assignment. In parallel with this, companies
must also submit a preference statement, indicating their willingness to pay for acquiring a
slot at a different time window for any truck. In contrast to the slot request, the preference
statement is submitted once for all company jobs and is essentially equivalent to the bids
that a company may submit for each slot. The willingness to pay may vary from high
values during periods of increased desirability for a company, to zero, which indicates that
the company would only use the service at no charge during this time window. Reasonably,
a negative willingness to pay is not considered. The statement of preference essentially
shapes the market dynamics that will determine the outcome of the auction. Due to its
aggregated structure, crafting the preference statement will require careful consideration
by each company.

At an appropriate time before the considered time horizon, e.g., a day in advance, the
terminal receives slot requests for all potential jobs and associated bids for that day per
company. Initially, the terminal operator must finalize the job time costs by accounting for
terminal-related operations based on local conditions, such as loading and mounting, which
may result in some jobs being dismissed from consideration within the TAS, based on stated
job limits. After that, the MTO can initiate the auction and provide an optimized schedule,
which is then sent back to the companies. After receiving the schedule, each company
needs to indicate their level of willingness to collaborate by specifying the percentage by
which they are willing to accept a suboptimal solution as the final schedule, provided it
contains characteristics that are desirable for both the MTOs and LMCs. This willingness to
collaborate is essential as it provides a way for both parties to show flexibility and enables
the synchronization of truck transport under multiple layers of planning. In this study, the
increased time interval between any two different jobs is considered a characteristic that the
MTOs aim to incorporate into the schedule, while the increased occurrence of double moves
in the schedule is desirable for the LMCs. Once the terminal receives collaboration-related
input, it can use a precommunicated strategy, such as taking the average or geometric
mean across companies’ percentages to investigate compromises and finalize the schedule
for that day. Then, the final pricing for each slot assigned to a company is determined,
taking into consideration the effect of collaboration in the pricing, and communicated to
the company. while each company can assign a truck to a job, or multiple jobs in case of a
double move.

Overall, the proposed TAS operates under the assumption that the terminal holds the
authority to determine final truck schedules. Nevertheless, it takes a proactive approach by
establishing a collaborative environment and clear communication protocols for trucking
companies to contribute to the decision-making process. However, scheduling should
consider external factors affecting trucking companies and existing relationships with
terminals. Terminals can address this by temporarily using a TAS in a limited manner
and reserving dedicated slots for specific clients, though this may reduce overall capacity
for other companies. It is worth noting that this study does not delve into these special
relationships, as their impact on the model’s development could be deemed insignificant.

4.1. Sets, Parameters, and Assumptions

The main sets and parameters involved in model development are presented here. All
inputs involved are listed in Table 1. In the rest of this paper, we use calligraphic, uppercase,
and lowercase letters for sets and subsets, parameters, and decision variables, respectively.

First, a set of logistics companies C = {1, 2, . . . , c, . . . , C} are defined that carry out
drayage operations on a marine cargo terminal during a given time horizon TH defined
by a start-time Tin and an end-time Tf in so that TH = Tf in − Tin. TH is divided into time
windows of arbitrary but fixed length WL, determined by the terminal operator, and repre-
sented as W = {1, 2, . . . , w, . . . , W}. For the sake of clarity, the first time window ranges
from Tin to Tin + WL and the last one from Tf in − WL to Tf in. The terminal has predefined
requirements that depend on the time window length, such as a quota TQ, which sets the
maximum number of slots that can be auctioned per time window. Each company has a
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specific demand for slots during the designated time period and certain preferences for
particular time windows. Unlike prior implementations of TAS that necessitated the binary
declarations of preferred arrival time windows, the right of access is purely determined
by each company’s willingness to pay for the procurement of a single slot for a time win-
dow w ∈ W . To simplify the analysis, the following assumption is used, based on the
information obtained from the preference statement:

Table 1. Sets, subsets, and parameters used in the TAS framework.

Sets and Subsets

C Set of companies, indexed by c
D Set of delivery jobs, indexed by j
F Set of trucks, indexed by f
J Set of jobs (J = P ∪D), indexed by j
L Set of phases, indexed by l
P Set of pickup jobs, indexed by j
W Set of time windows, indexed by w
Dc Subset of delivery jobs of company c
Fc Subset of trucks owned by company c
Jc Subset of jobs (Jc = Pc ∪Dc) of company c
Mj Subset of delivery jobs that can follow pickup job j in a double

move
Pc Subset of pickup jobs of company c

Parameters

Aj,l Time needed for phase l of job j
Bc,w Bid of company c for a single slot at time window w
LBj, UBj Lower and upper bounds for jobs j
TH Duration of time horizon (minutes)
TQ Terminal quota (trucks)
Vc,w Willingness to pay for a single slot of company c at time window

w
WL Duration of time window (minutes)

Assumption 1. The willingness to pay Vc,w is represented by the bid Bc,w made by company c for
the acquisition of a single slot in time window w.

