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Abstract: Background: Container terminals (CTs) have constantly administered truck appointment sys-
tems (TASs) to effectively accomplish the planning and scheduling of drayage operations. However,
since the operations in the gate and yard area of a CT are stochastic, there is a need to incorporate
uncertainty during the development and execution of appointment schedules. Further, the situation
is complicated by disruptions in the arrival of external trucks (ETs) during transport, which results
in congestion at the port due to unbalanced arrivals. In the wake of Industry 4.0, simulation can be
used to test and investigate the present CT configurations for possible improvements. Methods: This
paper presents a simulation optimization (SO) and simulation-based optimization (SBO) iteration
framework which adopts a dual transactions approach to minimize the gate operation costs and
establish the relationship between productivity and service time while considering congestion in
the yard area. It integrates the use of both the developed discrete event simulation (DES) and a
mixed integer programming (MIP) model from the literature to iteratively generate an improved
schedule. The key performance indicators considered include the truck turnaround time (TTT) and
the average time the trucks spend at each yard block (YB). The proposed approach was verified
using input parameters from the literature. Results: The findings from the SO experiments indicate
that, at most, two gates were required to be opened at each time window (TW), yielding an average
minimum operating cost of USD 335.31. Meanwhile, results from the SBO iteration experiment
indicate an inverse relationship between productivity factor (PF) values and yard crane (YC) service
time. Conclusions: Overall, the findings provided an informed understanding of the need for dynamic
scheduling of available resources in the yard to cut down on the gate operating costs. Further, the
presented two methodologies can be incorporated with Industry 4.0 technologies to design digital
twins for use in conventional CT by planners at an operational level as a decision-support tool.

Keywords: discrete event simulation; simulation-based optimization iteration; congestion; dual
transactions; external trucks; appointment scheduling

1. Introduction

The global supply chain has become increasingly reliant on maritime transport due to
the expansion of the world economy and the rapid increase in international trade. Despite
the COVID-19 pandemic’s effects, which reduced global trade, the world economy began to
recover in 2021 mainly because consumer spending grew due to the relaxation of pandemic-
related restrictions [1]. The global containerized trade rebounded and reached a mark
of close to 165 million TEU in 2021 [2]. It declined slightly by —0.7% in 2022 and was
forecasted to grow to 1.2% in 2023, as shown in Figure 1 below.
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Figure 1. Global containerized trade (1996-2023). Adopted from [2].
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Numerous seaports are currently facing the challenge of dealing with significant truck
influxes and congestion at terminal gates [3]. The circumstance mentioned above gives
rise to extended vehicle queues, thereby impeding the terminal’s operational effective-
ness and resulting in significant levels of air pollution due to truck idling-related carbon
emissions [4].

Since the terminal operator always gives priority service to the berthing vessels and,
by extension, to the yard trucks (YTs) responsible for the transfer of containers between
the quayside and the yard side, there will always exist an imbalance in the workload
distribution [5]. The available YCs that are meant to serve the arriving ETs will not be
capable of matching up with the demand corresponding to the arriving ETs at that moment.
This results in a workload imbalance, as the YC will be prioritized to serve the YT. Therefore,
terminal managers must devise a way to control arrivals and alleviate congestion.

Previous research has reported the use of techniques such as a toll traffic policy [6],
vessel-dependent time windows (VDTWs) [7], and TASs [8,9] to manage the above situation.
The TAS has been primarily used to effectively manage ET arrivals to eliminate congestion
in the yard and at the gate areas of a CT. This results in minimizing the overall costs
and environmental emissions from truck idling associated with longer waiting times.
Implementing a strategy that allows a given number of trucks into the CT at a specific
TW implies that the TAS can reduce the number of trucks meant to arrive at peak hours.
Consequently, this approach can enhance the overall efficiency and CT performance.

Terminal managers are entirely responsible for appointment-related decisions to regu-
late the influx of ETs into the CT. It is imperative to effectively allocate jobs to the available
resources during the scheduling process [10,11]. The available resources encompass gate
processing stations and yard handling equipment. Nevertheless, the effectiveness of the
schedules might be compromised by many uncertainties in the operational processes,
such as delays at the gates during truck processing, delays caused by cranes during
stacking or unstacking activities, and unforeseen downtimes possibly due to failures and
maintenance [12]. Studies related to equipment failures also affirmed the impact of the
uncertainties on the overall efficiency of a CT and the need to consider these uncertainties
during schedule development and execution. Yu et al. [13] underscored in their study that
CT operations were hugely impacted by the aging of the equipment and the high rates
of failures. This significantly increased maintenance costs and downtimes, affecting the
overall port efficiency. Additionally, a study conducted by Pham and Nguyen [14] on
cargo handling equipment used by CTs in Vietnam found that they operated below the
intended capacity due to execution ineffectiveness. The frequent downtimes contributed to
the underperformance that affected the CT’s throughput and the operations’ efficiency. As
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much as failure and maintenance are paramount, considering both aspects may increase
the complexity of the scheduling models and make it intractable [10].

The dual transactions approach permits an external truck to engage in the pick-up
operation of an import container immediately following the completion of a drop-off
operation of an export container in a single request [15]. Implementing the approach
mentioned above may pose challenges because priority rules for serving trucks based on
transaction type are needed. Moreover, it is not sure that the trucking companies (TCs)
are willing to engage in collaboration and distribute the benefits among themselves after
that. Therefore, it is essential to devise a robust scheduling strategy for ET appointments
incorporating single and dual transaction appointments to mitigate CT congestion.

Moreover, prior studies by Azab et al. [16] did not tackle the influence of dynamic
factors such as traffic levels on the truck’s travel time during the model formulation,
considering that within the CT area lies a road network. They assume that the truck moves
seamlessly without encountering any traffic-related delays in the gate and yard areas,
accomplishes the assigned tasks in a given time duration, and exits. Using this simplifying
assumption will consequently impact the inter-terminal truck travel time and, subsequently,
the average TTT. Hence, it is imperative to develop a versatile TAS that can effectively
accommodate potential uncertainties during the execution of schedules.

In this paper, we develop a TAS simulation model that leverages dual transactions in
a conventional CT for optimization to minimize the cost incurred in opening entry gate
counters at each TW of the planning horizon. Further, a simulation-based optimization
approach is developed to iteratively improve the schedules obtained from the mathematical
optimization model using the simulation output. The model considers results from a
clustering process from previous work as the input and yields the average TTT as the
output at the end of a multi-replication simulation run.

The rest of the paper is organized as follows: Section 2 presents a literature re-
view, Section 3 presents the problem description and simulation model development,
Sections 4 and 5 describe the case under study and the set-up of the experiments, Section 6
reports the results and analyzes the findings, and Section 7 summarizes with the conclusion.

2. Literature Review

The implementation of a TAS inside CT logistics signifies a significant change driven
by the need for operational efficiency, sustainability, and effective resource allocation. The
TAS has evolved as a strategic method for addressing the complex difficulties related to
truck congestion and resource allocation. It is built upon mathematical models derived
from queuing theory, optimization algorithms, and systems dynamics. This literature
review aims to systematically investigate the scientific basis and empirical support for
implementing a TAS in container terminals.

A summary of the methodological framework for the literature review process is
provided below. First, it involved searching through databases, including Scopus, Web
of Science, Google Scholar, and IEEE. The keywords applied in the search include truck
appointment systems, container terminals, dual transactions, external truck scheduling,
and simulation. Secondly, filters were used, such as removing duplicates and eliminating
articles without DOI numbers and those not written in English. Lastly, to further refine the
search, the articles were sorted according to the relevancy concerning the title and abstract
of our study. Forty-six articles were recorded and utilized in this study.

This analysis aimed to provide a comprehensive understanding of the complex rela-
tionship between scientific concepts and operational realities in the context of implementing
and experiencing the TAS in container terminal logistics. The implementation and contin-
uous improvement of the TAS in the management of truck arrivals have elicited interest
among academic researchers. To have a broader perspective and understanding of truck
arrival scheduling and optimization, we analyze and discuss previous works based on
classifications such as the appointment quota optimization, objectives considered, and
methodologies used.
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Appointment quota determination involves dividing the operation hours of a CT into
time windows (TWs). Interviews were conducted in a real-life CT by Giuliano et al. [17]
to gather and analyze data on peak hours. The time intervals were partitioned based on
the presence or absence of a bottleneck inside each respective frame. Several regulatory
procedures were implemented to promote environmental conservation by incentivizing
vehicles to arrive at the terminal gate during peak periods, thus mitigating emissions
and air pollution. In addition, a strategy of equitably distributing time slots throughout
the working hours of the terminal was implemented by Torkjazi et al. [18] to alleviate
congestion in both the hinterland and yard regions.

The concept of VDTW was introduced by Chen et al. [7] as a means to effectively
regulate the truck arrival pattern and is mainly dependent on the berthing schedule. Trucks
were first categorized into groups and allocated to different time slots, at which point
they entered the terminal. All groups were assigned a standard time frame to complete
the designated duties for a given vessel. Additionally, Do et al. [19] presented a Limited
Entering Time Slots (LETS) method to minimize truck and crane emissions. A mathematical
model was built to generate time slots for container pick-up. A DES model was also
constructed to estimate both the waiting time and emissions. The simulation-based genetic
algorithm (GA) was then employed to acquire a time-slot assignment that was close to the
best solution. In addition, the efficient scheduling of the berth and yard resources, as well
as adequate container slot planning, was thought of as a crucial factor in the determination
of the number of trucks to be handled per time slot [10,20-22].

