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Abstract: Black carbon (BC) is a major component of ambient particulate matter (PM), one of the
six Environmental Protection Agency (EPA) Criteria air pollutants. The majority of research on the
adverse effects of BC exposure so far has been focused on respiratory and cardiovascular systems in
children. Few studies have also explored whether prenatal BC exposure affects the fetus, the placenta
and/or the course of pregnancy itself. Thus, this contemporary review seeks to elucidate state-of-the-
art research on this understudied topic. Epidemiological studies have shown a correlation between
BC and a variety of adverse effects on fetal health, including low birth weight for gestational age
and increased risk of preterm birth, as well as cardiometabolic and respiratory system complications
following maternal exposure during pregnancy. There is epidemiological evidence suggesting that
BC exposure increases the risk of gestational diabetes mellitus, as well as other maternal health issues,
such as pregnancy loss, all of which need to be more thoroughly investigated. Adverse placental
effects from BC exposure include inflammatory responses, interference with placental iodine uptake,
and expression of DNA repair and tumor suppressor genes. Taking into account the differences in BC
exposure around the world, as well as interracial disparities and the need to better understand the
underlying mechanisms of the health effects associated with prenatal exposure, toxicological research
examining the effects of early life exposure to BC is needed.

Keywords: air pollution; black carbon; pregnancy; placenta; respiratory disease; cardiometabolic
disease; inflammation; low birth weight; preterm birth; gestational diabetes mellitus

1. Introduction

Black carbon (BC), also called elemental carbon as it consists of pure carbon bound
together in several forms, is a major component of fine particulate matter (PM) with an
aerodynamic diameter less than or equal to 2.5 µm (PM2.5). Black carbon has not been well
defined as it is often confused with soot, which consists of graphite-like carbon layers. The
definition of BC, on the other hand, should be restricted to carbonaceous matter of uncertain
character that absorbs and reflects light [1]. Black carbon is also continuously confused
with carbon black (CB). However, these terms are not interchangeable, as carbon black
is “a manufactured product with well-controlled properties whereas BC is an undesired,
incomplete-combustion byproduct with diverse properties” [2]; BC particles are formed
during incomplete combustion of fossil fuel, biofuel, and biomass, and thus heavy emissions
arise from household devices, such as cookstoves and fireplaces. Forest/wildfires have
also proven to be a major source of BC [3]. Apart from those sources, both naturally
occurring and anthropogenic soot consists primarily of BC particles. More than half of the
anthropogenic emissions of BC into the Earth’s atmosphere comes from Asia, with China
being the biggest contributor [4]. Some predictions concerning the growth of BC emissions
suggest rates up to 2183 Gg/yr by the year 2050.

Currently, there are no US federal standards for BC. The U.S. Environmental Protection
Agency (EPA) provides a primary (health-based) annual standard for PM2.5 at 12.0 µg/m3

and secondary (welfare-based) annual standard for PM2.5 at 15.0 µg/m3; PM2.5 absorbance
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often serves as a proxy for BC exposure [5]. However, no regulations currently exist
regarding the composition of PM2.5, even though health effects can vary widely depending
on the source and percentages of individual components [6]. Black carbon exposure varies
greatly between different regions of the world, providing the potential for health disparities.
For example, cookstoves that use biomass as a fuel are still used by 60% of all households
in India [7], where mostly women use them to cook under unventilated conditions, which
makes them the primary household members exposed to BC. Under such conditions,
pregnant women and their fetus are at even greater risk as BC has been shown to pass the
placental barrier [8].

A variety of organ systems in both children and adults can be adversely impacted by the
inhalation of BC particles. Both short-term and long-term BC exposure can lead to increased
hospitalizations due to respiratory and cardiovascular morbidity [9]. Underlying diseases,
such as coronary artery disease and diabetes, can exacerbate development of subclinical
cardiovascular morbidity resulting from BC exposure [10]. It has also been shown that
exposure to BC in childhood is associated with a higher risk of asthma attacks [11] and
decreased cognitive function, including altered behavioral development [12]. However, it is
less clear how prenatal exposure to BC might affect fetal health and pregnancy itself. In this
contemporary review, we will examine how inhalation exposure to BC not only can affect the
mother’s health during pregnancy, but also pregnancy outcomes and fetal health (Table 1).

Table 1. Summary of prenatal air pollution and black carbon (BC) epidemiological studies (epidemio-
logical, unless otherwise specified).