Assumption 1 is not trivial, and it is important to enforce it through the use of incentive-
compatible price rules (Section 4.3) like VCG [30] to ensure the sincerity of the bidders. In
the context of the TAS, bids also indicate user satisfaction from the procurement of a slot
for a specific job, again under the assumption of truthful bidding.

Given that company c’s bid for a slot in a single time window w is represented by its
willingness to pay, it can be assumed that the bid of a company for any of its jobs is equal
to its bid for a slot in a single time window, which can be expressed as follows:

Bj,w = Bc,w ∀ c ∈ C, w ∈ W , j ∈ Jc (1)

Jobs must be assigned to a truck operated by the associated company. The available
fleet of trucks for job execution is represented as F = {1, . . . , f , . . . , F}, and each company
in the system has its own fleet of available trucks Fc ⊆ F .

Assumption 2. The number of trucks in fleet Fc for company c can always cover the number of
jobs Jc that the company operates.

Assumption 2 can be relaxed by allowing a reduced fleet of trucks in some companies
for a given set of jobs and thus making mandatory the assignment of double moves at
these companies. However, refraining from that in the analysis, a system-wide approach is
utilized when exploring the reduction in the number of trucks in the terminal, essentially
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enforcing the amount of double moves to a minimum feasible value. To formulate enforce-
ment of double moves, the subset Mj, which contains the candidate delivery jobs to follow
pickup job j, is defined. It follows that Mj = ∅ ∀j ∈ D, as a delivery job, cannot be the first
job of a double move, as described in Section 3.

Assumption 3. Subset Mj for j ∈ Pc contains jobs belonging to company c ∈ C, as double moves
are only possible between jobs operated by the same company.

Assumption 3 is operationally justifiable, as a job can only be completed by the com-
pany that owns it. Relaxing this assumption could further increase the number of double
moves within the marine terminal. However, it requires horizontal collaboration across
different companies in the form of job exchange. This further entails sharing potentially
sensitive information with competitors such as slot requests, which may be unrealistic. As
already defined, within a slot request all the crucial information that ensures the successful
execution of a job is provided by the company such as the lower bound LBj and upper
bound UBj, signaling the earliest possible time for job launch and the latest possible time
for job completion. Slot requests also contain information that defines the phase l of a job j
and job-related time needed Aj,l .

Assumption 4. We define for each job a set of three phases L = {1, 2, 3} related to pregate routing
(l = 1), gate clearance (l = 2), and after-gate routing (l = 3), and we define the associated job- and
phase-specific time cost Aj,l .

Assumption 4 aggregates customer-specific time costs (e.g., transport time to the
terminal) with terminal-related time costs (e.g., unloading time of a container) to a specific
position within the time horizon of a job, as described in the Compute Job Costs process in
Figure 2. For this case study, these time costs are considered deterministic and known a
priori to TAS assignment.

4.2. Winner Determination Problem

Upon receiving all slot requests and preference statements from the different compa-
nies, the terminal can determine all job-related times based on expected terminal conditions
and initiate the auction. A single-round sealed bid auction is used, with a WDP that maxi-
mizes users’ satisfaction based on stated willingness to pay while establishing a feasible
schedule based on slot request. To represent decisions made by the TAS, necessary decision
variables are defined in Table 2.

Table 2. Decision variables for the WDP.

sj,l Continuous variable in R. Start time of phase l (in minutes) for job j. For
example, with s5,2 the start time of the gate clearance phase (l = 2) of the
fifth truck (j = 5) is mapped

aj,w Binary variable, equal to 1 if job j is scheduled to access the gate within
time window w

f j1,j2 Binary variable, equal to 1 if job j1 is scheduled to access the gate before
job j2

bj1,j2 Continuous variable in R≥0. Absolute temporal difference in scheduled
access between jobs j1 and j2

vj, f Binary variable, equal to 1 if job j uses truck f
dj, f Binary variable, equal to 1 if delivery job j uses truck f to execute a double

move
m f Binary variable, equal to 1 if truck f performs a double move
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Using the described decision variables and the inputs described in Section 4.1, the
WDP of the single-round auction is formulated as follows:

max ∑
j∈J

∑
w∈W

Bj,waj,w (2)

subject to:

sj,1 ≥ LBj + TH

(
∑

w∈W
aj,w − 1

)
∀j ∈ J (3)

sj,2 ≤ WL(w + 1) + TH(1 − aj,w) ∀j ∈ J , w ∈ W (4)

sj,2 ≥ WLw − TH(1 − aj,w) ∀j ∈ J , w ∈ W (5)

sj,3 + Aj,3 ≤ UBj − TH

(
1 − ∑

w∈W
aj,w

)
∀j ∈ J (6)