Regarding the methodologies, previous studies have pointed out that the TAS mainly
uses mathematical modeling, queuing theory, simulation, and a mix of two methodolo-
gies. Phan and Kim [23] introduced a mathematical model that facilitates collaboration
between TCs and terminals to establish efficient truck operations and appointment sched-
ules. An iterative communication process between transportation companies and terminals
resolved the problem. Moreover, Zehender and Feillet [24] suggested a mixed integer linear
programming (MILP) model for integrating straddle carrier allocation. The results were
confirmed using a DES model that utilized accurate data from the Grand Port Maritime
de Marseille. Additionally, a study of the process of negotiating truck arrival schedules
between TCs and port terminals was conducted by Phan and Kim [25]. They presented a
methodology for determining appointments by considering various expenditures incurred
by trucking companies.

A simulation model was employed by Huynh et al. [26] in another study to analyze
the relationship between truck turn time and crane availability and deployment. A DES
model built on FlexSim was developed by Huynh [27] to study the impacts of appointment
scheduling strategies on resource utilization and truck turnaround time. Additionally,
non-stationary queuing models were proposed to obtain estimates of the average queue
lengths of trucks at the gate and/or in the yard [8,28]. The method suggested by Azab
et al. [16] integrated a simulation model with a mixed integer programming (MIP) model to
lower the turnaround times of ETs and the difficulties brought on by delaying those trucks’
arrivals past their preferred arrival times.

From the perspective of the objective function formulated in the TAS implementation,
researchers sought to either minimize or maximize the objectives in a manner that favors the
stakeholders. They aimed to minimize TTT, truck emissions, transportation costs, energy
consumption, waiting queue time, and empty trips, or maximize resource utilization. A
time window length that was almost ideal for scheduling the arrival of export containers
was provided by Chen and Yang [29]. They considered lowering the overall cost of energy
use, waiting time, and driving delay time. Additionally, a binary mathematical model
was proposed by Abdelmagid et al. [30] to minimize the costs incurred by TC, including
waiting time, demurrage, and container transport-related costs. Further, Torkjazi et al. [18]
formulated a mathematical model to determine the ideal appointment TWs considering
both the TC’s and the CT’s perspective. They aimed to lower the replacement cost of the
appointment time frame, the cost of arriving later than planned, and the cost of waiting in
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the gate area. Jin et al. [31] presented a green lane allocation framework considering carbon
emissions. They developed a non-linear fractional integer optimization model to minimize
total gate operation and carbon emission costs. The estimation of the ideal appointment
quota for the TASs to maximize the use of terminal resources and customer satisfaction was
also taken into consideration by [6,27,32,33].

Of great interest in recently published articles is also the application of machine
learning (ML) techniques in the design of TASs to aid in scheduling and resource allocation
decisions. A two-phase approach that sought to minimize the number of empty trips
and deviations from appointed times in a container terminal was presented by Caballini
et al. [34]. The method combining clustering analysis and lexicographical optimization
was applied to a real-world case in Italy and Mexico ports. Their results show that the
proposed approach yields fewer empty-truck trips with lower average TTTs than the
present situation.

A data-driven approach was presented by Sun et al. [35] to tackle the problem of
appointment quota optimization in CTs. Regression methods were herein used to obtain a
causal relationship between the average TTT and the number of truck arrivals. A robust op-
timization model that minimizes the average TTT and truck deviation from their preferred
arrival time while considering the uncertainty was built to obtain an appointment quota
plan. Smart gate data were obtained from a genuine CT in Shenzhen, YT, China. Their
findings showed that the proposed approach outperformed the current and conventional
stochastic optimization models. Recently, da Silva et al. [36] proposed a method that com-
bined DES and ML to dynamically reschedule the allocation of truck appointments in the
TAS using real-time data obtained from smart technologies. Upon the determination of
the estimated time to travel (ETT) to the port, it triggered the ML algorithm to predict and
classify the truck condition as late, on-schedule, or early based on historical data. Their
results indicate significantly reduced, by over 80%, average queue size and waiting times
at the entrance of the port gates. The proposed approach also reduced the percentage of
trucks attended off-schedule to 19% from close to 52%.

Most publications considered only single transactions in the design of the TAS, i.e., they
believe that a trucker reserves a single appointment with the CT to arrive and perform either
a single pick-up task or a drop-off and leave. A truck can perform both a drop-off and a pick-
up in the same appointment request in dual transactions. TCs are encouraged to perform
dual transactions where possible to minimize the costs associated with container delivery
and reduce the number of empty truck trips. Considering that the CT is constrained with
resources such as storage space and yard handling equipment, it is therefore imperative
that the TAS is designed in a manner that is beneficial to both the CT managers and the
TCs who are the truck owners.

Li et al. [15] introduced a novel method for handling truck arrivals in CTs when
conducting dual transactions. Despite the concurrent use of yard handling equipment,
it utilized a bi-objective MIP model for optimal quota appointment allocation. A novel
three-level vocation queuing model was suggested to calculate the internal truck and ET
queuing times for single or dual operations. The results demonstrated that fewer ETs were
conducting dual transactions in the queue, which increased the method’s applicability in
real-world operations.

To the best of our knowledge, the use of simulation to design and optimize a TAS
for dual transactions has not been addressed adequately in the literature. Our overall
contribution to this paper involved the design of a simulation tool with two methodologies
that can be used by terminal planners to enhance decision-making in their day-to-day
operations. A DES model of a deterministic mathematical optimization model adopted from
the literature is developed and used to evaluate the resulting schedules while considering
the uncertainties. The developed model allows for single and dual transactions in a single
appointment request. The model features dynamic gate resource assignment and varying
traffic levels at the CT during each TW. The proposed model is flexible and easy to use,
as the input parameters can be adjusted to fit different container terminal configurations.
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In other simulation models presented in the literature, such as [16,37-40], the capacity
of the resource, which is the parameter under study, is set and fixed at the start of the
optimization experiment. In contrast, in the proposed case, a programmatically created
schedule that parametrizes the capacity of the gate counters to be opened at specific TWs is
developed. This allows the parameter to be changed dynamically during the simulation
and subsequently during optimization, thus illustrating its contribution.

Optimization experiments were further performed on the developed model to inform
the CT manager of the optimum number of gate counters to make them operational at
each TW, which yields minimal gate operation costs with reduced congestion. Lastly, an
iteration framework to integrate the adopted mathematical and developed simulation
model is proposed to improve the representation of congestion factors in the mathematical
model and subsequently establish the relationship between the mathematical optimization
model inputs and the simulation model input parameters.

3. Problem Description

In this study, we consider typical export and import drayage operations involving the
transfer of shipping containers discharged from the ship to the warehouse in the hinterland,
and vice versa, with the help of ETs. Terminal operating systems (TOSs) have been adopted
and continuously implemented to manage berth, yard, and gate operations and streamline
workflows to boost productivity. The TAS module is used for gate management regarding
ET arrival, appointment booking, truck cargo verification, and authorization. This module
is crucial because the points of arrival and queuing during pick-up and drop-off processes
create bottlenecks, resulting in congestion. The flow management, therefore, must be
conducted appropriately.

In a terminal where a TAS manages the arrivals of ETs, truckers are bound to book an
appointment before arriving at the CT gate. First, the terminal operator sets an appointment
quota for each TW, considering the terminal workload and the available yard handling
resources. During the determination of the appointment quota, the terminal operator
objectively seeks to maximize the productivity of resources and the number of ETs to be
served, minimize ET service time, and reduce gate congestion. The appointments are then
uploaded to the TOS website, where the TCs can book the preferred TW slot. To complete
the booking process, the trucker is supposed to provide the relevant truck and container
information for identification purposes.

If the preferred slot is unavailable for booking, the trucker searches for another avail-
able slot. Upon securing an appointment, the trucker can proceed to the CT gate for
verification/customs checks and access the yard area to accomplish the scheduled tasks. In
scenarios where the CT does not provide for the booking mechanism using the TAS, the
truckers are allowed to arrive at the gate and join the queue randomly. However, this may
be inconvenient to the truckers as they will spend more time waiting for service, since they
will have to wait for the occupied yard handling equipment to be released.

Figure 2 below illustrates the two types of moves conducted by an ET considered in
this study, i.e., single and dual transaction truck trips. In a single transaction, an ET such as
Truck 1 arrives at the CT with an export container x and proceeds to YB7 for the service of
unloading by the rubber-tired gantry crane (RTGC) in the same block, and then travels to
the CT exit gate for departure. Similarly, another empty truck can enter the CT, pick up
import container y, and depart from the CT. For a dual transaction, an ET such as Truck 2
arrives with two export containers, a and b, drops them at YB8 and YB6 successively, and
then moves to YB5 and YB1 to pick up import containers ¢ and d before departing from
the CT.
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Figure 2. Illustration of single and dual transactions. Adopted from [41].

4. Solution Methods
4.1. Case Description

This paper presents a conventional CT with a hypothetical rectangular layout config-
uration measuring 2500 x 750 pixels, whereby 100 pixels represent 100 m in length. The
abstracted operations are limited to the processes at the gate and the yard area. The CT
layout comprises single unit entry and exit gates, eight YBs, eight overhead YCs, and a
complete road network, as shown in Figures 3 and 4 below. Each gate unit comprises gate
counters that the ETs use to gain access to and from the yard area upon arrival at the CT
and departure from the CT. Inside the CT lies eight YBs, five of which are used to store the
inbound containers and three for storing the outbound type. One YC serves each YB at
any given point in time. The cranes are assumed to be of the overhead type and are set to
operate within the host YB during the simulation period.

