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Abstract: Lead (Pb) is one of the toxins responsible for the deterioration of ecological health in
aquatic environments. The present study investigated the effects of Pb(NO3)2 toxicity on growth,
blood cell morphology, and the histopathology of gills, liver, and intestine of juvenile Nile tilapia,
Oreochromis niloticus. A 30-day long aquarium trial was conducted by assigning three treatment
groups T1 5.20 mg L−1, T2 10.40 mg L−1, and T3 20.80 mg L−1, and a control 0 mg L−1 following
the 96 h LC50 of 51.96 mg L−1 from acute toxicity test. Overall growth performance significantly
declined in all the Pb(NO3)2 treated groups and the highest mortality was recorded in T3. Behavioural
abnormalities were intense in all the treatment groups compared to the control. Hepatosomatic index
(HSI) values were reported as higher in treatment groups. Reduced nucleus diameter and nuclei size
in erythrocytes were reported for T2 and T3 groups. Dose-dependent histological alterations were
visible in the gills, liver, and intestine of all the Pb(NO3)2 treated groups. The width of the intestinal
villi was highly extended in T3 showing signs of severe histological alterations. In conclusion, Pb
toxicity causes a negative effect on growth performance, erythrocyte morphology, and affected the
vital organs histomorphology of juvenile O. niloticus.

Keywords: Pb toxicity; HSI; erythrocytes; histopathology; Oreochromis niloticus

1. Introduction

Tilapia is one of the most significant commercial species which has emerged as aqua-
culture’s key species around the world [1,2]. The Nile tilapia, Oreochromis niloticus, alone
contributes almost 80% of total farmed tilapia production globally [3]. Tilapia is a tenacious,
fast-growing farmed fish, considered to have great potential, especially in low-income
nations. It has been revealed to play key roles in financial and nutritional support for the
rural poorest people [4–6]. It has an outstanding capacity to survive in a wide thermal range
and adverse environmental conditions, which exhibits them as a potential bio-indicator of
aquatic pollution [7,8]. Henceforth, tilapia in recent times has become a model fish to study
toxicity in a particular aquatic habitat [9,10].

Almost all industrial toxic effluents, as well as anthropogenic outflows, eventually
end up in aquatic ecosystems [11,12]. Because of the rapid economic development across
the globe, large-scale emissions and pollution by heavy metals are of special concern.
The frequent discharges of those exaggerated pollutants into water bodies cause harmful
effects on aquatic living creatures. Heavy metals disrupt the ecological equilibrium by
interfering with a variety of physiological, metabolic, and cellular functions of living
organisms [13,14]. At higher concentrations, they become a concern for aquatic habitats
as often the biological system itself alone is unable to destroy those kinds of substances
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rapidly [15,16]. Excess quantity of heavy metals in water produces Reactive Oxygen
Species (ROS), which collapse the water quality and poses a high risk for aquatic life by
causing oxidative stress [15,17,18]. Lead (Pb), is one of the momentous toxins and persistent
heavy metals in aquatic ecosystems, which is responsible for the deterioration of ecological
health in aquatic environments as well as a big threat to living creatures [15,17]. Chronic
exposure to the Pb toxicant has been reported to intensify the production of reactive oxygen
species (ROS), causing oxidative damage and abnormal proliferation of free radicals [19,20].
Pb is bioaccumulated in aquatic systems through the water and food, or via inactive
absorption by the fish gills or skin. Afterward, it has the immense potential to accumulate
in vital fish organs, for instance, the liver, gills, kidney, and digestive tract [21,22]. Lead
poisoning causes disturbance in fish physiology, damages blood cells, and brings significant
alterations in body tissues [16,17]. Higher Pb accumulation in water bodies could lead to
higher permeation of Pb in the fish body, which ultimately indicates the potentiality of
causing deleterious effects on consumers’ health [17,23].

To study the toxicity in fish, nowadays, advanced and standardised acute toxicity tests
are being applied, which are quite useful in environmental risk assessment [24,25]. Lethal
concentration (LC50), for instance, is globally deemed an effective tool to study environmen-
tal toxicology [26,27]. Furthermore, the status of toxicants can also be assessed through the
study of haematology and erythrocyte morphology [15,28]. Heavy metal toxicity in fish has
conventionally been investigated through histopathological examinations [29,30]. Histolog-
ical investigation of vital fish organs, toxicity assays, and growth metrics are thought to be
powerful tools to study heavy metal toxicity in fish [31,32]. Therefore, the current study
aimed at approaching multiple biomarkers, i.e., growth, behavioural anomalies, blood cell
morphology, and tissue structure of vital organs in juvenile Nile tilapia, O. niloticus, to
assess chronic Pb toxicity.