References Study Design Outcome Contaminant Effect

Fleisch et al., 2015
[13]

Air pollution
exposure in the 3rd
trimester

Low birth weight BC↑

Brauer et al., 2008
[14]

Air pollution
exposure

Low birth weight;
small for gestational
age birth

BC↑, PM10↑, PM2.5↑,
CO↑, NOx↑

Rokoff et al., 2018
[15]

Exposure to traffic
pollution in
combination with
smoking and PFAS
plasma concentration

Low birth weight for
gestational age

BC↑, PFOS↑,
smoking↑

Sun et al., 2021
[16]

Air pollution
exposure during
entire pregnancy
period

Decreased
Weight-for-Length
(WLZ); BMI-for-Age
(BMIz); and
Weight-for-Age
(WAZ) at birth, 1- 4-
and 6 years of age

BC↑, PM2.5↑, OC↑,
NH4

+↑, NO3
−↑, and

SO4
2−↑ during the

2nd and 3rd
trimesters at 1, 4, and
6 years in boys
PM2.5↑, NH4

+↑, and
NO3

−↑ during the 1st
and 2nd trimesters at
birth in girls

Dong et al., 2022 [17] Air pollution
exposure Low birth weight

BC↑, NO2↑
during the 2nd and
3rd trimesters at 1,-4,
and 6- years-old in
boys

Harnung Scholten
et al., 2021
[18]

Air pollution
exposure in 2nd and
3rd trimester

Decrease in telomere
length in umbilical
cord leukocytes

BC↑ in the 3rd
trimester, but ↓ in the
2nd trimester
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Table 1. Cont.

References Study Design Outcome Contaminant Effect

Riddell et al., 2022
[19]

Air pollution
exposure during
pregnancy in Latinx,
Black, Asian, and
White women

Risk of preterm birth
BC↑, PM2.5↑, ozone↑
for Latinx and Black
women

Kingsley et al., 2017
[20]

Air pollution
exposure Risk of preterm birth BC↑

Qiao et al., 2022
[21]

Air pollution
exposure Risk of preterm birth BC–N.E.

Han et al., 2020
[22]

Air pollution
exposure during the
1st trimester

Premature rupture of
membranes (PROM) BC↑

Harris et al., 2015
[23]

Traffic-related air
pollution exposure
during

Lower verbal and
non-verbal IQ;
reduced visual motor
skills

Living < 50 m to a
major roadway↑
BC–N.E.

Harris et al., 2016 [24] Traffic-related air
pollution exposure

Higher executive
function BC↑

Cowell et al., 2015
[25]

Air pollution
exposure

Decrease in Attention
Concentration Index
(ACI)

BC↑, boys > girls

Clark et al., 2010 [26]

Air pollution
exposure during
pregnancy and the
first year of life

Increased asthma
incidence BC↑

Chen et al., 2022 [27] Air pollution
exposure

Increased incidence of
hay fever and allergic
rhinitis

BC↑, PM2.5↑

Chiu et al., 2014
[28]

Air pollution
exposure Childhood wheeze BC↑, PM2.5↑

Witters et al., 2021
[29]

Air pollution
exposure in 3rd
trimester

Lower skin
hyperemia

BC↑, PM2.5↑,
PM10↑ and NO2↑

van Rossem et al.,
2015
[30]

Air pollution
exposure 2 to 30 days
before birth

Increase in newborn
systolic blood
pressure

BC↑, PM2.5↑, ozone↓

Madhloum et al.,
2019 [31]

Air pollution
exposure during the
last 4 months of
gestation

Increase in newborn
systolic and diastolic
blood pressure

BC↑

Fleisch et al., 2017 [32] Air pollution
exposure

Increased leptin
concentration, total
fat mass and insulin
resistance upon
exposure in the 3rd
trimester;
Decreased insulin
resistance upon
exposure in the 1st
and 2nd trimester

BC↑
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Table 1. Cont.

References Study Design Outcome Contaminant Effect

Yu et al., 2020
[33]

Air pollution
exposure during 2nd
trimester

Increased risk of
gestational diabetes
mellitus (GDM)

BC↑, PM2.5↑

Fleisch et al., 2014 [34]
Air pollution
exposure during 2nd
trimester

Increased risk of
impaired glucose
tolerance (IGT)

BC↑, PM2.5↑, traffic
density↑

Mandakh et al., 2020
[35]

Air pollution
exposure

Risk of preeclampsia
and small for
gestational age birth

BC↑, PM2.5↑,
PM10↑ and NOx↑

Gaskins et al., 2020
[36]

Air pollution
exposure for women
who underwent
assisted reproduction

Increased risk of
pregnancy loss 30
days after a positive
hCG test

NO2 ↑
BC–N.E., PM2.5–N.E.