Main Entry Gate

Gate Counter

Figure 3. A 2D view of the CT gate areas.
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Figure 4. A 2D view of the CT yard area.

A road network that connects the gate and the yard is designed to provide accessibility.
It comprises a two-lane one-way road with intersections at the junctions. A four-lane road
is constructed right before the entry gate to guide the arriving trucks to the available gate
counter. A similar road configuration is also built at the exit to guide the trucks outside the
CT in preparation for departure to the final destination. Stopping lines are placed at a point
on each access road that leads to the individual YBs where the tasks are set to be performed.
Each YB also has an exchange point where the loading and unloading operations occur
before the truck is released. The yard capacity and throughput were not considered since
the number of containers to be dropped off and picked up at the yard area during model
runtime are known in advance and do not change.

ETs arrive at the CT at random times following a preset arrival schedule. The calling
population is assumed to be of a finite queue type. The trucks were modeled to arrive at
the CT gate according to a schedule in which their preferred arrival times ought to be a
random value within the appointed TW following a uniform probability distribution. The
period considered is a 1-day horizon divided into 12 time windows (TWs) of 2 h in length
each. The arriving trucks can either perform a dual or single transaction. It is required to
determine the average time an ET spends in the CT, starting from when it arrives at the CT
gate and joins the gate queue until it accomplishes the tasks and leaves the exit gate, i.e.,
truck turnaround time.

TIT=Ta+Tg +Ty + Ty +Tw, 1)

where T is the time taken at the gate in queue waiting, T is the time spent at the gate
during processing, T, is the time taken to travel to the assigned yard area and join the
queue, Ty, is the time taken to perform pick-up and or loading tasks (including waiting in
the queue for YC service), and T, is the time taken to exit the CT upon release by the YC
(including travel from the last visited YB to the exit gate and final processing at the counter).

Further, to optimize the model, it is required to determine the possible combination of
the number of counters to be opened during every TW in a manner that will result in the
minimum cost of gate operations. The total cost of operating the gate units depends on
the number of gates opened per TW times the negotiated cost payable to individual gate
counter operators per period, plus a cost penalty associated with the TTT measured at the
end of a simulation run. The number of gates opened at the exit side is fixed throughout
the planning horizon. The processing times at the entry gate are expected to be higher
than those at the exit gate due to the time-consuming activities such as customs and
documentation checks.

The model input parameters are as shown in Table 1 below.
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Table 1. Simulation model input parameters.
Gate Parameters
Shift 1: 12:00:00 a.m.—08:00:00 a.m.
CT gate opening hours Shift 2: 08:00:00 a.m.—04:00:00 p.m.
Shift 3: 04:00:00 p.m.—12:00:00 a.m.
Truck speed (max) 18 km/h [42]
Entry processing time TRIA (0.5, 1, 4) minutes [27]
Exit processing time with no survey of container TRIA (0.02, 0.099, 0.3) minutes [26]
Number of gate counters at Entry 3
Number of gate counters at Exit 3
Yard parameters
Number of import blocks (IB) 5 [43]
Number of export blocks (EB) 3 [43]
Number of Yard Cranes (YC) 8 [43]
Unloading/Loading time 0.26 + LOGN (0.941, 0.519) minutes [27]
Road parameters
Lane width 35m
Number of Gate Entry/Exit lanes 3

4.2. Development of a CT Simulation Model

The subsections below outline the reason behind the choice of the adopted modeling
technique, the detailed logic development, and the steps followed in verifying the model.

4.2.1. Justification for Modelling Technique

This paper uses a DES modeling technique because the problem can be conceptualized
as process-centered in actual practice. It involves the interaction of entities with resources.
In this case, the entities are the trucks, whereas the resources include the gate counters
and yard cranes. At any given time, a truck seizes a gate or crane resource, delays while
being served, and releases the resource for use by another entity waiting in the queue. The
processes involved include truck documentation, customs clearance checks at the gates,
and container loading and unloading by the YCs at the yard area.

4.2.2. Logic Modeling

The CT simulation model was developed using AnyLogic DES Software—University
edition, version 8.8.0. The libraries that were used include Processing Modelling (PML),
Material Handling (MHL), and Road Traffic Library (RTL). The process flow chart is
constructed using the blocks to capture the occurrence of events sequentially. The blocks
utilized from the PML include Resource Pool, Delay, Service, Queue, Hold, Pick-Up, Drop-
Off, Select Output, Select Output Out, Select Input In, Move To, Time Measure Start, and
Time Measure End. The Move By Crane block is extracted from the MHL, whereas the Car
Source, Enter, Exit, Car Move To, and Car Dispose blocks are selected from the RTL.

To visualize the movement of entities inside the model, AnyLogic DES provides 2D
and 3D objects and space markup elements. The rectangular and point nodes are used to
sketch objects such as the YBs and container exchange points, whereas the Overhead Cranes
are used to represent the YCs. Containers and Truck objects are also used to represent the
entities interacting in the model. Figure 5 below shows the process flow chart describing
the sequence of activities beginning with the trucks’ arrival at the CT, joining the gate
queue at the service entry, moving to the yard area for loading /unloading operations, and
exiting/departing at the gate.
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Figure 5. Process flow chart of ET arrival, gate, and yard operations.

The order of the activities in the blocks determines the entity’s movement within the
model. Before entering the planned YB queue for crane service, the entity (truck) checks
against a predetermined condition and goes through the target process if the condition
is met. Otherwise, it moves on to the next block until it finds a matching condition, or it
leaves the yard area and travels to the exit gate after completing the prescribed operations.

As mentioned in Section 4.1, trucks arrive randomly within the preferred appointed
TWs, as shown in Table 2. Upon arrival, they are directed to the available gate counter
for service. Trucks are served based on the FIFO principle. If all the counters are busy,
the arriving trucks join the queue ahead and wait. The tuple list from the previous work
conducted by Talaat et al. [41] was generated by data clustering and analysis. It consists of
1057 truck trips of single and dual transaction types and information related to the truck
arrival times and YB assignment.

Table 2. Tuple list (ET arrival schedule for the simulation model).

Truck Trip No. Export Import Al A2 A3 A4 Preferred TW  Priority Index
1 (38, 183) (385, 652) 8 6 1 5 1 2
2 (190, 299) (318, 355) 7 7 3 2 1 2
3 (435, 523) (56, 322) 6 8 2 2 1 2
4 (613, 693) (16, 238) 8 7 2 2 1 2
1057 (None, None) (720, None) 0 0 4 0 12 1
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To further describe the shape of the tuple list in Table 2 below, which forms the arrival
schedule for the simulation model in this study, reference is made to the first and last rows
as examples. A truck in Truck Trip No. 1 is set to arrive at the CT at the preferred TW1
(0000-0200 h) to perform a dual transaction. It is set to drop off two (2) export containers
at YB8 and YB6, respectively, and then pick up two (2) import containers at YB1 and YB3,
respectively. In that order, the container identification numbers are 38, 183, 385, and 652.
Contrary to the above truck trip, Truck Trip No. 1057 involves a single transaction, of only
one (1) import container pick up from IB4 at TW12 (2200-2400 h).

4.2.3. Model Verification and Validation

Verification is the procedure that entails making sure that the developed simulation
model accurately represents that of the real system, whereas validation involves comparing
the simulation model outcomes to those of actual or real systems. A significant amount
of effort was put into verifying the CT simulation model for the current system under
study before assessing the performances of the scenarios under investigation. Extensive
animation, as well as careful trace analyses, were reliably used in a bid to confirm that the
system is behaving appropriately as expected. A discussion with the panel of experts from
the port logistics industry and academia through conferences, exhibitions, and site visits
on the preliminary numerical output results from the analysis further boosted the exercise
at hand.

Since the proposed model has various entity types, including trucks and containers,
the verification method necessitated tracking down the entities manually to account for
every element generated at the source and disposed at sink points of the model. Further, the
logic sequence of entities as they move through the different process blocks was monitored
at entry and exit using the system.out.print functions as provided by Java during each
simulation run.

Before model execution, the model was constantly subjected to debugging analysis to
check and fix the abnormalities and errors in the project code and improve the code. This
exercise allowed the seamless and smooth execution of the model when running experi-
ments with multiple replications, significantly improving its reliability and dependability
in delivering quality output. After the first step of checking the code, the model’s logic
and the experiment’s initial conditions were checked to ensure that the model accurately
reflected the actual system under study. This would then be followed by manual tracing
and the deployment of elaborate animation to visualize and check if the real system was
abstracted properly and accurately.

Although we did not use new empirical data, we validated our model by comparing
it with the outcomes from a study conducted by Talaat et al. [43]. Additionally, having
undertaken a comprehensive literature review, we chose model parameters from multiple
well-known and widely accepted sources in the domain of truck appointment scheduling
in CTs, which is similar to our study. Specifically, we referred to studies conducted by
Huynh et al. [26], Huynh [27], and Azab et al. [42], as shown in Table 1.

5. Experiment Setup

The experiments conducted in this study were carried out on a Precision 7920 Tower
desktop with the following specifications: 128 GB RAM, Intel (R) Xeon® Gold 6230R CPU
@ 2.10 GHz 2.10 GHz. The CT gate and yard operations of a one-day planning horizon
were simulated based on the data adopted from the literature. The subsequent sections
discuss the results and analysis from the simulation optimization and simulation-based
optimization iteration experiments.
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5.1. Minimizing the Entry Gate Operation Costs via Simulation-Optimization

Simulation optimization (SO) experiments were conducted on the simulation model
developed in AnyLogic DES Software—University edition, version 8.8.0, to determine
the optimum number of gate counters required to be opened by the CT during each TW,
thereby yielding minimum gate operating costs. An extra gate opened during a specific
TW of the planning horizon in a manner that will lead to it being underutilized implies
hiring an additional employee at an extra cost, which would have been avoided in the first
place through informed decisions tied to proper cost analysis.