2. Materials and Methods
2.1. Collection and Acclimatization of Fish

The study was conducted in the wet laboratory of the Department of Fish Biology and
Genetics, Sylhet Agricultural University, Sylhet. About 500 fries of Nile tilapia, O. niloticus
were obtained in February 2022 from a commercial hatchery of Sreemangal and transported
to the Sylhet Agricultural University in aerated polythene bags. The fish were allowed to
acclimatise in large, aerated plastic drums for 2 weeks. At this time, the fish were fed twice
a day at a rate of 5% of their body weight. Figure 1 demonstrates the overall methodology
and assays conducted in the current research.

2.2. Acute Toxicity Test, Experimental Designing, and Feeding

A 96 h lethal concentration (LC50) test for tilapia fish was conducted by using thirteen
doses of Pb(NO3)2 (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, and 130 mg L−1). Thirteen
separate glass aquaria were loaded with 60 L dechlorinated tape water, where 20 fries were
randomly stocked in each and continuously aerated with centrally installed air pumps.
The mortality rate was recorded at each 12 h interval. The resulting mortality rate was
transformed into a Probit value, thereafter, the LC50 value was computed by using linear
regression between Probit variables and the logarithmic value of toxicants concentration
according to the standard procedures of Finney [33].

Afterward, twelve glass aquariums were used for the next experimental step, where the
length, width, and depth of each aquarium were 73.5 cm, 35.5 cm, and 38.0 cm, respectively.
At the very beginning, all the aquaria were cleaned properly with dechlorinated water,
henceforth, filled with 60 L of clean tap water, and provided suitable aeration through a 2 hp
air-blower system. Afterward, 20 uniform-sized fish were randomly distributed in each
aquarium. Ambient daylight and the dark regimes were constant in the tanks. Water was
swapped at a frequency of 20% of tank volume two times per week. Debris, unused feed,
and faecal contents were siphoned twice a day to ensure an adequate water environment
for fish existence. To evaluate fish populations and readjust the nutrition, quarterly surveys
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were carried out using a scope net. The tilapia’s activity had also been constantly monitored,
specifically after feeding. Then animals were assigned to four treatment groups (Table 1)
following the LC50 value from the toxicity test and reared for 30 days.
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Table 1. Experimental design with different dosages of Pb(NO3)2 exposure.

Treatment Concentration of
Pb(NO3)2 (mg L−1)

Stocking Density
(No./Replicate) Replication

Control 00.00 (00% of LC50) 20 3
T1 05.20 (10% of LC50) 20 3
T2 10.40 (20% of LC50) 20 3
T3 20.80 (40% of LC50) 20 3

A starter diet (consisting of fishmeal 16%, peanut meal 24%, soybean meal 14%, rice
bran 30%, broken rice 15%, and vitamin/mineral premixes 1%) was used to feed the fish
(Aftab Feed Product Ltd., Dhaka, Bangladesh). Fish were fed twice a day at 12 h intervals
(10:00 a.m., and 10:00 p.m., powdered diets supplement). The feeding rate was consistent
among treatments, extending from 4 to 6% of body weight. Following biweekly sampling,
the feeding rate was tweaked. Residual feed and excrement were retrieved from the tanks
regularly, and any mortality was documented.

2.3. Acquisition of Physicochemical Properties of Rearing Water

The water quality parameters such as temperature, dissolved oxygen (DO), pH, and
salinity were monitored three times (1st, 15th, and 30th days) by using a professional YSI
digital multi-Probe meter, Model 58. A commercial ammonia kit manufactured by HACH
(Model NI-SA, India) was used to measure the ammonia.

2.4. Analysis of Behavioural Abnormalities

Different behavioural abnormalities were noted regularly and expressed in a semi-
quantitative approach by using the methodology of Misra and Mohanty [34] and Hossain
et al. [35].