Verheyen et al., 2021
[37]

Air pollution
exposure in the 2nd
and 3rd trimester

Increased hair cortisol
concentration BC↑

Saenen et al., 2016
[38]

Air pollution
exposure

Increased
3-nitrotyrosine
placental levels

BC↑, PM2.5↑

Hargiyanto et al., 2021
[39]

BC exposure of rats
via inhalation during
pregnancy

Increased amount of
Hofbauer cells and
expression of NF-κB

BC↑

Neven et al., 2021 [40] Air pollution
exposure

Increased placental
iodine uptake

PM2.5↑ in the 2nd
trimester, but ↓ in the
3rd trimester
BC–N.E., NO2–N.E.

Howe et al., 2018 [41] Air pollution during
pregnancy

Increased newborn
total thyroxine levels
(T4)

PM2.5↑, PM10↑

Neven et al., 2018 [42] Air pollution
exposure

Increased DNA
mutation rate and
increased methylation
of DNA repair genes

BC↑

Kingsley et al., 2017
[43]

Air pollution
exposure

Decreased expression
of genes associated
with fetal growth or
cholesterol placental
exchange

BC↑

↑—an increase in the air pollutant concentration causes the effect, ↓—a decrease in the air pollutant concentration
causes the effect, N.E.—no effect is produced by changes in the air pollutant concentration.

The studies discussed in this review were selected by searching PubMed and Google
Scholar using the following terms: “black carbon” and “routes of exposure” OR “fetus”
OR “infants” OR “children” OR “placenta” OR “maternal health” OR “pregnancy loss”
OR “diabetes” and were published between 2008–2022. A total of 42 studies pertaining
to the topic were found, and 11 were excluded as only an abstract was openly accessible,
therefore 31 studies were considered. This review primarily focuses on short-term effects
of prenatal BC exposure, as the majority of published data are focused on such outcomes;
there are currently very few studies that focus on long-term or persistent effects.
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2. Epidemiological Studies
2.1. Impact of BC on Fetal and Child Health
2.1.1. Gestational Age and Low Birth Weight

Fetal exposure is determined in part by whether substances have the ability to cross
the placenta, i.e., the maternal-fetal barrier [44,45]. The primary route of exposure to BC is
inhalation. BC particles are easily distributed throughout the body due to their small size
(0.01–1 µm) and large surface area making them highly respirable and able to penetrate
deep into the lungs [46]. In 2019, the first evidence emerged that inhaled BC particles
have the ability to translocate from the mother’s lungs, through the placenta to the fetus,
where they can accumulate on the fetal side of the placenta [8]. Fetal exposure to BC varies
depending on the mother’s exposure to BC and stage of fetal development at the time of
exposure. The thickness and permeability of the placenta changes as an embryo develops
into a fetus, with the placenta being thicker and less penetrable early in pregnancy and
gradually becoming thinner and more permeable during the last three months [47,48]. The
thinning of the placenta can lead to increased risk for adverse birth outcomes, if the fetus is
exposed to BC later in pregnancy [49].

Gestational age and birth weight are well-known predictors for overall neonatal health.
Low birth weight is linked to increased neonatal mortality and morbidities, including de-
layed visual and cognitive development, emotional-behavioral defects during childhood,
and increased risk of various diseases in adulthood such as hypertension, dyslipidemia, and
chronic kidney disease [50–53]. Many epidemiological studies have linked ambient air pol-
lution to reduced fetal growth, low birth weight, and premature birth. In a cohort study con-
ducted in Greater Boston, infants who were exposed during the third trimester of pregnancy
to the highest quartile of BC (vs. lowest quartile) had birth weight-for-gestational age z-
score of−0.17 when adjusted for the covariates with a 95% confidence interval (CI) = −0.29
to −0.05 (−0.31 before adjusting with CI = −0.43 to −0.19), where the exposure was posi-
tively correlated to mothers living close to major roadways [13]. A similar cohort study
investigated birth outcomes affected by traffic-related air pollution exposure in Vancou-
ver, British Columbia [14]. The authors demonstrated that small-for-gestational age birth
and low birth weight risk were increased in infants prenatally exposed to BC, PM10,
PM2.5, carbon monoxide (CO), and nitrogen oxide (NOx). Namely, the odds ratio (OR)
of small for gestational age birth was 1.02 for PM2.5 (95% CI = 1.00–1.03) and 1.01 for BC
(95% CI = 0.99–1.03) after adjusting for covariates; the OR for low birth weight was
1.03 (95% CI = 0.99–1.07) and 1.00 (95% CI = 0.95–1.07), respectively. These results were
based on approximating exposures with land use regression models (LURs). The re-
sults based on the proximity to major traffic were much more robust: mothers residing
within 50 m of a highway had a 26% increase in risk of small for gestational age birth
(95% CI = 1.07 to 1.49), and an 11% increase for risk of low birth weight in full-term in-
fants (95% CI = 1.01 to 1.23). A study from 2018 evaluated interactions between early
pregnancy exposure to traffic pollution by BC output, cigarette smoke, and per- and
polyfluoroalkyl substances (PFAS) and birth weight-for-gestational-age; the authors esti-
mated a 0.08 reduction (95% CI = −0.15 to −0.01) in birth weight-for-gestational age for
each interquartile range increased increment in BC exposure during the first trimester [15].
In a study published in 2021, authors observed patterns between prenatal exposure to
PM2.5, BC, NH4