∑
j∈J

aj,w ≤ TQ ∀w ∈ W (7)

sj,1 + Aj,1 = sj,2 ∀j ∈ P (8)

sj,1 + Aj,1

(
1 − ∑

f∈F
dj, f

)
= sj,2 ∀j ∈ D (9)

sj,2 + Aj,2 = sj,3 ∀j ∈ J (10)

vj, f + m f ≤ 1 + ∑
w∈W

aj,w ∀j ∈ J , f ∈ F (11)

vj, f + m f ≤ 2 − β(1 − dj, f ) ∀j ∈ D, f ∈ F (12)

vj, f + m f ≥ 2dj, f ∀j ∈ D, f ∈ F (13)

∑
f∈Fc

vj, f = 1 ∀c ∈ C, j ∈ Jc (14)

∑
j∈J

vj, f ≥ 2m f ∀ f ∈ F (15)

∑
j∈J

vj, f ≤ 1 + m f ∀ f ∈ F (16)

sj1,2 − sj2,2 ≤ TH(1 − f j1,j2) ∀j1 ∈ J , j2 ∈ J \ {j1} (17)

f j1,j2 + f j2,j1 = 1 ∀j1 ∈ J , j2 ∈ J \ {j1} (18)

bj2,j1 ≤ sj2,2 − sj1,2 + 2TH(1 − f j1,j2) ∀j1 ∈ J , j2 ∈ J \ {j1} (19)

bj2,j1 ≥ sj2,2 − sj1,2 − TH(1 − f j1,j2) ∀j1 ∈ J , j2 ∈ J \ {j1} (20)

bj1,j2 = bj2,j1 ∀j1 ∈ J , j2 ∈ J \ {j1} (21)

sj2,2 − sj1,3 ≤ TH(1 − m f ) + Aj1,3 ∀c ∈ C, j1 ∈ Pc, j2 ∈ Mj1 , f ∈ Fc (22)

sj2,2 − sj1,3 ≥ −TH(1 − m f ) + Aj1,3 ∀c ∈ C, j1 ∈ Pc, j2 ∈ Mj1 , f ∈ Fc (23)

vj1, f + vj2, f ≤ 1 ∀c ∈ C, j1 ∈ Pc, j2 ∈ J \Mj1 , f ∈ Fc (24)

aj,w ∈ {0, 1} ∀j ∈ J , w ∈ W (25)

f j1,j2 ∈ {0, 1} ∀j1 ∈ J , j2 ∈ J \ {j1} (26)

vj, f ∈ {0, 1} ∀j ∈ J , f ∈ F (27)

dj, f ∈ {0, 1} ∀j ∈ D, f ∈ F (28)

m f ∈ {0, 1} ∀ f ∈ F (29)

sj,l ∈ R≥0 ∀j ∈ J , l ∈ L (30)

bj1,j2 ∈ R≥0 ∀j1 ∈ J , j2 ∈ J \ {j1} (31)



Logistics 2024, 8, 40 11 of 20

The objective formulated in Equation (2) maximizes the collective value placed on
slots by individuals involved in the auction. This objective could alternatively be un-
derstood as optimizing user satisfaction or the effectiveness of the system’s allocation.
Constraints (3)–(6) enforce the assignment of each job to a specific time window while
guaranteeing that such an assignment is made only when the lower Equation (3) and upper
Equation (6) time bounds are not violated. Additionally, in constraint (7), a total limit
of assignments per time window based on the quota TQ set by the terminal is imposed.
Constraints (8)–(10) ensure that the phases of a job are executed sequentially. However,
since a job may be performed as part of a double move with a different starting phase
than the planned one, an indicator variable dj, f is introduced to signal such an occur-
rence. If the indicator variable dj, f is set to 1, the starting phase of the job becomes equal
to phase 2 Equation (9). With constraint (11), the assignment of a job to a specific time
window is linked to an assignment within a truck and possibly a double move. With
constraints (12)–(13), the decision variables vj, f and m f are forced to be unitary if decision
variable dj, f is unitary, and it is also enforced that at least one of them is zero otherwise. For
constraint (12), β is denoted as a small value close to zero so that vj, f and m f cannot be both
unitary if dj, f is zero. Constraints (14) ensure that each job j is assigned to a truck owned by
the company in charge of j. Constraints (15)–(16) force that two jobs should be assigned
to a truck if m f is unitary. Constraints (17) ensure that sj2,2 ≥ sj1,2 if j1 is scheduled to be
serviced at the gate before j2. Constraints (18) ensure that either j1 precedes j2 or vice versa.
Using indicator f j1,j2 , the absolute temporal difference in these two jobs concerning gate
access can be computed via constraints (19)–(21). Constraints (22)–(24) assert that when a
truck is performing a double move, the delivery job can start immediately after the end of
the pickup job and that only appropriate jobs are considered. Finally, Constraints (25)–(31)
define the nature of the decision variables. In particular, with R≥0, the set of non-negative
real numbers is defined.