The SO experiment relies on multiple parameter variation experiments of multiple
replications, terminating simulation experiments in the background to achieve its objective.
It allows one to observe the effect of random factors in the stochastic models reflected in
the simulation output. The parameters to be varied throughout the experiment included
the number of gates available at each TW. Throughout the experiment, the number of gate
counters opened throughout each TW varied from a minimum of 1 to a maximum of 5,
with a step of 1. In the main simulation model, the parameters were first assigned random
integer values within the range of 1-5, assuming that the value represents the current
number of counters opened at each particular TW.

An objective function was formulated to minimize the total gate operating costs
considering the hourly operating cost, the number of gates available, and the measured
average TTT at the end of the simulation run. The OF is as shown below:

12
Min.Gate Operation Costs($) = ( (2 A) B + (C x Average TTT)) ()
i=1

where A represents the number of gate counters opened at TWj, B represents the gate
counter opening cost per TW, and C represents the penalty cost associated with the average
TTT measured at the end of each simulation run. It takes an integer value greater than
zero. A higher value of C implies a higher TTT value, meaning that each truck spent a
relatively longer time in the CT to accomplish the scheduled tasks, and vice versa. The
value may also be thought of as a factor that represents congestion in the CT, and can be
varied throughout the experiment to yield a desired cost value.

The first term represents the summation of the number of gates opened at each TW, a
parameter in the experiment that is dynamically varied. This was achieved by creating a
programmatic schedule that is initialized from a code upon the start of the model. To limit
the search space of the solutions for the optimum parameters that give the best OFV,a2h
TW length was chosen, which offers twelve parameters available for iteration. The gate
operation cost term B and the weight value C were assigned arbitrary values of USD 4 and
8, respectively, for verification purposes. They can, however, be substituted with practical
values depending on the situations at the CT.

The SO process was manually carried out systematically and interactively over dif-
ferent combinations and iterations considering the unique memory size allocated for the
multi-core parallel evaluation. A maximum of 52 cores and up to 256 GB of memory was
assigned to the model as the Java heap space during the model execution and subsequent
run. The simulation time taken to obtain the OFV was recorded for a unique combination
of replication and iteration where it occurred. It was reported as shown in the results in
Section 6.1.

The AnyLogic DES software—University edition, version 8.8.0 uses the OptQuest
engine to perform optimization. This is an optimization package embedded in the DES
software that combines several strategies, such as genetic algorithms, scatter and tabu
search, neural networks (NNs), and integer programming (IP) to evaluate optimum solu-
tions for the parameters in the model [44]. It allows the user to set up the optimization
experiment and have complete control by offering flexibility in the input of constraints
and other requirements that should be checked at either the start or end of the experiment.
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Further, it provides a good visualization of the changes in the OFV with different iteration
and replication values in a graphical and tabular way.

5.2. Improving Congestion Factors Representation through an Iterative Simulation-Based
Optimization Procedure

This section involves the proposed integration of the simulation and optimization
model. A TAS optimization model proposed by [41] was adopted in this sub-section of
the study to implement the proposed integration approach. This approach was conducted
to demonstrate that it is indeed possible to link the mathematical model and simulation
model in practice and enable them to work simultaneously to enhance the optimization
outcomes for prompt and informed decision-making. It is also imperative to note that the
mathematical optimization model was implemented in the Gurobi-Python environment
and solved using the Gurobi Solver Optimization package V11.0.0, whereas the simulation
model was built in the Java environment of the AnyLogic DES software. The integrated
approach was carried out manually to verify its practicability.

The simulation-based optimization (SBO) experiment was performed to optimize the
assignments generated from the mathematical model and iteratively attempt to improve
the solution using the outputs from the developed simulation model. The output from the
mathematical model is the assignment and the best OFV. The optimization model function
takes randomly generated congestion factors (CFs) and productivity factors (PFs) as the
arguments among other inputs, as defined in the literature, and returns the average TTT,
denoted by TTT, and the arrival schedule, which is an input to the simulation model.
A finite horizon simulation experiment was initiated and conducted for Shift 1, and the
average TTTy value was computed.

The results of truck turnaround time and average times spent by a truck in each yard
block from the DES model were varied by manually changing the set values of the input
parameters (e.g., loading/unloading time) in the Properties tab of the Main simulation
panel (AnyLogic environment) for every set of experiments. After every run, the results
were exported to Excel and analyzed accordingly. The updated schedules from the adopted
TAS optimization model were generated in the Gurobi-Python environment and exported
for use in the simulation model as input arrival schedules. The productivity factor and
congestion factor matrix values of the mathematical optimization model were manually
varied inside the Gurobi-Python interface to yield varying optimized output schedules.

The CF values range from 0.5 to 1, where the lower and higher values correspond
to heavy and zero congestion, respectively [34]. The average time spent by the trucks in
each block during each TW during each simulation run is also collected and tabulated. The
values are then normalized to obtain the updated CF, as mentioned. The updated factors
are then fed back to the optimization model to yield new schedules and compute new TTTx
values. The efficiency of the handling equipment in the CT yard is represented by the PF,
and it assumes values of 1-6 moves per TW in each YB.

The gap between the two average values is calculated for each iteration to check
for possible convergence of the two solutions or improvements in the OFV from the
mathematical optimization model. The model is set to stop when the gap is within a set
acceptable value, beyond which no further significant improvement can be achieved within
the reasonable time equivalent to that required to make a prompt decision. Figure 6 shows
a detailed process flow chart describing the proposed approach.
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Figure 6. The Proposed simulation-based optimization iteration methodology.

6. Results and Discussions

The following subsections dissect the outcomes of the experiments that were con-
ducted and discuss the potential managerial implications for terminal operators and TCs.

6.1. Simulation Optimization Results

In this section, the findings from the simulation optimization (SO) experiment, as
described in Section 5.1, are presented and discussed. The results of the average simulation
run time, average OFV, and the gate counters’ combination pattern for each TW for the 10,
50, 100, 150, and 200 iterations are shown in the tables below.

To first determine the necessary number of replications and iterations to conduct the
SO experiments, a systematic approach based on the rule of thumb was used to enhance
the process. Single SO runs of 5, 10, 15, 20, 25, and 30 replications were first conducted
for ten iterations, and the data for the best OFV and simulation time were recorded. Then,
the mean values were computed accordingly. The same methodology was replicated for
50, 100, 150, 200, 250, 300, 350, 450, and 500 iterations. The computed average values were
tabulated and analyzed, and are represented in the below plots.

From Figure 7a, it can be seen that the average simulation time increases with an
increase in the number of iterations. This is an expected phenomenon because the opti-
mization algorithm will take more time while exploring an optimal solution from an ample
solution space. In summary, an increase in the iteration counts implies more computations.
It is also worth noting in Figure 7b that the algorithm starts to converge at the 200-iteration
mark, with slight variation until the 500-iteration mark, where it records the best OFV of
USD 335.1 and simulation time of 4552 s as the average. The 200-iteration mark registered
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the average best OFV and simulation time of USD 335.4 and 3597 s, respectively. From the
trend, it is clear that beyond 200 iterations, there may not be a significant improvement in
the OFV.

A graph of Average Simulation Time vs Iterations Convergence graph of Average OFV vs Iterations
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Figure 7. (a) Graph of average simulation time vs. iterations, (b) graph of average best OFV
vs. iterations.

The average simulation time of 3597 s for 200 iterations was subsequently selected
to indicate the minimum time required by the CT planner to analyze the submitted ap-
pointments by the truckers and provide updated reservation plans. The decision was also
supported by the assumed fact that a decision-maker needs to give a solution to an opera-
tional problem in a CT in the shortest time possible, it also demands that the solution needs
to be better. This, therefore, demonstrates the need to find a tradeoff between the best solu-
tion and simulation time, as demonstrated by the percentage difference in Tables 3 and 4
below. The managerial implication, in this case, is that because the developed TAS is
dynamic and collaborative, the TCs will need to submit the appointments within the stipu-
lated time, and the terminal operator shall immediately analyze the submitted requests
and generate the optimized schedules within the CT preferred time (i.e., 1 h). During that
time, the TW slots will be frozen and thus unavailable for booking or cancellation.

Table 3. Results of OFV over various iterations.
Number of Iterations
Replications 10 50 100 150 200 250 300 350 400 450 500
OFV (USD)

5 371.8 339.4 339.3 336.9 335.5 334.7 343.1 336.4 336.6 336.4 335.9
10 375.7 337.0 336.0 334.9 335.6 336.7 335.3 335.8 335.3 335.9 335.2
15 372.5 367.3 340.8 336.8 334.8 335.7 336.3 335.6 336.2 335.0 334.6
20 372.7 358.1 334.4 335.1 336.3 336.3 334.5 336.6 335.1 334.7 334.0
25 371.3 335.7 334.1 335.1 333.9 336.3 332.3 335.1 336.2 335.4 336.5
30 368.3 365.0 336.2 335.6 336.5 335.4 335.3 334.7 335.5 334.6 334.3
Average 3721 350.4 336.8 335.7 335.4 335.8 336.1 335.7 335.8 335.3 335.1

%Difference —11.0 —4.6 —0.5 —0.2 —0.1 —0.2 —0.3 —0.2 —0.2 —0.1 0.0
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Table 4. Results of simulation time over various iterations.