+, NO3
2−, and SO4

2− and decreased weight-for-length z-score (WLZ) and
weight-for-age z-score (WAZ) in schoolchildren aged 1-, 4-, and 6 years of age [16]. In
particular, at 6 years old, WAZ in boys decreased by −1.081 for the 2nd trimester expo-
sure (95% CI = −1.915 to −0.24) and by −0.855 (95% CI = −1.587 to −0.124) during the
3rd trimester BC exposure. WLZ/BMIz significantly decreased in both boys and girls as
measured at 4- and 6 years of age, and revealed an association with exposure throughout
pregnancy. In another recent study [17], it was calculated that throughout pregnancy the av-
erage birth weight drops by 17 g for every 0.14 µg/m3 increase in BC (95% CI = 15.4 to 18.6)
after exposure in the time period of 0–30 days before delivery. The effects of prenatal BC
exposure on umbilical cord leukocytes, placenta, and maternal leukocytes’ telomere length,
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a biomarker of cellular aging, were also recently evaluated [18]. This study determined
that for each interquartile range increase in BC exposure in the third trimester, the telomere
length in umbilical cord leukocytes decreased by 19% (95% CI = −29 to −6). Interestingly
enough, BC exposure in the second trimester had the opposite effect. In this case, telom-
ere length increased by 22% (95% CI = 2 to 46) for each interquartile range increase in
BC; placenta and maternal blood cells were not affected by such exposure. The increase
in leukocyte telomere length observed after exposure to BC in the second trimester was
explained by the authors, in part by inflammatory responses which caused the neutrophil
faction to increase in number; enhanced neutrophil numbers have been shown to lead
to increased telomere length [54]. Such an inflammatory reaction can also cause T- and
B-lymphocytes to proliferate at a higher rate, which in turn can increase the length of an
average telomere.

2.1.2. Preterm Birth

Studies have examined the associations between air pollution exposure among preg-
nant women and preterm birth risk, with some even considering racial disparities. In par-
ticular, one group of researchers calculated that the risk of preterm birth in Black women
exposed to 0.7 µg BC/m3 vs. Black women exposed to 0.14 µg/m3 BC was 6.8% higher
(95% CI = 0.1 to 13.5) and for Latinx women, the risk was 2.1% higher (95% CI = −1.1 to 5.2) [19].
A study in Rhode Island on preterm birth associated with air pollution exposure used two
different exposure assessment approaches and arrived at conflicting conclusions: no associa-
tion between preterm birth OR and BC exposure was observed as estimated via LUR models,
while monitored BC exposure was strongly correlated with preterm birth risk (OR = 1.21,
95% CI = 1.05 to 1.39) [20]. The association between BC exposure and small for gestational
age and low birthweight outcomes were inconsistent between different exposure assessment
models, as well as between different trimesters. In contrast, a case–control study conducted in
twins demonstrated no association between BC exposure and preterm birth; the average BC
exposure during pregnancy in the preterm birth case was 3.59 µg/m3 (95% CI = 3.29 to 3.77) vs.
3.58 µg/m3 (95% CI = 3.35 to 3.74) for the non-preterm birth [21]. An additionally investigated
adverse birth outcome is premature rupture of membranes (PROM). In a 2020 study, the authors
investigated whether air pollution during the 1st trimester was associated with PROM [22].
The adjusted odds ratio (aOR) of PROM in this case was 1.05 (95% CI = 1.01 to 1.09) per each
1 µg/m3 of BC exposure during the 1st trimester. These latter findings need to be reproduced
for definitive conclusions, and other adverse birth outcomes, such as stillbirth and miscarriage,
should be investigated to fill in those gaps in knowledge.

2.1.3. Adverse Neurological Health Effects

There is increasing evidence linking traffic-related pollution to cognitive, behavioral,
and neurodevelopmental problems in childhood. In a cohort study conducted in eastern
Massachusetts, children whose mothers lived less than 50 m from a major roadway during
pregnancy had a 3.8 reduction in verbal IQ (95% CI =−8.2 to 0.6), 7.5 reduction in nonverbal
IQ (95% CI = −13.1 to −1.9), and a 5.3 reduction in visual motor skills (95% CI = −11 to 14)
compared to children whose mothers lived more than 200 m away from major roadways
during pregnancy [23]. However, full adjustment for BC exposure during the 3rd trimester
failed to show a significant difference. Interestingly, another group of researchers ana-
lyzing the same cohort found that 3rd trimester BC exposure was associated with lower
scores on Behavior Rating Inventory of Executive Function (−1.2 on Metacognition Index,
95% CI = −2.2 to −0.2), and lower scores on the Strengths and Difficulties Questionnaire
(−0.9 on total difficulties, 95% CI = −1.4 to −0.4), which suggests enhanced executive
function [24].