The WDP establishes the optimized schedule from the perspective of revenue maxi-
mization and by extension social optimum, since we operate under the assumption that bid-
ders state their true valuations for gaining access to the port. Concerning terminal-imposed
requirements, the only existing parameter is that of time window quota, representing the
maximum productivity rate of a terminal during a time window. As previously described,
the optimized schedule is shared with logistics companies, and their willingness to collab-
orate is requested to identify opportunities for compromise. The proposed methodology
involves optimizing the schedule through the inclusion of two additional conditions that
complement the primary outcome and introduce collaboration in the system. These con-
ditions could be included as part of the objective function to maximize, as they represent
criteria that are desirable in the resulting schedule. However, the use of a single-objective
metric is preferred for the WDP when dealing with an auction mechanism. Hence, the
use of the well-known ϵ-constraint method for multiobjective optimization problems is
exploited. This method involves reformulating the additional conditions as constraints to
create a single objective function with multiple objective criteria [38], where the right-hand
side of the additional constraint is changed to provide a range of solutions. Because more
stringent requirements on the additional constraint negatively affect the solution quality,
the set of solutions can then be mapped in a Pareto-front fashion. This is paramount when
dealing with external actors characterized by contrasting needs. The specific constraints for
the developed WDP are defined as follows.

Definition 1. ϵ-constraint #1—Temporal Difference; Assignment of jobs is restricted to a minimum
time difference ϵtd between any two nonidentical jobs.

bj1,j2 ≥ ϵtd · f j1,j2 , ∀j1 ∈ J , j2 ∈ J \ {j1} (32)
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Definition 2. ϵ-constraint #2—Double Moves; At least a minimum number of double moves ϵtr
should occur within a day.

∑
f∈F

m f ≥ ϵtr (33)

The ϵ-constraint #1 is primarily beneficial for the terminal, but it can also be argued
that enforcing this constraint is advantageous for LMCs because the increased time gap
between jobs can function as a slack to absorb minor delays. Similarly, while ϵ-constraint #2
is focused on LMCs, enforcing this requirement can increase the desirability of the terminal.
To apply the ϵ-constraints, the maximum values for ϵtr and ϵtd (explained in Section 5) that
allow feasible solutions must be established and iterate over user-defined feasible values.
However, the final schedule is based on the average willingness to collaborate, representing
the maximum allowed drop in revenue after applying the ϵ-constraints. For example, if the
average willingness to collaborate is 10%, the search for solutions with increased ϵtr and
ϵtd will not include any objective values that are not at least 90% of the original solution.
Overall, the application of ϵ-constraints #1 and #2 will result in revenue that is less than
or equal to the optimized solution generated by the WDP. Nonetheless, by implementing
effective pricing rules, this trade-off can be leveraged.

4.3. Pricing Policy

After computing a job assignment strategy via the WDP, it is essential to implement a
rule for determining the payment for each job per time window. This pricing rule must
be unambiguous to all auction participants before the start of the auction. Ideally, the
pricing rule should satisfy two criteria: individual rationality, meaning that the price paid
should be equal to or less than the maximum amount each participant is willing to pay
for a truck to acquire a slot within a specific time window, and incentive compatibility,
meaning that participants will have an incentive to place truthful bids during the auction.
As stated in Section 4.1, each company has a private value Vc,w for acquiring a single slot
at a specific time window, representing their willingness to pay. To ensure an efficient
combinatorial auction design, it is crucial to establish prices for the allocated resources that
encourage bidders to set their bid prices (Bc,w) equal to the values they have assigned to the
resources (Vc,w), as stated in Assumption 1. The first-price policy, where bidders pay the
initial bid amount, does not prevent speculative behavior and is not incentive-compatible.
As an alternative, the VCG policy (also called the second-price policy) is commonly used
because it has been extensively shown to be effective in the literature. The VCG policy is
incentive-compatible and has been proven to be effective for many variant WDPs [29].