Number of Iterations

Replications 10 50 100 150 200 250 300 350 400 450 500
Simulation Time (s)

5 342.7 454.5 562.5 894.4 1037.1 1099.7 1077.8 1184.3 1130.6 1052.1 1184.4

10 658.0 820.0 1234.6 1639.4 2041.5 2446.7 2675.1 2562.1 2475.8 2689.5 2692.3

15 906.7 1319.5 1869.6 2481.5 3021.8 3571.2 4065.4 3795.1 3728.4 4035.8 4036.0

20 1240.0 1759.3 2497.0 3313.1 4006.0 4720.5 5394.3 4986.9 5439.4 5393.0 4935.4

25 1470.5 2093.3 3171.8 4016.6 51827 5999.2 70279 6733.0 6808.7 6098.6 60725

30 1681.5 2470.8  3663.0 4848.6 6292.0 73132 7363.8 76062 8120.6 81547  8391.6

Average 1049.9 1486.2 2166.4 2865.6 3596.9 4191.7 4600.7 4477.9 4617.2 4570.6 4552.0
%Difference 77.3 67.8 53.1 37.9 221 9.2 0.4 3.0 0.0 1.0 1.4

In Table 3 above, it can be seen that OFV generally decreases with increasing iteration
counts while displaying some fluctuations. Additionally, the average OFV value across the
iterations stabilizes around 335.1 to 336.8 with minimum variations. A distinct observation
of OFV equal to USD 332.3 is noted at replication 25, iteration 300. This is notably lower
than other OFVs of higher iterations for the exact replication. This can be attributed to
stochastic simulation fluctuations due to inherent randomness and resource constraints
or computational issues at specific iteration points. Moreover, the simulation might have
reached a temporary optimum state at 300 iterations, which might not have been preserved
in the subsequent iterations. The mean and standard deviation (for the OFVs of iterations
greater than 300) were calculated and one sample #-test analysis was conducted to inves-
tigate further if the value was statistically significant. The mean and standard deviation
values of USD 335.8 and 0.66 were obtained, showing that the values were relatively close
to each other, whereas a quite high t-statistic value of 10.6 and a significantly lower p-value
of 0.00179 (<0.05) were recorded. This preliminarily indicated that randomness might not
have been the primary cause of the observed difference.

In Table 4 below, it can be deduced that simulation time increases with an increased
number of replications for the different conducted iterations due to increased exploration.
Another intriguing observation was made in which the simulation time of 7027.9 s for
replication 25, iteration 300 (a similar reference point to that earlier discussed) was recorded.
The value is notably higher than for 350, 400, 450, and 500 iterations. In addition to the
earlier outlined reasons, the anomaly can be attributed to overfitting, particularly noise,
when running many iterations, and potential non-convergence or inconsistent algorithmic
behavior. In a similar statistical analysis, a mean and standard deviation value of 6428.2 s
and 397 s were obtained, showing that the values were somehow close to each other. In
contrast, a t-statistic value of —3.02 and a p-value of 0.057 (>0.05) were recorded. Given a
slightly higher p-value, the observed marginal difference was, therefore, not strong enough
to rule out variation arising from the inherent randomness.

To further demonstrate the results’ reproducibility, we conducted 30 sets of exper-
iments for each of the 10, 50, 100, 150, and 200 iterations with 30 replications each. We
decided not to proceed beyond 200 iterations because, as earlier mentioned, no further sig-
nificant improvement in the OFV was achieved beyond this point. Moreover, increasing the
number of iterations required an increased simulation time for the conducted replications.
As seen in Tables 3 and 4, an additional average time of approximately 16 min is required
to realize an improvement of USD 0.3 in the best OFV from 200 to 500 iterations. This can
be deemed insignificant considering the significant time and computational effort required
in the process vis a vis the traffic congestion, which can build up within a shorter time and
cause workload imbalance at the yard and gate areas.

Further, with the advancement in technology, including automation of processes, it
is critical to note that decision support systems should be capable of providing solutions
in the least time possible so as not to interrupt service delivery, thus creating bottlenecks
in resource centers. The results of the best OFV, simulation, and the required optimum
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gate counter combination are recorded and analyzed as shown in Table 5 (below), and

Tables A1-A4 in Appendix A.

Table 5. Results of the best OFV, simulation time, and gate counter combination for 200 iterations.

Experiment Replications Best OFV Simulation Time Gate Counters
(USD) (s) Combination
1 (189, 30) 333.92 6161.22 2,1,2,2,2,2,2,2,2,2,2,2
2 (154, 30) 335.73 6096.46 2,2,2,2,2,2,2,2,2,2,2,2
3 (95, 30) 334.43 5976.64 2,2,2,2,2,2,2,2,2,2,2,2
4 (100, 30) 335.65 5797.40 2,2,2,2,2,2,2,2,2,2,2,2
5 (87, 30) 336.43 6046.77 2,2,2,2,2,2,2,2,2,2,2,2
6 (129, 30) 335.92 5912.67 2,2,2,2,2,2,2,2,2,2,2,2
7 (134, 30) 335.24 5918.27 2,2,2,2,2,2,2,2,2,2,2,2
8 (95, 30) 336.48 5896.95 2,2,2,2,2,2,2,2,2,2,2,2
9 (211, 30) 334.41 5889.97 2,2,1,2,2,2,2,2,2,2,2,2
10 (87, 30) 335.88 5972.64 2,2,2,2,2,2,2,2,2,2,2,2
11 (93, 30) 336.64 5944.40 2,2,2,2,2,2,2,2,2,2,2,2
12 (120, 30) 335.06 5819.81 2,2,2,2,2,2,2,2,2,2,2,2
13 (144, 30) 333.71 5824.33 2,1,2,2,2,2,2,2,2,2,2,2
14 (95, 30) 336.10 6209.66 2,2,2,2,2,2,2,2,2,2,2,2
15 (214, 30) 334.31 5829.35 2,1,2,2,2,2,2,2,2,2,2,2
16 (225, 30) 335.90 6082.48 2,2,2,2,2,2,2,2,2,2,2,2
17 (181, 30) 334.78 6196.06 2,1,2,1,2,2,2,2,2,2,2,2
18 (101, 30) 336.70 5803.55 2,2,2,2,2,2,2,2,2,2,2,2
19 (250, 30) 335.61 5842.25 2,2,2,1,2,2,2,2,2,2,2,2
20 (158, 30) 335.34 6109.09 2,2,2,2,2,2,2,2,2,2,2,2
21 (125, 30) 334.93 5892.40 2,2,2,2,2,2,2,2,2,2,2,2
22 (170, 30) 334.64 6067.39 2,1,2,2,2,2,2,2,2,2,2,2
23 (131, 30) 335.95 5999.09 2,2,2,2,2,2,2,2,2,2,2,2
24 (179, 30) 334.56 6257.06 2,2,2,2,2,2,2,2,2,2,2,2
25 (136, 30) 336.43 6038.44 2,2,2,2,2,2,2,2,2,2,2,2
26 (139, 30) 333.86 6139.11 2,1,2,2,2,2,2,2,2,2,2,2
27 (123, 30) 336.31 6041.06 2,2,2,2,2,2,2,2,2,2,2,2
28 (132, 30) 334.32 6044.44 2,1,2,2,2,2,2,2,2,2,2,2
29 (205, 30) 334.52 5954.31 2,1,2,2,2,2,2,2,2,2,2,2
30 (168, 30) 335.55 6046.86 2,2,2,2,2,2,2,2,2,2,2,2
Average 335.31 5993.67

From the tables mentioned above, it is worth noting that some homogeneity exists in
the average values of the best OFV across the replications for the different iteration values.
This consistent achievement of computed mean values compared to the obtained values
indicates the algorithm’s capability to find solutions nearly close to the optimal solution.
The relatively significant low variability in the best OFV for each iteration value set further
justifies the stability and reliability of the results except for a few cases, which may be
attributed to the sensitivity to initial conditions.

It can also be observed that there is evidence of the most likely occurring gate counter
combination parameter, which gives the best OFV within the replications in each iteration
set except for Table Al. This includes [1, 2,1, 4, 2,5, 3, 3, 2, 2, 3, 3] for 10 iterations and
for 100, 150, and 200 iterations. The harmony strongly points out that the parameter
settings used in the simulation model were robust and practical enough for optimizing
the formulated OF. From an optimistic view, the terminal operators are convinced that a
maximum of two gate counters were required to be opened at each TW throughout the
entire shift plan, assuming that the TC complied with their appointments.

In comparison to previous studies, congestion management issues relating to gate
operations in the CT have been addressed using different methodologies. Chamchang and
Niyomdecha [40] conducted a simulation study to analyze the impact of the number of
gate lanes on the queuing performance of a CT. Results from scenario analysis indicated
that adding an extra service lane at the gate was not economically justifiable. Furthermore,
Keceli [39] abstracted the gate operations of a multi-purpose terminal and conducted
scenario analysis using a simulation model. The gate processing time and gate lanes were
varied, i.e., 3—4 for the pre-gate and 4-7 for the main gate. Results showed that to keep the
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number of trucks waiting at the gate at less than 20, the main gate processing time should
be reduced by a third, and the lanes increased, i.e., the pre-gate to 4 and the main gate to 6
or 7. Although a similar direct study (simulation model setup) was not encountered, it is
evident from the above that varying the gate lanes has been proven to be a crucial factor of
interest in enhancing gate performance and, by extension, operation cost.