Toxics 2022, 10, 793 4 of 16

2.5. Tools for Growth Metrics

The following equations were used to compute the specific growth rate (SGR), condi-
tion factor (K), and hepatosomatic index (HSI).

Specific growth rate (SGR) in % /day = ln( wt)−ln ( w0)
t × 100. Here, wt refers to the

final weight and w0 initial body weight of the individual, respectively, and t is the duration
of the trial in days.

Fulton’s condition factor, K = WL−3 × 100 [36]. Here, W is the weight (g) and L is the
length (cm) of an individual fish (g), [37]

Hepatosomatic index (HSI) =
Liver weight
Body weight

× 100

2.6. Sampling and Bleeding Fish

Weight and length measurements were performed on the 15th and 30th days. An elec-
tronic weighing machine (CAMRY digital electrical balance, Model EK 3052, Bangladesh)
was used to measure the weight, and a centimetre scale was used to estimate the length.
At the end of the experimental periods, blood was collected from the caudal vein of five
fish from each replicate of all treatment groups to prepare a blood smear from a freshly
collected sample. Five fish from each replication of four treatments were slaughtered to
collect the gills, liver, and intestine for histology examination, and tissue samples were
immediately fixed in 10% neutral buffered formalin.

2.7. Preparation of Blood Smear and Histology of Gill, Liver, and Intestine

Thin smears on pre-cleaned slides for all collected blood samples were prepared to
perform erythrocyte analysis. After that, the slides were air-dried and fixed into methanol
solution for 5 min before counterstaining in Giemsa stain for 10 min. Then the slides
were washed with running tap water and air-dried overnight. Prefixed samples in neutral
buffered formalin went through the standard histological procedure described by Slaoui
and Fiette [38]. Gill, liver, and intestine cell sections were visualised at different magni-
fications by using a light microscope (Primo Star, ZEISS, Jena, Germany) equipped with
a camera (Axiocam, ZEISS, Jena, Germany) and run-on ZEN core version 3.0 Windows
software. About ten slides from each organ have been examined and resulted pathologies
were recorded for quantitative analysis. Histopathology was identified by following the
previous literature [39,40]. The pathology noted below 5% in total observation has been
referred to as absent (—), 6–25% as weak (*), 26–50% as moderate (**), and above 50 % as
severe (***) as per as the description of Ekpenyong et al. [41].

2.8. Statistical Analysis

All raw data were processed in Microsoft Excel, and afterward, all analyses were
performed by using SPSS v26. Means were compared in ANOVA, and Tukey’s HSD post-
hoc test was used to determine the significant differences between treatments at p < 0.05.

3. Results
3.1. Acute Toxicity Test

The 96 h LC50 of Pb(NO3)2 for O. niloticus was computed as 51.96 mg L−1 in the
present study. Figure 2 depicts the regression between the logarithmic concentration of
Pb(NO3)2 and the Probit transformation of mortality in O. niloticus. The susceptibility of
individual lethality was enhanced with an increase in lead concentration, whereas mortality
was essentially non-existent in the control. Therefore, the trial remained within the standard
conditions of OECD guidelines for acute toxicity tests [25]. Current values of LC50 have
been justified by previous acute toxicity tests in different tilapia species of the Oreochromis
genus (Table 2).
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Table 2. The 96 h LC50 values for different formulations of Pb in the Oreochromis genus.

Species Value of 96-h LC50
(mg L−1)

Formulation of
Toxicant References

O. niloticus 51.96
Pb(NO3)2

Current study
O. niloticus 40.29 [17]

O. mossambicus 17.33
Pb(C2H3O2)2

[42]
O. mossambicus 18.70 [43]

O. niloticus 44.0
Pb(NO3)2

[44]
Oreochromis sp. 11.05 [18]

3.2. Water Quality Assessment

Table 3 elucidates the physicochemical features of water during the trial period. On
the one hand, salinity, pH, and NH3 concentration remained almost stable in all treatment
groups during the experiment. DO level, on the other hand, declined from 8.14 ± 0.08
to 6.64 ± 0.15 mg L−1 among the different time slots with a slight increase of water
temperature from 19.47 ± 0.06 to 20.30 ± 0.26 ◦C.

Table 3. Physicochemical properties of water in different treatment groups.