Let us define R∗ as the maximized revenue determined from the WDP without any ϵ-
constraints. R∗(w)M

N is further distinguished as the partial maximized revenue acquired in
time window w by auctioning M slots across N companies. Then, the general equation for
a VCG payment payc,w of company c ∈ C per time window w is expressed in Equation (34):

payc,w = R∗(w)M
−(c) − R∗(w)

−(c)
N (34)

R(w)M
−(c) represents the system’s optimal outcome for the WDP if the bid Bc, w for that

time window is assumed to be zero. On the other hand, R(w)
−(c)
N refers to the optimal

outcome of the WDP excluding the revenue from bid Bc,w. Essentially, a VCG payment is
equal to the opportunity cost or marginal harm caused to other participants. When the
sum of bids of the second-best combination is equal to the current best without the selected
company, the price they will pay will be the same as their original bid. In all other cases, the
price paid by the selected participant will be lower, thus also proving individual rationality.
In the end, the utility uc,w gained by each company c for a slot at time window w is equal to

uc,w = Vc,w − payc,w (35)
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The computation of VCG prices requires solving the WDP |C| × |W| times, which
can be computationally challenging in practice. A simpler alternative is to use the second-
price rule, where each company pays the bid equal to the second-highest bid after their
own. In the context of the TAS, a different rule to reduce complexity is adopted. Since
revenue maximization is not the main goal of MTO, but rather congestion mitigation, an
arbitrary congestion limit cl for each time window is established. If the limit is exceeded in
the assignment obtained from the WDP, that time window is considered congested, and
the fees are determined via the VCG process as described above. However, if the limit
is not exceeded, all fees related to that time window are considered to be zero, and no
computation of VCG prices is required. This significantly reduces the amount of prices to
be computed.

To make the implementation of the ϵ-constraints more desirable, the pricing mecha-
nism needs to be modified to account for the cost of collaboration. The pricing mechanism
should consider the decrease in user satisfaction represented by revenue R∗, resulting from
the introduction of these constraints. When ϵ-constraints are introduced (as described
in Section 4.2), the difference in utility Lc,w per company and time window compared
with the original assignment is computed among different combinations of ϵ-constraints,
and discounted/added to the updated prices to reflect the incurred inconvenience and
benefit. The pricing policy is described in Algorithm 1. The pricing policy used in the
TAS implementation is not budget-balancing across iterations, which implies that the total
payments may not match the solution obtained by the original WDP. Nonetheless, this
characteristic can also prove desirable for trucking companies as it can relate to a direct
way of remuneration in case of incurred inconvenience.

Algorithm 1: Pricing Policy

Data: Initial Schedule a
′
j,w ; Final Schedule and Revenue a∗j,w, R∗ ; Bids Bc,w

Result: Prices payc,w and utilities uc,w per company for each time window
1 for w ∈ W do
2 for c ∈ C do
3 payc,w = 0
4 if ∑j∈J aj,w ≥ cl then
5 Calculate R∗(w)M

−(c) by setting Bc,w = 0 and resolving WDP for final ϵtd,

ϵtr

6 R∗(w)
−(c)
N = R∗ − ∑j∈J C a∗j,w · Bc,w

7 Lc,w = ∑j∈J C a
′
j,w · Bc,w − ∑j∈J C a∗j,w · Bc,w

8 payc,w = R∗(w)M
−(c) − R∗(w)

−(c)
N − Lc,w

9 uc,w = Bc,w − payc,w
10 end
11 end
12 end

5. Experiments

In this analysis, the practicality and applicability of the developed model and solu-
tion methodology are validated. Specifically, both the scalability of the approach under
increased problem sizes and also its ability to accurately serve users in a way that the social
optimum is maximized is tested. To this end, the TAS is benchmarked under randomly
generated instances that incorporate real-life characteristics. These instances were created
for a hypothetical terminal, which was required to coordinate truck scheduling operations
with 10 logistics companies in the surrounding area. The specific demand per company
varied across the examined instances, but it was generally assumed that each company
would send between 5–15 trucks per day. This demand level was consistent with that of a
medium-sized freight terminal, as indicated by insights gathered from expert interviews.
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The terminal was assumed to operate for 10 h each day (e.g., 7:00 AM–5:00 PM), which
translates into a planning horizon of 600 min such that T = [0, 600]. The planning horizon
T is then divided into a total of 10 time windows with WL = 60 min. Appointment quotas
for each time window were considered to be flat and set to a maximum of 15 trucks. Jobs
were randomly generated to be either related to pick-up or deliveries.

Under the assumption that the depots of origin of the logistics companies were lo-
cated in close proximity to the port, the travel time in minutes from depot to terminal
is distributed using the following uniform distribution U (10, 30). However, transport
time costs from the terminal/depot to consignees/shippers were expected to be more
time-consuming, so sampling from U (30, 90) was utilized. To determine the time costs
associated with terminal operations, examples from the literature are referenced. Mounting
and unmounting times were assumed to last 5 min [39], while packing/unpacking times at
the customer end were uniformly distributed as U (5, 60) [40]. Thus, the time costs related
to accessing the terminal were calculated based on depot-to-terminal transport costs for
deliveries and depot-to-consignee transport costs, packing, and consignee-to-terminal costs
for pickups. Likewise, time costs related to accessing the terminal after gate clearance
were determined based on mounting, depot-to-shipper transport, and unpacking costs for
deliveries, while pickup costs were calculated based on unmounting time costs. The gate
clearance time costs were set to a minimum of 2 min [41].