Different mathematical models have been additionally proposed to optimize the op-
eration costs at marine terminal gates. Guan and Liu [45] applied a multi-server queuing
model with non-linear optimization in a New York/New Jersey port to analyze the con-
gestion while considering the gate operating and truck waiting costs. Results showed that
of the six gate lanes, five were required to be available for use. A similar approach to the
queuing model with an optimized pooled strategy was presented by Minh and Hyunh [46].
Upon application to a port on the US East Coast, it was found that an optimum of 8 out
of the 10 installed gates were needed to be operational. Additionally, while applying a
fractional integer programming model to a seaport in China, Jin et al. [31] found that
expanding the service gate lanes from 8 to 11 would yield minimum gate operation costs.
Unlike the above deterministic cases that considered gate operations only in their analysis,
our proposed case addressed stochastic operations at both the gate and yard areas in one
model with a FIFO strategy. Therefore, comparing our proposed approach directly to the
current models discussed was not possible. Nevertheless, out of the five gate counters,
it was found from the optimization experiment that at most two were sufficient to serve
the arriving trucks at each TW given the set input parameters. This further highlighted a
strong indication of the potential benefits of using optimization to minimize gate operation
costs and thus manage congestion at the CT.

The plots in Figure 8a,b depict the trends in the relationships between the computed
average OVF and simulation time with the number of iterations for the same number of
replications. The average OFV decreases with the increasing number of iterations, which
agrees with the convergence curve described earlier in Figure 7b. On the other hand,
the average simulation time increases with the increase in the number of iterations, thus
indicating a directly proportional relationship as compared to the latter, which is inverse.
The higher simulation values signify higher computational resource utilization in the search
for improved solutions during every optimization run, which may result from complex
optimization tasks.
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Figure 8. (a) Average OFV vs. iterations, (b) Average simulation time vs. iterations.

6.2. Simulation-Based Optimization Iteration Results

This section presents the results obtained from the experiments conducted in Section 5.2.
It constitutes a dataset from an average of five iterations per run performed for each
productivity factor (PF) value ranging from 1 to 6. This makes 30 iterations per run while
keeping the yard crane service time in the simulation model constant.
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To investigate the relationship between the effect of varying PF values with the YC
service time, the YC service time in the AnyLogic simulation model environment is multi-
plied by factors of 0.5, 1, 1.5, 2.5, 3.5, and 4.5. This makes it a total of 180 iterations. Varying
the above loading/unloading time parameter during each run automatically recalculates
the required crane parts’ speeds (yard bridge, trolley, and hoist) for each transaction case
and, consequently, the handling time of each truck. This directly impacts the time spent
by the truck in the yard area during service. Results from the SBO iteration are shown in
Table 6 (below), and Tables A5-A9 of Appendix B.

Table 6. SBO iteration results of 4 and 6 (%) for PF = 5.

I ) Optimization Simulation (TTTx — TTTy) OFV (LTTT)
teration TTTx TTTy 8 8 (%) Gurobi Solver
1 35.35 37.95 —2.60 —7.35 10145.30
2 35.67 38.07 —2.40 —6.74 10235.70
3 34.60 38.04 —3.45 —9.96 9928.31
4 38.10 38.11 -0.01 —0.02 10934.30
5 39.04 38.30 0.74 1.89 11203.20

Average —1.54 —4.44

From the 4th iteration in Table 6 above, it can be observed that an approximate
convergence occurs given a PF value of 5. The YC service (loading/unloading) time in
the simulation model is kept at T = nTp, as provided in Section 4.1, where n equals 0.5 for
the above-presented case. A line plot was drawn to establish the relationship between the
absolute value of the gap  and the PFE, as shown in Figure 9 below.

Graph of 6 versus PF
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100 1y =0.8851x4 — 14.408x3 + 88.459x2 — 249.88x

+286.45
2 —
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«© 60
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0
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Figure 9. b versus PF for n = 0.5.

The subsequent plots display the trend of the changes in the relationship between the
gap, 8, and PF values when the YC service time is multiplied by the factor n, which equals
1,1.5,2.5,3.5, and 4.5. Each graph displays a polynomial equation fitted to the data points
and the corresponding R? value, indicating the goodness of fit. For n = 0.5, 2.5, 3.5, and 4.5,
a quartic polynomial fits the data, while for n = 1 and 1.5, a cubic polynomial is used.. The
R? values of all the graphs are very high (i.e., close to 1), indicating that the polynomials
used fit the data well.
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From the plots in Figures 9, 10a,b, 11a,b and 12a, it can be observed that there is an
existence of a downward falling trend at the beginning, followed by a gradual upward
rising trend. This is attributed to the approach to and departure from convergence in the
value of & with the increase in the PF values. The convergence point indicates the accurate
representation of the practical operations and processes in the mathematical model as it
occurs in the CT during the scheduled execution.

Graph of 3 versus PF (n=1) Graph of 8 versus PF (n=1.5)
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Figure 10. (a) 6 versus PF for n =1, (b) b versus PF for n = 1.5.
Graph of 6 versus PF (n=2.5) Graph of 6 versus PF (n=3.5)
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Figure 11. (a)  versus PF for n = 2.5, (b) 6 versus PF for n = 3.5.

For higher n values of 3.5 and 4.5, it can be deduced that the point of convergence
is not readily achievable compared to those of 0.5, 1, 1.5, and 2.5, except by interpolation.
The curves for n = 2.5, 3.5, and 4.5 seem to display more complexities with the possible
occurrence of multiple peaks and valleys representing the inflection points. As seen in
Figures 11b and 12a, the trends are characterized by a similar and unique pattern of higher
absolute values of 6 and more oscillations, suggesting that the relationship between the
absolute percentage value of delta and PF may no longer be tenably defined using the
provided polynomial equation of the curve. This indicates that the solution from the
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mathematical model cannot be further effectively improved using the normalized CF
values extracted from the simulation model beyond PF values of 2.5.

Graph of 8 versus PF (n=4.5) Graph of PF versus YC Service Time
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Figure 12. (a) 5 versus PF for n = 4.5, (b) PF versus YC service time.

Consequently, this may be handled by further re-examining the mathematical model,
as there might exist other crucial and dependent parameters needed to represent the
productivity of the yard handling elements well and which might not have been factored
in correctly during the model development in the previous work. This, therefore, forms a
basis for our future research.

To further establish the relationship between the PF and the YC service time, the
critical points of inflection (X, y), which give the minimum derivative in the fitted curve
polynomial, were computed for each of the earlier plotted graphs. The resulting plot is
shown in Figure 12b. It can be deduced that an inverse relationship exists between the PF
and YC service time. A quadratic polynomial was uniquely selected to fit the polynomial
and further present a simplified understanding and interpretation of the overall relationship
to the end user.

This graph is essential to a port manager when it comes to the selection of cranes for
yard operations. A new crane is likely to achieve better performance with the lowest service
time, and vice versa. This is also supported by the fact that higher productivity can be
achieved if the YC, during its service, does not waste time dealing with container rehandles.
Container pre-marshaling should be done in advance for the formulated container tuples
to minimize rehandles, which might lengthen service time and reduce the moves at the YB,
thus lowering productivity.

The gap, 5, can also be represented as a percentage change with reference to the TTT
value obtained from the mathematical modeling optimization at the end of each iteration.
The plots are shown in Figures 13a,b, 14a,b, 15a,b and 16 below. The major difference in the
regression lines in the plots below lies in their polynomial degrees, coefficients, shape, and
the range of values they predict. For n = 0.5, 1.5, 2.5, 3.5, and 4.5, a quartic polynomial fits
the data, while for n = 1, a quintic polynomial is used. To enhance simplicity and quick
understanding for the end user, a quadratic polynomial is used to fit data to describe the
relationship between PF and YC service time, as shown in Figure 16.
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Figure 13. (a) %0 versus PF for n = 0.5, (b) %5 versus PF for n = 1.
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Figure 14. (a) %0 versus PF for n = 1.5, (b) %0 versus PF for n = 2.5.
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Figure 15. (a) %0 versus PF for n = 3.5, (b) %5 versus PF for n = 4.5.
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Graph of PF versus YC Service Time
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Figure 16. PF versus YC service time.

In summary, the plots presented above display a good fit courtesy of high values
of R? which are close to 1. The slight variations depict how well the fitted polynomial
represents the data variance for each value of n. Higher values of n imply more complex
curves characterized by multiple critical points and oscillations. The presented approach
is quite similar to that conducted by Azab et al. and Zhou et al. [16,37] in terms of the
simulation-based optimization with iteration concept. The methodology proposed by
Azab et al. [16] sought to yield an improved collaborative schedule using a single loop,
whereas that of Zhou et al. [37] aimed to iteratively improve the allocation decisions
of an integrated yard allocation/vehicle congestion problem combined with a heuristic.
However, no relationship was reported to have been established between the parameters of
the integrated MIP and DES models during the iteration process. As seen in our proposed
approach, the output average time spent by the trucks in each yard block during each time
window (from each simulation run) was used to iteratively update the input congestion
factors for use in the mathematical model, which generates improved arrival schedules
(input to the simulation model). Therefore, this study’s contribution lies in improving
the representation of congestion factors in the mathematical model through an iterative
simulation-based optimization procedure.