Parameters Treatment Day 0 Day 15 Day 30

Temperature (◦C)

Control 19.93 ± 0.12 20.06 ± 0.04 20.30 ± 0.21
T1 19.80 ± 0.10 19.90 ± 0.06 20.20 ± 0.03
T2 19.47 ± 0.03 10.87 ± 0.07 20.13± 0.08
T3 19.53 ± 0.07 19.97 ± 0.13 20.20 ± 0.08

pH

Control 8.27 ± 0.06 8.16 ± 0.05 8.06 ± 0.03
T1 8.23 ± 0.07 8.19 ± 0.07 8.13 ± 0.03
T2 8.23 ± 0.04 8.2 ± 0.06 8.17 ± 0.03
T3 8.21 ± 0.07 8.14 ± 0.06 8.13 ± 0.07

Salinity

Control 0.07 ± 00 0.08 ± 0.01 0.10 ± 00
T1 0.07 ± 0.01 0.07 ± 0.01 0.09 ± 0.02
T2 0.06 ± 0.01 0.08 ± 0.02 0.10 ± 0.01
T3 0.07 ± 0.03 0.08 ± 0.01 0.09 ± 0.01

NH3 (mg L−1)

Control 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.01
T1 0.01 ± 0.02 0.03 ± 0.01 0.03 ± 0.01
T2 0.02 ± 0.01 0.04 ± 0.01 0.03 ± 0.01
T3 0.02 ± 0.00 0.03 ± 0.01 0.03 ± 0.01

DO (mg L−1)

Control 7.77 ± 0.10 7.06 ± 0.17 6.96 ± 0.04
T1 8.11 ± 0.07 7.13 ± 0.06 6.96 ± 0.05
T2 8.05 ± 0.16 6.79 ± 0.02 6.64 ± 0.09
T3 8.14 ± 0.08 6.57 ± 0.08 6.73 ± 0.08

The column with different superscripts indicates significant differences at p < 0.05; values are means ± SE.
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3.3. Growth Performance, and Hepatosomatic Index (HSI)

The growth performance of O. niloticus is summarised in Table 4. It is reported that final
length and weight, condition factor (K), specific growth rate (SGR), and length and weight
gain percentages were significantly (p < 0.05) decreased in groups exposed to Pb(NO3)2 in
comparison to the control group. The statistically highest (p < 0.05) final length and weight
were observed in the control group as 4.40 ± 0.09 cm and 1.47 ± 0.08 g, respectively, while
the lowest values were documented in T3 as 3.55 ± 0.03 cm and 0.52 ± 0.03 g, respectively,
followed by T2 and T1. The value of Fulton’s condition factors, K, also followed a similar
trend. The highest SGR % was 2.39 ± 0.20 in the control group; on the contrary, the lowest
was −1.03 ± 0.24 in T3 followed by T2 and T1. The highest mortality was noted in T3
followed by T2, while both were statistically higher than the control (p < 0.05) (Figure 3).
HSI values were increased for all the Pb(NO3)2 treated groups (Figure 4).

Table 4. Growth performance of O. niloticus exposed to Pb(NO3)2 at different concentrations.

Parameters Control T1 T2 T3

Initial length (cm) 3.44 ± 0.05 3.43 ± 0.06 3.43 ± 0.08 3.45 ± 0.03
Initial weight (g) 0.70 ± 0.01 0.69 ± 0.03 0.69 ± 0.04 0.70 ± 0.02
Final length (cm) 4.40 ± 0.09 c 3.82 ± 0.05 b 3.70 ± 0.07 ab 3.55 ± 0.03 a

Final weight (g) 1.47 ± 0.08 c 0.78 ± 0.05 b 0.55 ± 0.04 a 0.52 ± 0.03 a

K 1.7 ± 0.04 c 1.36 ± 0.05 b 1.10 ± 0.07 a 1.16 ± 0.06 a

SGR % 2.39 ± 0.20 c 0.32 ± 0.26 b −0.77 ± 0.34 a −1.03 ± 0.24 a

Length gain % 28.35 ± 3.15 c 12.08 ± 2.48 b 8.23 ± 2.13 ab 3.18 ± 0.80 a

Weight gain % 110.40 ± 11.39 c 15.94 ± 8.94 b −13.28 ± 8.72 a −23.60 ± 4.82 a

The column with different superscripts indicates significant differences at p < 0.05; values are means ± Standard Error.
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3.4. Behavioural Abnormalities

No behavioural abnormalities were noted for the control group (Table 5). However,
the significant onset of behavioural alterations associated with feeding, movement, and
coloration in skin and gills were noted as prominent in all treatment groups (Table 5). Most
of the behavioural abnormalities were very intense in T2 and T3 treatments at the end of
30 days of the trial period.