For each job, an assumed range of flexibility from 60 to 240 min, measured in half-hour
intervals, per company is used. To establish the lower and upper time bounds, the total
job costs are combined with each company’s flexibility to determine the feasible makespan
for job execution. This makespan was then aligned with the time window where the
company’s willingness to pay was the highest to establish a clear timeline for job execution.
The assumed willingness to pay of each company was set to vary between e0 and e20,
which was determined based on the possibility that a company may not want to bid for
a slot at all or may be willing to bid slightly higher than examples of currently applied
surcharges (e15) for booking slots during congested time windows using a First-Come-
First-Serve policy [42]. As slot requests fluctuate throughout the day and willingness to
pay for a slot is the main determinant of this fluctuation in this approach, it is hypothesized
that the willingness to pay for a slot is either uniformly distributed (P1) across the day or
higher on average during midday (P2), which indicates greater demand (peak hour) during
that time. This will help in benchmarking the TAS under different demand scenarios.

Focusing on algorithmic specifications, Gurobi 11.0.0 [43] was used to solve all MILP
models. Unless differently specified, the numerical results were obtained using an Intel
Xeon Gold 6226R CPU. All necessary transformations of input for the pricing mechanism
and VCG policy were conducted in Python. In all instances, we imposed a time limit of one
hour to also validate the applicability and scalability of the approach.

In Tables 3 and 4, the results for instances of P1 and P2 slot preferences are presented
without any application of ϵ-constraints. The initial column displays the instance label,
while the second column presents the number of jobs, which indicates the problem size. In
the third and fourth columns, the objective function and computational time are reported,
while the fifth and sixth columns indicate the elapsed time to reach the best solution and
the deviation from the theoretical optimal. The last two columns present the final outcomes
from the application of the auction. Specifically, they show the number of trucks that were
assigned a slot within an examined instance and the total number of auctioned slots within
congested time windows. The increase in problem size leads to an increase in computation
time and the percentage of unserved trucks. This trend is observed in both distribution
patterns of slot preferences, but it is more pronounced in pattern P2, where preferences tend
to be concentrated in the middle of the day. In the worst-case scenario (Instance 12_P2),
only 79% of trucks were served via the appointment system. In terms of computational
time, all but one instance with P1 preferences proved optimality in less than 30 min and
reached the optimal solution in less than 2 min. However, this was not the case for P2,
where optimality was not always proven in instances with more than 70 jobs, although the
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best solution was generally reached in under ten minutes. This highlights potential issues
in days with demand concentration at specific time windows. Nevertheless, solutions
within 5% of the theoretically optimal solution were achieved in all but two instances
during the one-hour runtime. Given that the time to reach the best solution was relatively
short, a heuristic was not considered necessary. Finally, it was observed that the objective
values between patterns varied significantly, indicating that revenue maximization in the
WDP is linked to the concentration of arrivals within a given day.

Table 3. Main KPIs from the application of TAS for P1 slot preferences.

Instance No. Jobs Obj.Value
(e)

Sol.Time
(s)

Time to
Best (s) Gap (%) Served

Trucks
Auctioned

Slots

1_P1 40 593.7 3 1 0.00 40 25
2_P1 45 714.9 2 1 0.00 45 26
3_P1 50 789.8 5 3 0.00 50 37
4_P1 55 812.8 22 6 0.00 54 39
5_P1 60 895.0 11 2 0.00 59 43
6_P1 65 1016.6 21 12 0.00 64 56
7_P1 70 1060.0 144 15 0.00 70 60
8_P1 75 1079.5 144 20 0.00 70 61
9_P1 80 1277.1 26 12 0.00 80 72
10_P1 85 1259.7 182 81 0.00 82 68
11_P1 90 1258.8 1451 48 0.00 85 69
12_P1 95 1292.9 1565 58 0.00 88 70
13_P1 100 1455.4 3600 69 0.11 96 82

Table 4. Main KPIs from the application of TAS for P2 slot preferences.