A cohort study from Boston, MA investigated whether exposure to traffic-related
BC impacted neurodevelopmental abilities in children exposed in utero [25] by mea-
suring neurodevelopment 6 years later via Wide Range Assessment for Memory and
Learning (WRAML2). The study revealed differences in learning and memory perfor-
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mance in male and female children exposed to the same level of BC; for each interquar-
tile increase in BC exposure, Attention Concentration Index (ACI) in boys was low-
ered by −6.03 (95% CI = −12.8 to 0.76), whereas ACI in girls was reduced by only by
−1.86 (95% CI = −8.4 to 4.6). Taken together, these findings emphasize the importance of
analyzing cognitive endpoints in the context of prenatal BC exposure.

2.1.4. Adverse Respiratory Health Effects

In contrast to the plethora of studies investigating the effects of early life air pollution
exposure, as an entire entity on child’s respiratory health, very few focused on the con-
sequences of prenatal BC exposure, alone. Clark et al., (2010) conducted a case–control
study of children with and without asthma, where they analyzed the air pollution levels
to which children were exposed to in utero and during the first year of life [26]. Prenatal
exposure to BC, measured as 10−5/m increase in filter-based light absorbance, was higher
in asthmatic children than controls (1.37 ± 0.66 vs. 1.34 ± 0.65, respectively). In a study
released in July of 2022, authors reported that maternal exposure to air pollution during
pregnancy increased the risk in kindergarteners of developing hay fever and allergic rhini-
tis, a chronic inflammatory disease affecting nasal pathways [27]. Each IQR increase in
maternal exposure to BC during pregnancy was associated with an increased prevalence
ratio of doctor-diagnosed allergic rhinitis (1.42; 95% CI = 1.21 to 1.66), while prevalence
ratio of current hay fever was increased by 1.58 (95% CI = 1.31 to 1.90). Another study
examined the effects of prenatal exposure to air pollution on wheezing patterns in children
as young as 2 years of age [28]. The authors observed a statistically significant associations
between high prenatal BC exposure and wheeze (OR = 1.84, 95% CI = 1.08 to 3.12). More
studies focusing on prenatal exposure to BC are warranted to confirm these findings.

2.1.5. Adverse Cardiometabolic Health Effects

There are multiple epidemiological studies linking BC exposure to the development
or progression of chronic non-communicable diseases, such as cardiovascular disease,
diabetes, and osteoporosis [55–59]. For example, a study from Belgium investigated the
effect of pre- and postnatal exposure to BC, PM2.5, PM10, BC, and NO2 on development of
heat-related skin hyperemia, which was used as a biomarker for microvasculature [29]. Skin
microvascular blood tests were performed on children between 4 and 6 years-of-age. Results
revealed that an IQR increment in BC exposure during the third trimester of pregnancy was
associated with an 11.5% decrease in skin hyperemia (95% CI = −20.1 to −1.9). There is
also emerging evidence that BC exposure stimulates a hypertension-like response in utero.
In a study using a Boston-area cohort, authors reported that prenatal exposure to ambient
PM2.5 and BC averaged over 2 to 90 days before birth was associated with a 1.00 mmHg
increase in newborn systolic blood pressure (SBP) for each 0.32 µg/m3 increase in BC
(95% CI = 0.1 to 1.8); in contrast, the same study demonstrated that a 13.5 ppb increase in
ozone was associated with a –2.3 mmHg drop in neonatal SBP (95% CI = −4.4 to −0.2) [30].
In the Environmental Influence on Ageing in Early Life (ENVIRONAGE) study, a birth
cohort study conducted in Belgium between 2010–2013, authors associated a 1.4 mmHg
increase in newborn systolic blood pressure (95% CI =−0.3 to 3.1) and a 1.10 mmHg increase
in diastolic blood pressure (95% CI =−0.5 to 2.7) for each 0.5 µg/m3 increase in BC exposure
during the last 4 months of pregnancy [31]. Another study demonstrated that proximity
to a major roadway, and exposure levels of BC and PM2.5 at the time of delivery are
correlated with cardiometabolic health in infants [32]. The authors determined that higher
BC exposure during the 3rd gestational trimester (mean BC concentration of 0.7 µg/m3)
was correlated with higher leptin concentrations in both early and mid-childhood, as well
as higher insulin resistance and fat mass in mid-childhood. Total fat mass of children
whose mothers lived less than 50 m from a major roadway at the time of delivery was on
average 2.1 kg higher (95% CI = 0.8 to 3.5) than that of children whose mothers lived farther
than 200 m away. Interestingly, for each interquartile increment in BC exposure during
the 1st and 2nd trimester, insulin resistance decreased by 17.1% (95% CI = −27.6 to −5.2).
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However, the authors discarded these findings due to inconsistency. Further research
examining the effects of BC on cardiovascular and metabolic disease in children is essential.