Table 5. Behavioural abnormalities of fishes among the different treatment units.

Treatment Day

Abnormalities

Loss of
Appetite

Gasping for
Air

Sluggish
Movement

Erratic
Locomotion Pale Gills Skin Color

Change

Control

15

– – – – – –

T1 – – * – – –

T2 * * * – * *

T3 * * ** * * *

Control

30

– – – – – –

T1 * * ** * ** **

T2 ** * ** ** * **

T3 ** ** *** ** ** ***

– normal, * weak (<10%), ** moderate (10–50%), and *** severe (>50%).

3.5. Erythrocyte Abnormalities

Erythrocyte abnormalities were identified by following the description of Shahjahan
et al. [45] and Sayed et al. [46]. Normal erythrocytes with elliptical nuclei were spotted
on the peripheral blood of control individuals (Figure 5A). Erythrocyte density gradually
declined with the enhancement of Pb(NO3)2 concentrations (Figure 5B–D). Moreover, a few
erythrocyte abnormalities were identified in the exposed groups (Figure 4). On the other
hand, Figure 5E shows a significant difference in terms of nucleus diameter (ND) between
the control and exposed groups. There was no statistical difference in cell diameter (CD)
among the four treatment groups, while the nucleus diameter remained highest for the
control group and significantly reduced in all the treatment groups (p < 0.05). Figure 5F
illustrates the percentages of nuclei in erythrocytes in all treatment groups, which refers to
the quantitative indication of nuclear deformation in treatment groups in comparison with
the control (p < 0.05).
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(C) T2, (D) T3. (E—erythrocytes, EN—elliptical nuclei; red arrows—shrinking nuclei, black arrows—
erythrocytes with rupturing cell membrane, blue arrows—shape deformities); (E,F) Quantitative
analysis of erythrocytes in different treatment groups. Different superscripts indicate significant
differences at p < 0.05 (CD—cell diameter, ND–nucleus diameter).

3.6. Histopathology in Gills, Liver, and Intestine

Gills in control groups refer to a healthy condition with well-structured primary and
secondary lamellae, pillar cells, epithelial cells, erythrocytes, and basal cells (Figure 6A).
On the contrary, gills from treatment groups were affected mostly by secondary lamellae
damage, acute necrosis, and congestion of basal cells (Figure 6B–D). Apart from those ab-
normalities, diffusion of mucous cells also appeared in T1 (Figure 6B). Shortening secondary
lamellae and damage to the epithelial layer were noticed in fish gills from T2 (Figure 6C),
and epithelial lifting was also reported in T3 (Figure 6D). Healthy liver tissues with normal
hexagonal hepatocytes, prominent nuclei, and abundant lipid droplets were noted in the
control group (Figure 6E). Several abnormalities were accounted for in treatment groups,
for instance, liver haemorrhage, nuclear ruptures, necrosis, cell rupture, and erythrocyte
infiltration in blood sinusoids (Figure 6F–H). The T1 and T2 were reported to be highly af-
fected by necrosis, cell ruptures, erythrocyte infiltration, and nuclear ruptures (Figure 6F,G).
Again, degenerated nuclei, massive cell ruptures, as well as large vacuoles due to cell
ruptures were recorded in the hepatic tissues from T3 (Figure 6H). A firmed intestinal
wall and villi containing brush borders, absorptive vacuoles, lamina propria, and lumen
in the centre were in the control group (Figure 7A), while tissue ruptures were marked
in treatment groups (Figure 7B–D). The T3 was predominantly affected by an extended
lumen, increased vacuoles, disarranged absorptive vacuoles, extended serosa, and wider
villi (Figure 7C).
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Figure 6. Longitudinal microscopic view of gills. (A) Control, (B) T1, (C) T2, (D) T3 (PL—primary
lamellae, SL—secondary lamellae, Pc–pillar cells, Ec—epithelial cells, E—erythrocytes, Bc—basal
cells, DMC–diffusion of mucous cells, SLD—secondary lamellae damage, EL—epithelial lifting;
white circle—acute necrosis, yellow arrows—congestion of basal cells, red arrows—shortening
secondary lamellae, black arrows—damage of epithelial layer). Transverse photomicrographs of
liver. (E) Control, (F) T1, (G) T2, (H) T3 (Hc—hepatocytes, Nu—nuclei, LD—lipid droplets, LH–liver
haemorrhage, NR–nuclear ruptures, DN—degenerated nuclei, MCR—massive cell rupture, V—
vacuole; white circle—necrosis, black arrows—cell rupture, yellow arrows—erythrocyte infiltration
in blood sinusoids).
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Figure 7. Transverse photomicrographs of the intestine. (A) Control, (B) T1, (C) T2, (D) T3. (BB—
brush border, AV—absorptive vacuole, LP—lamina propria, L—lumen, EL—extended lumen, IV—
increased vacuoles, DAV—disarranged absorptive vacuole; black arrows—tissue rapture, blue
arrows—extended serosa, white both side arrows—wider villi); (E) Length and width of intesti-
nal villi in different treatment groups. Different superscripts indicate significant differences at
p < 0.05.