Instance No. Jobs Obj.Value
(e)

Sol.Time
(s)

Time to
Best (s) Gap (%) Served

Trucks
Auctioned

Slots

1_P2 40 456.8 26 2 0.00 40 29
2_P2 45 499.6 51 4 0.00 45 34
3_P2 50 549.8 52 5 0.00 50 37
4_P2 55 537.8 171 8 0.00 51 37
5_P2 60 695.4 123 10 0.00 60 53
6_P2 65 631.4 400 35 0.00 62 52
7_P2 70 717.9 3600 660 1.05 68 63
8_P2 75 681.5 3600 100 2.68 67 61
9_P2 80 836.3 3600 116 2.51 72 66
10_P2 85 752.6 3600 153 2.72 71 66
11_P2 90 934.2 3600 262 4.50 78 69
12_P2 95 883.6 3600 343 10.40 75 70
13_P2 100 941.4 3600 262 12.60 82 81

Figure 3 presents a Gantt chart illustrating the scheduling of 20 jobs under P1 slot
preferences for the latter half of the observed day utilizing the TAS system. The visualized
Gantt chart corresponds to results related to Instance 3_P1, as reported in Table 3. Across
all case studies, there are 10 companies denoted by letters A to J, yet only four have jobs
within the time windows 5 to 10 in this particular case. Each row in the Gantt chart depicts
the schedule of a truck, which can either be a single job (e.g., truck T20 only performs job
J19) or two jobs (e.g., truck T1 performs job J0 and J2 as a double move). It serves as a visual
representation of the job schedule throughout the day, with the black vertical line indicating
the gate access time. This scenario corresponds to a WDP achieving the maximum possible
revenue, as evidenced in Tables 3 and 4, without incorporating ϵ-constraints by default.
Upon visual inspection, it becomes evident that some trucks tend to cluster together in
close proximity, resulting in scenarios where users may have limited time flexibility, while
certain time periods remain notably vacant (e.g., Window 6). For example, company H
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has jobs clustered very close to each other. This might not pose operational issues in
low-demand periods but may be very detrimental to port performance in high-demand
periods. Interestingly, the use of double moves may be determined as an optimal solution
even without applying the ϵ-constraints for collaboration. To identify solutions with even
more favorable attributes, an exploratory analysis is employed involving the utilization of
ϵ-constraints, as discussed in Section 4.2.
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Figure 3. Partial schedule for Instance 3_P1 without application of ϵ-constraints. The black vertical
line indicates truck arrival at the gate.

To determine the generation of candidate ϵ-constraint solutions, which can be com-
putationally expensive, the limits for double moves (ϵtr) and temporal difference (ϵtd) are
initially established in the tables. A maximum of 10 double moves is determined by solving
the original instances with a modified objective function that prioritizes double move
maximization. For the temporal difference, an arbitrary 5 min limit is considered to be
reasonable. This approach allowed for quick identification of solutions that can be used as
a starting point for all other instances. Next, alternative assignments with set ϵ-constraints
are computed, beginning from the highest possible double move and temporal difference
of 5 min and decreasing iteratively, until pinpointing a solution that matches the optimal
solution in the base scenario.

Figure 4 shows that the application of ϵ-constraints does not necessarily have a nega-
tive impact on the optimal solution, but it is consistently equal to or less than the optimal
solution. For example, in Instance 3_P1, imposing constraints of a minimum temporal
difference of 5 min and at least six double moves results in a TAS with the same level
of user satisfaction as the base scenario. However, for Instance 3_P2, applying the same
constraints leads to a drop of nearly 10% compared with the base scenario, resulting in
a revenue loss of approximately EUR 49 (from EUR 549.8 to EUR 505.5). To balance the
competing objectives of decreasing user satisfaction and increasing ϵ-constraint parameters,
the concept of willingness to collaborate is introduced in Section 4. This metric denotes
the maximum acceptable reduction in performance during the ϵ-constraint analysis, and
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is arbitrarily set at 10%. Thus, only solutions that are at least 90% in value of the original
solution were considered in this analysis. Based on this criterion, four solutions were
excluded in both cases because they prioritized maximizing the number of double moves
or temporal difference over user satisfaction.
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Figure 4. Effect of ϵ-constraints for Instances 3_P1 and 3_P2 (50 jobs).

Lastly, the impact of pricing on the participating companies for Instance 3_P2 is
demonstrated in a case with concentrated arrivals where the ϵ-constraints method is
already utilized, in Table 5. Notably, all companies were assigned their desired slots during
the observed day. In the base scenario, the total revenue collected from the auctioning
of 37 slots was EUR 315, resulting in an average of EUR 8.5 per slot auctioned. Based on
the WDP results, the average slot valuation was EUR 10 per slot, which again highlights
the individual rationality in the auction. Under imposing of ϵ-constraints, the solution
provided by ϵtr = 10 and ϵtd = 4 is selected, as it is the one closest to the cut-off rate of 90%
from the optimal solution (specifically at 91%). In this case, the second prices derived from
the auction resulted in revenue almost similar to the first case (EUR 311), but after adjusting
for the lost utility of the affected companies, the price dropped to EUR 267 for 36 slots,
resulting in EUR 7.4 per slot on average. The ratio of utility to final price for both cases is
1.75 in the base scenario and 1.88 in the solution that includes ϵ-constraints. This indicates
that, on average, spending a euro in the second case results in a higher gain in utility.