2.2. Impact of BC on Maternal Health
2.2.1. Gestational Diabetes and Type 2 Diabetes

Gestational diabetes mellitus (GDM) is a diabetes diagnosis usually made in the sec-
ond or third trimester of pregnancy, in the absence of diabetes prior to gestation [60]. As
the rate of obesity has increased across the US, so has the prevalence of GDM; preva-
lence of GDM per 100 people has increased from 4.6 (95% CI = 4.1 to 5.1) in 2006 to
8.2 (95% CI = 7.5 to 8.9) in 2016 with a relatively increased rate of 78% [61]. Both mother
and fetus tend to be at a higher risk for adverse health outcomes when the pregnancy is
complicated by GDM. Metabolic syndrome, cardiovascular disease, and type 2 diabetes
are more likely to develop in mothers with GDM [62]. Studies suggest that women with
GDM have a 9.51 times higher risk of progression to type 2 diabetes mellitus (T2DM)
throughout their life (95% CI = 7.14 to 12.67) [63]. Both GDM and T2DM are mechanis-
tically similar via changes in insulin resistance and beta-cell dysfunction. The maternal
risk factors for GDM have been identified as age, ethnicity, genetic susceptibility, family
history of diabetes, obesity, and hypertension [64]. In addition to these well-established
risk factors, there is growing evidence that environmental pollutants, such as BC and
ambient PM, may be a significant risk factor for GDM. Recent studies in both humans
and animals shed light on this possible association. Previous studies have suggested
that outdoor air pollution is associated with type 2 diabetes via multiple pathways, such
as systemic inflammation, oxidative stress and endothelial dysfunction [65]. Combined
Geophysical-Statistical Methods has been used to estimate the average individual exposure
concentrations for various air pollutants in the 1st or 2nd, or 1st and 2nd trimesters [33].
The investigators found that exposure to BC was associated with an increased risk of
GDM as a result of air pollution exposure in the 2nd trimester of pregnancy (aOR = 1.15
per each IQR increase in BC; 95% CI = 1.07 to 1.25). However, another study using data
gathered in Boston (MA) revealed that BC, PM2.5 exposure, and traffic density during
pregnancy were associated with impaired glucose tolerance (IGT), but not GDM; women
exposed to the highest quartile of BC vs. lowest were at a greater risk of developing
IGT (OR = 2.87; 95% CI = 0.93 to 8.83) [34]. Prevalence of IGT was increased in the highest
PM2.5 (OR = 2.63, 95%CI = 1.15 to 6.01) exposure group and those associated with traffic
density (OR = 2.66, 95% CI = 1.24 to 5.71). Unfortunately, there are limited studies eval-
uating the effects of air pollutants on glucose metabolism in pregnancy, specifically in
relationship to BC. Most toxicological studies have concentrated on the effects of early life
BC exposure rather than maternal exposure during pregnancy. Future epidemiological and
toxicological studies are needed to investigate the consequences of BC on both the mother
and offspring.

2.2.2. Pregnancy Complications

Current research suggests that air pollution exposure increases the risk of preg-
nancy complications. A Swedish study has shown that BC, PM2.5, PM10, and NOX ex-
posure during pregnancy increases the risk of preeclampsia [35]. Preeclampsia cases in
the highest vs. lowest quartile of BC exposure during the 3rd trimester had an OR of
1.35 (95% CI = 1.11 to 1.63). Interestingly, preeclampsia cases accompanied by small for
gestational age birth had a higher OR of 3.48 for exposure to highest vs. lowest quartile of
BC (95% CI = 1.67 to 7.27). Albeit the only study of its kind, it offers robust proof of adverse
effects of air pollution on the course of pregnancy.