The length of intestinal villi gradually decreased when compared with the control
and the lowest value was obtained in T3 (p < 0.05) (Figure 7E). In terms of the width of
intestinal villi, the highest measurement was recorded in T3, indicating the severest form
of disruption among the treatment groups. A comparative investigation of the current
histopathological analysis of the gills, liver, and intestine has been organised in Table 6.
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Table 6. Comparative investigation of histopathological alterations from the current experiment in
different treatment units.

Organ Abnormality Control T1 T2 T3

Gill Diffusion of mucous cells — * — —
Secondary lamellae damage — * * ***
Epithelial lifting — — — **
Acute necrosis — ** *** ***
Congestion of basal cells — *** ** —
Shortening secondary lamellae — — ** —
Damage to the epithelial layer — — ** **

Liver Liver haemorrhage — *** *** **
Nuclear ruptures — *** *** **
Degenerated nuclei — — — **
Massive cell rupture — — — ***
Vacuole caused by cell rupture — — — **
Necrosis — ** *** **
Cell ruptures — ** *** ***
Erythrocyte infiltration in blood sinusoids — ** *** **

Intestine Extended lumen — — — **
Increased vacuoles — — — ***
Disarranged absorptive vacuoles — — * ***
Tissue rapture — * * *
Extended serosa — — — *
Wider villi — * * ***

Histopathological alterations are referred to as absent (—), weak (*), moderate (**), and severe (***).

4. Discussion

The LC50 is a widely used tool in toxicity research of aquatic animals. The current
value of 96 h LC50 Pb(NO3)2 is 51.96 mg L−1 for O. niloticus, which seemed aligned with
the previous investigations where it was noted between 40 to 44 mg L−1 [17,44]. In contrast,
lower values of 11.05 mg L−1 [18], 17.33 mg L−1 [42], and 18.70 mg L−1 [43] have been
documented for the same species. These wide variations denoted that the sensitivity to
Pb differs between species, age, and size, and depends on chemical formulations of toxi-
cants [47,48], and physicochemical characteristics of the experimental environments [9,49].
Major physicochemical features of water, i.e., temperature, DO level, and pH were main-
tained as essentially optimal over the exposure time following the standard requirements
of Chapman et al. [50].