Table 5. Breakdown of auction result for Instance 3_P2.

Paid
Slots

Total
Utility

Sec.
Price

Double
Moves

Paid
Slots

Total
Utility

Sec.
Price

Adj.
Prices

Double
Moves

Comp. No ϵ-Constraints ϵtd = 4, ϵtr = 10

A 4 60 13 0 5 47 16 4 2
B 5 54 46 0 5 55 46 47 0
C 5 48 47 0 5 48 47 47 2
D 5 52 32 0 5 35 32 15 2
E 5 79 71 0 5 76 71 68 0
F 5 16 16 0 3 24 10 18 2
G 2 62 28 0 1 39 18 0 2
H 0 40 0 0 0 40 0 0 0
I 3 58 13 0 4 59 22 23 0
J 3 83 49 0 3 79 49 45 0
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6. Discussion

This paper presented a new formulation for a TAS inspired by principles of polycentric
management to enhance transparency and flexibility during scheduling. Transparency is
achieved by designing a clear auction mechanism that prioritizes user satisfaction and fo-
cuses specifically on the crucial operation of truck hauling. To satisfy the aim of enhancing
flexibility for both MTOs and LMCs, a procedure to investigate solutions that meet the de-
sired criteria of both parties without disrupting their operations significantly is developed.
To accommodate terminals, the exploration of solutions with bigger gaps between jobs is
performed so that they can distribute their operations more evenly. Meanwhile, LMCs gain
more flexibility by providing them with schedules that allow for double moves, leading to
reduced resource utilization.

The developed model allowed for the evaluation of the effect of the TAS on drayage
operations with and without collaborative parameters in the process. Experimental results
indicate that (1) as the problem size grows, the time required to find a solution increases
considerably, but high-quality solutions are obtained quickly nonetheless; (2) the objective
function can vary significantly based on the pattern of arrival preferences examined, indi-
cating that application of the mechanism may be more appropriate under a day-by-day
manner; (3) assuming revenue maximization, the TAS can service an average of 96% of
trucks across various instances within their defined limits and terminal imposed param-
eters in the base scenario; (4) exploration of collaborative parameters can be accelerated
when using the base solution as a warm-start; and (5) under the inclusion of collaboration,
the applied pricing policy that incorporates a price reduction due to collaboration-related
inconvenience results in greater utility for trucking companies on average.

Nevertheless, the partially decentralized nature of this approach comes with several
inherent limitations. Firstly, the auction-based method could potentially lead to uneven
resource distribution, based on the financial strength of the involved parties. This might
result in certain participants obtaining more favorable time slots or resources, leaving others
to grapple with congestion or delays, but this effect can be remedied through the inclusion
of market power constraints [29]. Moreover, this decentralized setup presents fewer chances
for direct optimization due to reduced control by the MTOs. It is also worth acknowledging
that implementing this approach in a real-world scenario might encounter substantial
resistance to change, particularly from participants who are accustomed to conventional
methods. Overall, this marks the first attempt to develop a transparent and flexible TAS.
Therefore, in order to facilitate a more practical implementation of the proposed method,
it may be necessary to conduct additional refinement of the assumptions used in the
model. For example, modifying Assumption 2 to better reflect fleet size limitations might
require model enhancements to preemptively incentivize more double moves for better
fleet utilization. Additionally, a more detailed mapping of internal port operations (such as
rehandling) would further enhance the practical relevance of the TAS and overall benefit to
the involved stakeholders.

In subsequent studies, attention will be directed towards modeling and enabling
collaboration between stakeholders in the port area. As TAS remains the clearest form
of communication between port terminals and companies, it can act as a foundation for
developing a multiagent system with all involved parties that can fully support collabora-
tion. Additionally, in this study, utilities of agents from acquiring a slot were generated
randomly and merely treated as input for the auction. A dedicated study that clearly
maps the derived utility of a company could pave the way to a better understanding of the
decision making behind logistics companies and lead to the adoption of further measures of
demand management for port terminals. Simultaneously, while the proposed TAS is adept
at managing demand for medium-sized terminals, such as the one it was initially designed
for, scaling its application to larger terminals can be facilitated by the development of a
specialized heuristic. Finally, introducing uncertainty within the developed models will
greatly improve the quality of the solutions. The utilization of stochastic recourse program-
ming and scenario generation could improve the robustness of the derived schedules under
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uncertainty. Overall, it is clear that auction-based scheduling algorithms hold significant
potential for resolving conflicts for TAS. It will be interesting to observe how this approach
continues to develop in the future.
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