Another potential birth complication recently investigated is BC-associated pregnancy
loss. For example, Massachusetts General Hospital Fertility Center patients were recruited
to investigate the association between the time of pregnancy loss and chronic and acute
exposure to air pollution among women who were using assisted reproductive technologies
(ART) [36]. The authors estimated the daily BC exposure levels (among other pollutants)
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in relation to the first positive Human Chorionic Gonadotropin (hCG) test until the day
of failure or live birth. Their findings suggest that acute and chronic exposure to BC
were not associated with pregnancy loss, whereas elevated exposure to NO2 revealed
an association with increased risk of pregnancy loss 30 days after a positive hCG test
[hazards ratio (HR) = 1.34, 95% CI = 1.13 to 1.58]. Increased biological stress during preg-
nancy can also lead to pregnancy loss. In a recent Belgian study [37], hair samples were
collected from pregnant women at the end of the second trimester and after delivery to as-
sess 2nd and 3rd trimester hair cortisol concentrations. Results revealed a 1.76-fold increase
in three-month mean residential BC concentrations associated with 1.54-fold increase in
third trimester hair cortisol concentrations. The lack of toxicology research specifically in-
vestigating the effects of BC in pregnant animals to address multiple unanswered questions
is an important research gap that could move the field of BC health research forward.

2.3. Impact of BC on the Placenta

Exposure to BC leads to the production of reactive oxygen species (ROS) [66]. The
reactions begin with excess formation of ROS leading to 3-nitrotyrosine (3-NTp) produc-
tion, which is a well-known biomarker of oxidative stress and inflammation [67,68]. It
has been shown that 3-NTp formation in the placenta is associated with preeclampsia,
GDM, and other high-risk pregnancy conditions [69,70]. Data from ENVIRONAGE Study
was used to analyze associations between air pollution exposure and 3-NTp levels in
placenta [38]. The investigators determined that exposure estimates to both PM2.5 and BC
were strongly correlated with placental 3-NTp levels; in particular, it was observed that for
each interquartile-range increment of 0.36 µg/m3 in BC exposure, placental 3-NTp levels
increased by 13.9% (95% CI = −0.21 to 29.9). The effect was mainly attributed to exposure
in the first gestational trimester. A toxicological study conducted with rats confirmed that
BC exposure induces inflammation and oxidative stress in placenta [39]. In this case, rats
were exposed to BC from 6 to 17 days of gestation, and the results demonstrated that the
length and dose of exposure to BC was positively correlated with the amount of Hofbauer
cells and the expression of NF-κB in the placenta. Findings from these studies suggest
that BC exposure is associated with placental-induced nitrosative and oxidative stress,
characterized by the excess production of reactive nitrogen and oxygen species.

Another group of researchers, using data from the ENVIRONAGE study, evaluated
the correlation between PM2.5 and BC exposure and placental iodine uptake [40]. An
adequate amount of iodine in the body is required for proper thyroid hormone production,
and subsequently, for brain development and growth of the fetus. During pregnancy,
iodine is stored in the placenta [71]. Therefore, the amount of placental iodine after birth
can be used to evaluate adequacy of iodine supply to the fetus during gestation and the
subsequent production of thyroid hormones [72]. The authors calculated that there was
a 0.67 µg/kg increase in placental iodine concentration for each 5 µg/m3 increment in
PM2.5 exposure in the second trimester (95% CI = 0.01 to 1.3). PM2.5 exposure in the
third trimester, however, had an inverse effect on iodine uptake and was associated with
a decrease of 0.84 µg/kg in placental iodine concentration for each 5 µg/m3 increment
in PM2.5 (95% CI = −1.54 to −0.13). The same trend was observed with BC and NO2
exposure; conversely, the placental iodine levels in this case did not differ significantly
between women who had experienced a change in the exposure and those who did not.
The increased iodine concentrations after PM2.5 exposure in the second trimester were
borderline significant when compared to the iodine concentrations in women who had not
experienced an increased PM2.5 exposure. These observations support previous findings of
a correlation between PM2.5 exposure in the second trimester and neonatal T4 levels [41].
In the same study [40], it was determined that a 2-standard deviations increase in PM2.5 led
to a 1.2 µg/dL increase in newborn total thyroxine level (95% CI = 0.5–1.8 µg/dL). Though
not directly related to BC levels, the decreased iodine uptake related to PM2.5 exposure in
the third trimester is indicative of the adverse effects of particulate air pollution, possibly
associated with BC on cognitive development.
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The ENVIRONAGE cohort study was also used to investigate how BC exposure
affects the function of a number of DNA repair and tumor suppressor genes [42]. The
researchers noted that the Alu mutation rate, which is a marker for overall DNA mutation,
was increased by 1.97% for each 0.36 µg/m3 interquartile range increment in BC exposure.
The same increment was associated with a 9.16% increase in APEX1 methylation and a
27.56% increase in ERCC4 methylation, which are genes responsible for DNA repair. These
results suggest that exposure to BC decreases the capability of DNA to repair and sustain
environmental insults. In addition, another group of investigators established a strong
association between BC exposure and expression of one of the placental imprinted genes
associated with birthweight [43]. In this case, an interquartile increase of 0.14 µg/m3 in
BC exposure was associated with a 6.3% decrease in the expression of BLCAP, a gene
linked to reduced fetal growth [73]. The researchers also observed significant decreases in
ABCA1 expression, which suggests that BC exposure interferes with cholesterol transport
between mother and fetus. This finding supports the previous observations of metabolic
health changes in infants whose mothers were exposed to BC at the time of delivery [32].
Exposure to PM2.5 in this study was also correlated with seven other genes associated with
birthweight. Thus, the aforementioned studies provide insight into the mechanisms by
which air pollution, particularly BC could affect birthweight and cardiometabolic health.