7. Conclusions

This paper presents a DES model for use in a conventional CT as a decision support tool
during the scheduling of ETs, which are set to arrive and perform container drop-off and
pick-up operations in the yard area in either a preferred or appointed time slot. The model
allows the arriving ETs to perform a dual transaction in a single trip appointment request,
thus increasing utilization and reducing empty trips. SO and SBO iteration experiments
were conducted to demonstrate the effectiveness of the developed model on the subsequent
performance of the CT. SO was performed to determine the minimum number of gate
counters to be opened at each TW for the 24 h shift plan at a minimum gate operating cost.
Results from the preliminary systematic approach showed that the optimization algorithm
converged at the 200-iteration mark after an average simulation time of up to 3597 s and
an average OFV of USD 335.42 as the minimum cost of opening the gates. Furthermore,
from the most likely occurring gate counters’ parameter combination in the results of the
iteration, it can be observed that a maximum of two gate counters must be operational
throughout the planning horizon. Additionally, the optimization results highlight the need
to balance the conflicting objectives of the required duration of simulation time and the
number of iterations to be conducted in pursuit of an improved OFV. The decision-makers
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should adopt the best solution achieved in the shortest time possible since ET appointment
and scheduling is a dynamic problem, and the TAS should allow for real-time booking and
cancellation depending on the prevailing conditions, provided that it jointly favors both
stakeholders.

The SBO iteration methodology was also proposed to integrate the mathematical
optimization from the literature and the developed CT simulation model in our work. This
was done to iteratively improve the arrival schedule using constantly updated CF from the
simulation model until a point of convergence in the absolute difference of the average TTT
values, 6, from both models is attained. Results from the experiment show that 4 decreases
with an increase in the PF at the onset, up to the best near convergence point of 0.01 for
n equals 0.5, and then increases again for fixed YC service time values. Further, it can be
noted that a significant inverse relationship between PF values and YC service time for
the values of n equals 0.5, 1, 1.5, and 2.5 can be effectively developed using the approach.
The decision-makers can utilize the relationship when selecting a particular crane for a
specific task in the yard area while considering the stacking/unstacking and container
rehandling time, making up a single or double move. However, for values of n equal to
3.5 and 4.5, it can be noted that the developed relationship, as indicated in the plots, can
no longer be relied upon as it does not yield a direct point of convergence. Consequently,
the representation of PF and CF in the mathematical model during formulation should be
examined and reviewed further in future works. Furthermore, the quayside operations
should be incorporated into the proposed approach to enhance integration further and
improve coordination among the major sectors/resources providing critical services in a CT.
An agent-based simulation model can be further developed to study complex interactions
that might arise at a micro-level, e.g., between trucks (internal and external trucks) and
resources such as gate counters and yard handling equipment in a practical site. Having
conducted an extensive literature review, to the best of our knowledge, no other previous
studies considered a similar approach that examined gate counter optimization while
considering gate and yard operations simultaneously. This lack of directly comparable
studies presents an interesting opportunity for future research. It lays the foundation for
further exploitation and comparison as more studies adopt a similar methodology.
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Appendix A

The extension of the results obtained from the simulation optimization experiment, as
referred to in Section 6.1, is presented in Tables A1-A4 below.
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Table A1. Results of best OFV, simulation time, and gate counter combination for 10 iterations.

Experiment Replications B(eStS?)F)V Slmula(t;;) nTime Gate Counter Combination
1 (19, 30) 373.54 1739.80 1,2,1,4,2,5,3,3,2,2,3,3
2 (19, 30) 373.72 1856.70 1,2,1,4,2,5,3,3,2,2,3,3
3 (19, 30) 374.13 1815.00 1,2,1,4,2,5,3,3,2,2,3,3
4 (19, 30) 373.69 1777.27 1,2,1,4,2,5,3,3,2,2,3,3
5 (19, 30) 373.70 1821.33 1,2,1,4,2,5,3,3,2,2,3,3
6 (19, 30) 375.43 1805.21 1,2,1,4,2,5,3,3,2,2,3,3
7 (19, 30) 374.00 1824.59 1,2,1,4,2,5,3,3,2,2,3,3
8 (19, 30) 373.31 1821.63 1,2,1,4,2,5,3,3,2,2,3,3
9 (19, 30) 373.36 1811.09 1,2,1,4,2,5,3,3,2,2,3,3
10 (19, 30) 373.72 1805.54 1,2,1,4,2,5,3,3,2,2,3,3

11 (19, 30) 374.65 1774.28 1,2,1,4,2,5,3,3,2,2,3,3
12 (19, 30) 373.34 1803.41 1,2,1,4,2,5,3,3,2,2,3,3
13 (19, 30) 374.08 1798.17 1,2,1,4,2,5,3,3,2,2,3,3
14 (19, 30) 372.98 1780.49 1,2,1,4,2,5,3,3,2,2,3,3
15 (19, 30) 374.23 1803.28 1,2,1,4,2,5,3,3,2,2,3,3
16 (19, 30) 373.74 1778.78 1,2,1,4,2,5,3,3,2,2,3,3
17 (19, 30) 374.45 1827.72 1,2,1,4,2,5,3,3,2,2,3,3
18 (19, 30) 373.93 1812.62 1,2,1,4,2,5,3,3,2,2,3,3
19 (19, 30) 374.62 1844.13 1,2,1,4,2,5,3,3,2,2,3,3
20 (19, 30) 373.60 1790.92 1,2,1,4,2,5,3,3,2,2,3,3
21 (19, 30) 375.46 1814.20 1,2,1,4,2,5,3,3,2,2,3,3
22 (19, 30) 373.09 1761.66 1,2,1,4,2,5,3,3,2,2,3,3
23 (19, 30) 372.64 1783.81 1,2,1,4,2,5,3,3,2,2,3,3
24 (19, 30) 373.81 1748.23 1,2,1,4,2,5,3,3,2,2,3,3
25 (19, 30) 373.40 1741.08 1,2,1,4,2,5,3,3,2,2,3,3
26 (19, 30) 373.18 1749.38 1,2,1,4,2,5,3,3,2,2,3,3
27 (19, 30) 376.11 1770.83 1,2,1,4,2,5,3,3,2,2,3,3
28 (19, 30) 374.98 1761.61 1,2,1,4,2,5,3,3,2,2,3,3
29 (19, 30) 375.24 1739.81 1,2,1,4,2,5,3,3,2,2,3,3
30 (19, 30) 375.04 1741.94 1,2,1,4,2,5,3,3,2,2,3,3
Average 374.04 1790.15
Table A2. Results of best OFV, simulation time, and gate counter combination for 50 iterations.

Experiment Replications Bﬁlsjts(]))l;V S1mula:1s())n Time Gate Counter Combination
1 (95, 30) 362.49 2646.70 1,2,1,3,2,3,3,3,2,2,3,3
2 (95, 30) 334.39 2614.13 2,2,2,2,2,2,2,2,2,2,2,2
3 (89, 30) 335.78 2597.12 2,2,2,2,2,2,2,2,2,2,2,2
4 (98, 30) 363.25 2514.51 2,2,1,4,3,52,3,2,2,3,2
5 (71, 30) 357.33 2555.19 4,2,2,2,2,2,2,3,2,3,2,4
6 (95, 30) 335.97 2459.54 2,2,2,2,2,2,2,2,2,2,2,2
7 (92, 30) 336.28 2441.23 2,2,2,2,2,2,2,2,2,2,2,2
8 (99, 30) 364.43 2581.84 2,3,233,333233,3
9 (95, 30) 334.99 2576.05 2,2,2,2,2,2,2,2,2,2,2,2
10 (89, 30) 353.85 2480.84 2,2,2,3,3,33,3,2,22,3
11 (90, 30) 367.23 2558.64 2,2,4,52,2,3,2,2,3,2,3
12 (97, 30) 360.53 2437.02 2,2,1,3,2,5,3,3,2,2,3,2
13 (72, 30) 365.48 2558.09 3,2,3,3,3,2,33,2,3,2,4
14 (91, 30) 363.80 2583.20 3,2,1,3,2,33,32,3,3,3
15 (87, 30) 362.75 2435.68 2,2,1,4,2,4,3,3,2,2,3,3
16 (77, 30) 367.05 2318.36 3,2,2,3,2,33,32,3,3,4
17 (95, 30) 334.99 2408.15 2,2,2,2,2,2,2,2,2,2,2,2

~
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Table A2. Cont.