Fish show behavioural alterations and unusual movements due to physiological and
metabolic disturbances caused by exposure to toxicants [9,47]. Accounts of maximum mor-
tality in the highest treatment groups, T3 in current research agreed with Brraich et al. [48],
while the mortality rate was increased with the high concentration dosages. Increased mor-
tality was also noted in C. punctatus and H. fossilis when exposed to Pb(NO3)2 [51]. It had
been well-studied that heavy metal exposure causes a detrimental impact on the growth
performance of O. niloticus [52]. The addition of 0.075 mg L−1 Pb for 60 days was reported
to significantly reduce the size and weight of the fry [53]. Lower growth performance in
the current trial was similar to previous studies which revealed reduced growth of fishes
exposed to toxicants or other means of pollutants [9,17,52]. Poor growth performance in
the treatment groups in comparison to control groups is due to less utilization of food, and
weak physiological conditions associated with compensation of toxicity stress [54,55]. The
poisonous effect of different toxic content in fish can be chased by quantifying behavioural
abnormalities [35,56]. Erratic locomotion and gasping for air were notable behavioural
signs in Labeo rohita exposed to arsenic [57]. The behavioural alterations in current research
remained aligned with the investigation of Ekpenyong et al. [41] and Okor et al. [56]. El-
evated HSI was observed in O. niloticus exposed to chlorpyrifos pesticides [55]. Heavy
metals were also responsible for raising the HSI values by initiating hepatic tissue abnor-
malities and elevating the breakdown of liver enzymes [58]. Increased HSI was reported by
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the current study, which might be a result of gaining extra mass due to liquid congestion in
the vacuoles at higher exposure levels, which was also identified by Hossain et al. [9] for
the same species exposed to organophosphate toxicants.

A number of erythrocyte abnormalities were noted in several studies with fish in
response to diverse toxicants; for instance, an increase of lymphocytes proliferation in
O. niloticus [59], morphological changes of shape-shifted red blood cells in O. mykiss [60],
and O. niloticus [45], erythrocytic nuclear alteration in tilapia [61], and micronuclei induc-
tion in Channa punctatus, [30] and Pangasianododon hypophthalmus [62]. The diameter of
erythrocytes and nucleus were reported to be affected by the environmental parameters of
the living medium [63]. Above mentioned deformities were common in different treatment
groups of the present study. Again, shape deformities, cell ruptures along with the lower
nuclear diameter, and decreasing the area of nuclei in erythrocytes are associated with the
breakdown of the cytoskeleton due to toxicant stress [45,64].

Histological analysis of vital fish organs is a significant method to study the severity
of heavy metal toxicity which has already been performed by several authors [65–67]. Gill
and liver histology in fish are considered notable biomarkers in environmental toxicology
research [15,68]. Gills are very sensitive to any kind of toxicants due to their extended
surface and continuous uptake of water from the surrounding environment [69]. This
unique characteristic represents it as an excellent bio-indicator of aquatic pollution [15].
Hossain et al., [9] recorded the shortening of gill lamellae, damage of filament, necrosis
in epithelial tissue, epithelial lifting, and mucous cell diffusion were major pathological
signs in O. niloticus gills exposed to chlorpyrifos. Significant alterations were visible in the
primary and secondary gill lamellae of C. carpio exposed to Pb(NO3)2 [15]. Barbieri [67]
also noted similar pathologies in the case of Pb toxicity in tilapia. The above results are
agreed with the current findings. Kiran et al. [17] reported that the inflammation, mild
and severe haemorrhage, necrosis, vacuolation, and dilation of hepatic sinusoids were
prominent pathologies in O. niloticus exposed to the same toxicant. Fish exposed to differ-
ent levels of stress and toxicant revealed intensive hepatic haemorrhages, necrosis, and
vacuolation [14,70]. Mild haemorrhage, high lipid content, and loss of sinusoidal area were
observed in Cu-exposed O. niloticus, while increased vacuoles, degenerated nuclei, erythro-
cyte infiltration, and haemorrhage were the major findings from Cd-treated O. niloticus [71].
Very similar histological changes were noted in the current research. The intestine is one of
the vital organs for digestion and is major for nutrient absorption in fish [72]. Degeneration
and necrosis in the intestinal mucosa, oedema, and atrophy in submucosa and muscularis
were common detections in the intestinal tissue of O. niloticus exposed to Cd [73]. The
higher concentration of Pb(NO3)2 in the current research also showed significant changes
in the intestine including damage to villi, increased evacuation, and shortening of villi
height. Therefore, histological evidence from the current investigation suggested that the
experimental exposure to Pb(NO3)2 induced robust histomorphological alterations in gill,
intestinal, and hepatic tissue of Nile tilapia.

5. Conclusions

The findings of current research suggested that Pb pollution in water posed a remark-
able reduction in growth performance due to toxicant-born stress and related physiological
compensation in O. niloticus. Additionally, a higher rate of mortality in high-dose treatment
units endures the Pb-induced lethality in the studied species. It has also been noted that Pb
pollution brings significant histomorphological alterations in blood cells and vital organs
tissue structure.
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