3. Conclusions

Black carbon is a ubiquitous air pollutant which forms a large portion of PM2.5. This
contemporary review provides an overview of the effects of BC on pregnancy, namely the
mother, fetus, and placenta. The research concerning the effects of BC exposure in children is
abundant, however, few studies have focused on the effects of prenatal exposure. Adverse
health effects of BC exposure have been shown on the respiratory and cardiometabolic system
of children, even if the exposure occurred in utero, as BC can be transported to the fetus via the
placenta. Studies have also noted that maternal exposure during pregnancy to BC increases
the risk of preeclampsia, preterm birth, low birth weight and small weight-for-gestational-
age. Biological aging and disease susceptibility may also be affected by BC, as evidenced by
telomere shortening and the silencing of DNA repair and tumor suppressor genes.

Black carbon has been proven to produce oxidative stress and inflammation of the
placental tissue, which could be an underlying cause for its adverse effects on the course of
pregnancy and fetal health. Placental inflammation is often related to preterm birth, low
birth weight, and preeclampsia [74–76]. In addition, inflammation of the placental chorion
has been linked to neurodevelopmental delays, due possibly to fetal brain and multi-organ
injury, as well as to weakened membranes and their premature rupture (PROM) [77].
There also exists a strong correlation between placental inflammation and GDM, which
could suggest a disease pathway [78]. Another possible pathway linked to BC-induced
adverse health effects, is genotoxicity. Apart from silencing of a gene associated with
birth weight [72], there is limited evidence of DNA damage and greater expression of
proinflammatory interleukins in bronchoalveolar lavage from intratracheally exposed
mice [79,80]. The importance of confirming the highly evocative epidemiological findings
with toxicological studies cannot be overstated.

The wider societal and economic impact of prenatal BC exposure is yet to be addressed.
For example, the average cost of each preterm birth in the United States—counting medical
care, early intervention, and the likelihood of pregnancy loss—is about $65,000 [81]. In
2020, 1 out of every 10 infants born in the U.S. was born preterm [81]. While preterm birth
rates seem to be generally declining over time, there are stark maternal and infant health
disparities. For example, Black women have the highest rate of maternal mortality and
preterm birth in the U.S., followed by Native American, Hispanic, and Asian-American
women [82]. This is compounded by the fact that in the U.S., communities of color tend to
live on or near food deserts (i.e., low income, urban areas where a significant number of
people lives farther than a mile away from the nearest grocery store), industrial facilities,
superfund sites, and highways that readily emit high levels of BC and other air pollutants.
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As a result, women and children in these marginalized communities could be chronically
exposed to BC, putting them at comparatively higher risk for developing adverse respi-
ratory, cardiovascular, and reproductive health conditions. The situation is even worse
in underdeveloped countries, where there are few environmental standards to regulate
emission of air pollutants, and a lack of awareness concerning the potential dangers of BC
exposure [83]. Therefore, an urgent call goes out for additional toxicological and epidemio-
logical research on the short- and long-term health effects of prenatal exposure to BC, as
well as to policy-makers for appropriate BC standards to be set.

4. Future Directions and Gaps in Knowledge

There currently exist no EPA standards for BC which makes regulation and health
safety considerations impossible to gauge. More investigations are needed concerning
the consequences and implications of BC exposure during pregnancy on both the mother
and developing fetus. While information on the effects of prenatal exposure to PM is
plentiful and continues to emerge, there is scant reproductive and developmental research
performed solely on BC, and the limited data available are mostly of an epidemiological
nature, with no attention paid to mechanisms of action. Of the studies cited in this review,
some do not include details on BC specifically, and none discuss interactions with other
PM constituents as a mixture. To address these knowledge gaps, future research needs to
emphasize developmental and reproductive effects of aerosolized BC using animal models,
as well as ex vivo and in vitro toxicological studies that can help uncover molecular and
cellular mechanisms associated with prenatal BC exposure. Such studies will contribute
to a deficient database that can help establish exposure limits for protecting the health of
already vulnerable populations. Finally, policy-makers need to acknowledge the potential
implications of BC on maternal-fetal health and health-related disparities, as well as for
their economic responsibilities to identify solutions and mitigation strategies. Thus, this
paper calls for immediate action to protect pregnant women and their unborn children
from BC-induced health impacts.
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