Experiment Replications B(&S;S%I;V Slmula:;())n Time Gate Counter Combination
18 (97, 30) 364.09 2326.07 2,2,1,4,3,52,3,2,2,3,2
19 (71, 30) 356.58 2327.95 4,2,2,2,2,2,2,3,2,3,2,4
20 (93, 30) 364.35 2371.75 2,3,1,3,2,52,3,2,23,3
21 (95, 30) 336.72 2604.53 2,2,2,2,2,2,2,2,2,2,2,2
22 (91, 30) 360.94 2330.55 3,2,1,3,2,3,3,3,2,2,3,3
23 (77, 30) 365.05 2313.03 3,2,3,3323,3,2,3,2,4
24 (99, 30) 363.69 2399.64 2,2,2,3253,3,223,3
25 (94, 30) 336.60 3079.78 2,2,2,2,2,2,2,2,2,2,2,2
26 (77, 30) 367.67 2639.87 3,2,2,3,2,33,32,3,3,4
27 (90, 30) 364.60 3491.71 2,3,2323333233,3
28 (94, 30) 336.13 2765.46 2,2,2,2,2,2,2,2,2,2,2,2
29 (99, 30) 361.83 3332.31 1,2,1,3,2,3,3,3,2,2,3,3
30 (94, 30) 335.19 2513.79 2,2,2,2,2,2,2,2,2,2,2,2

Average 353.80 2575.42
Table A3. Results of best OFV, simulation time, and gate counter combination for 100 iterations.
Experiment Replications B?IS;S?)I;V Slmula:;())n Time Gate Counter Combination
1 (95, 30) 335.90 3726.29 2,2,2,2,2,2,2,2,2,2,2,2
2 (87, 30) 336.33 3711.25 2,2,2,22,2,2,2,2,2,2,2
3 (140, 30) 334.88 3700.98 2,1,2,2,2,2,2,2,2,2,2,2
4 (148, 30) 338.98 3704.93 2,2,3,2,2,2,2,2,2,2,2,2
5 (134, 30) 335.56 3592.76 2,2,2,22,2,2,2,2,2,2,2
6 (94, 30) 334.79 3602.35 2,2,2,2,2,2,2,2,2,2,2,2
7 (103, 30) 337.03 3588.44 2,2,2,2,3,22,2,2,2,2,2
8 (121, 30) 334.16 3570.62 2,1,2,2,2,2,2,2,2,2,2,2
9 (94, 30) 336.17 3733.59 2,2,2,2,2,2,2,2,2,2,2,2
10 (124, 30) 339.20 3571.49 2,3,2,2,2,2,2,2,2,2,2,2
11 (94, 30) 335.30 3521.49 2,2,2,2,2,2,2,2,2,2,2,2
12 (95, 30) 335.34 3482.06 2,2,2,2,2,2,2,2,2,2,2,2
13 (94, 30) 335.31 3500.91 2,2,2,2,2,2,2,2,2,2,2,2
14 (123, 30) 336.68 3722.59 2,2,2,2,2,2,2,2,2,2,2,2
15 (122, 30) 339.79 3602.76 2,3,2,2,2,2,2,2,2,2,2,2
16 (146, 30) 338.92 3460.91 3,2,2,2,2,2,2,2,2,2,2,2
17 (135, 30) 336.76 3609.78 2,2,2,2,2,2,2,2,2,2,2,2
18 (102, 30) 336.78 3687.66 2,2,2,2,3,2,2,2,2,2,2,2
19 (121, 30) 342.43 3614.87 2,2,2,2,4,2,2,2,2,2,2,2
20 (87,30) 335.67 3755.69 2,2,2,2,2,2,2,2,2,2,2,2
21 (150, 30) 339.72 3738.85 2,2,3,2,2,2,2,2,2,2,2,2
22 (94, 30) 335.33 3815.82 2,2,2,2,2,2,2,2,2,2,2,2
23 (130, 30) 334.68 3665.46 2,1,2,2,2,2,2,2,2,2,2,2
24 (95, 30) 334.93 3620.66 2,2,2,2,2,2,2,2,2,2,2,2
25 (121, 30) 341.21 3624.38 2,2,2,2,4,2,2,2,2,2,2,2
26 (95, 30) 335.90 3533.24 2,2,2,2,2,2,2,2,2,2,2,2
27 (134, 30) 339.88 3550.20 2,2,3,2,2,2,2,2,2,2,2,2
28 (95, 30) 335.57 3663.92 2,2,2,2,2,2,2,2,2,2,2,2
29 (131, 30) 336.13 3737.63 2,2,2,2,2,2,2,2,2,2,2,2
30 (151, 30) 336.88 3611.79 2,2,2,3,2,33,3,2,3,3,4
Average 336.87 3634.11
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Table A4. Results of best OFV, simulation time, and gate counter combination for 150 iterations.

Experiment Replications B(&S;S%I;V Slmula:;())n Time Gate Counter Combination
1 (147, 30) 334.88 4706.09 2,2,2,2,2,2,2,2,2,2,2,2
2 (89, 30) 336.15 5021.28 2,2,2,2,2,2,2,2,2,2,2,2
3 (167, 30) 334.41 4719.36 2,2,2,2,2,2,2,2,2,2,2,2
4 (146, 30) 336.81 4627.15 2,2,2,2,2,2,2,2,2,2,2,2
5 (150, 30) 334.30 4837.36 2,1,2,2,2,2,2,2,2,2,2,2
6 (94, 30) 335.82 4786.05 2,2,2,2,2,2,2,2,2,2,2,2
7 (95, 30) 335.61 4817.81 2,2,2,2,2,2,2,2,2,2,2,2
8 (175, 30) 335.91 4654.58 2,2,2,2,2,2,2,2,2,2,2,2
9 (180, 30) 335.59 4882.80 2,2,2,2,2,2,2,2,2,2,2,2
10 (136, 30) 335.87 4634.39 2,2,2,2,2,2,2,2,2,2,2,2

11 (95, 30) 335.46 4876.48 2,2,2,2,2,2,2,2,2,2,2,2
12 (159, 30) 334.14 4619.38 2,1,2,2,2,2,2,2,2,2,2,2
13 (87,30) 336.00 4826.03 2,2,2,2,2,2,2,2,2,2,2,2
14 (135, 30) 335.22 4495.80 2,2,2,2,2,2,2,2,2,2,2,2
15 (119, 30) 334.20 4827.79 2,2,2,2,2,2,2,2,2,2,2,2
16 (173, 30) 332.45 4581.92 2,1,2,2,2,2,2,2,2,2,2,2
17 (122, 30) 333.62 4869.33 2,1,2,2,2,2,2,2,2,2,2,2
18 (175, 30) 335.35 4515.13 2,2,2,2,2,2,2,2,2,2,2,2
19 (134, 30) 334.72 4810.52 2,2,2,2,2,2,2,2,2,2,2,2
20 (176, 30) 335.89 4863.81 2,2,2,2,2,2,2,2,2,2,2,2
21 (87, 30) 334.77 4526.43 2,2,2,2,2,2,2,2,2,2,2,2
22 (197, 30) 335.15 4839.62 2,1,2,2,2,2,2,2,2,2,2,2
23 (95, 30) 335.21 4525.94 2,2,2,2,2,2,2,2,2,2,2,2
24 (176, 30) 334.32 4514.03 2,1,2,2,2,2,2,2,2,2,2,2
25 (131, 30) 336.30 477211 2,2,2,2,2,2,2,2,2,2,2,2
26 (127, 30) 336.08 4483.52 2,2,2,2,2,2,2,2,2,2,2,2
27 (166, 30) 340.27 4787.60 2,2,3,2,2,2,2,2,2,2,2,2
28 (129, 30) 336.21 4494.32 2,2,2,2,2,2,2,2,2,2,2,2
29 (152, 30) 334.19 4837.28 2,1,2,2,2,2,2,2,2,2,2,2
30 (128, 30) 335.40 4514.55 2,2,2,2,2,2,2,2,2,2,2,2
Average 335.34 4708.95
Appendix B

The extension of the results obtained from the simulation-based optimization iteration
experiment, as referred to in Section 6.2, are presented in Tables A5-A9 below.

Table A5. SBO iteration results of § and 6§ (%) for PF = 1.

Optimization

Simulation

(TTTx — TTTy)

Iteration TTT, TTT, s 5 (%) OFV (L TTT)
1 140.89 37.68 103.20 73.25 40,430.40
2 136.80 37.86 98.94 72.33 39,259.30
3 160.88 37.95 122.92 76.41 46,167.10
4 153.20 37.88 115.32 75.27 43,966.00
5 156.22 38.22 118.00 75.53 44,833.20
Average 111.68 74.56
Table A6. SBO iteration results of 4 and 6 (%) for PF = 2.
. Optimization Simulation (TTTx — TTTy)
Iteration TTT, TTT, 5 5(%) OFV (LTTT)
1 74.93 37.69 37.24 49.70 21,502.20
2 73.68 37.88 35.80 48.58 21,143.80
3 83.44 37.64 45.80 54.89 23,944.30
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] Optimization = Simulation (TTTx — TTTy)
Iteration TTT, TTT, s 5(%) OFV (L TTT)
4 74.25 37.82 36.43 49.06 21,309.40
5 75.67 37.84 37.83 50.00 21,715.00
Average 38.62 50.45
Table A7. SBO iteration results of 4 and 6 (%) for PF = 3.
) Optimization = Simulation (TTTx — TTTy)
Tteration TTT, TTT, 5 5 (%) OFV (LTTT)
1 52.94 37.99 14.95 28.23 15,192.80
2 53.14 38.18 14.97 28.16 15,250.60
3 56.89 38.09 18.79 33.04 16,324.80
4 55.34 37.58 17.76 32.09 15,881.70
5 57.50 37.66 19.84 34.51 16,499.50
Average 17.26 31.21
Table A8. SBO iteration results of 4 and 6 (%) for PF = 4.
. Optimization = Simulation (TTTx — TTTy)
Iteration S— TTT, s 5 (%) OFV (LTTT)
1 41.95 37.98 3.97 9.46 12,038.10
2 42.08 38.17 391 9.30 12,076.90
3 45.34 38.00 7.34 16.20 13,011.20
4 43.75 38.10 5.65 12.92 12,555.50
5 42.80 38.02 4.78 11.16 12,281.40
Average 5.13 11.81
Table A9. SBO iteration results of § and 6§ (%) for PF = 6.
) Optimization = Simulation (TTTx — TTTy)
Iteration TTT, TTT, s 5 (%) OFV (LTTT)
1 30.96 38.05 —7.09 —22.92 8883.39
2 31.10 37.90 —6.81 —21.89 8923.53
3 32.30 37.96 —5.67 —17.54 9267.89
4 30.15 38.13 -7.97 —26.44 8653.41
5 32.85 37.85 —5.01 —15.24 9425.66
Average —6.51 —20.81
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