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Abstract: Background: School-aged children living near plastics–producing factories may have higher
risk of exposure to phthalates released during the manufacturing processes. Objectives: We aimed to
investigate the urinary concentrations of phthalate metabolites in school-aged children living near a
petrochemical complex and estimate the cumulative risk of phthalate exposure. Methods: We used a
well-established cohort (Taiwan Petrochemical Complex Cohort for Children, TPE3C) of school-aged
children (6–13 years old) living near polyvinyl chloride (PVC) and vinyl chloride monomer (VCM)
factories in central Taiwan from October 2013 to September 2014. A total of 257 children were included
from five elementary schools: Syu-Cuo Branch (n = 58, school A, ~0.9 km), Feng-An (n = 40, school B,
~2.7 km), Ciao-Tou (n = 58, school C, ~5.5 km), Mai-Liao (n = 37, school D, ~6.9 km), and Lung-Feng
(n = 57, school E, ~8.6 km). We analyzed 11 metabolites of seven phthalates (including di-2-ethylhexyl
phthalate (DEHP) and di-n-butyl phthalate (DnBP)) in urine. Daily intakes (DIs) were compared
with acceptable intake levels to calculate the hazard quotient (HQ) for individual phthalates, and the
cumulative risk for each child was assessed using a hazard index (HI), which was the sum of the the
individual HQs. Results: The geometric mean and proportion of participants with HIs exceeding one
for hepatic (HIhep) and reproductive (HIrep) effects were 0.33 (13.2%) and 0.24 (7.8%), respectively.
The major contributors to phthalate exposure risk were DEHP, di-iso-butyl phthalate (DiBP) and
DnBP in all children. Moreover, we observed a U shaped distribution of DEHP exposure by school
distance from the PVC and VCM factories (school A: 7.48 µg/kg/day and school E: 80.44 µg/kg/day).
This may be due to emissions (closest) and and being located downwind of PVC scrap incineration
(farthest). Conclusions: Our findings suggest that children living near a petrochemical complex were
at a greater risk of phthalate exposure than normal school-aged children and that phthalate exposure
was mainly attributed to DEHP, DiBP and DnBP. In addition, inhalation may have been a risk factor
for people living near to PVC and VCM factories.

Keywords: daily intakes; hazard index; hazard quotient; phthalate metabolites; petrochemical complex

1. Introduction

Phthalates are polyvinyl chloride (PVC)-containing chemicals commonly used to in-
crease the flexibility of plastics in various consumer products. High molecular weight
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phthalates, such as di-iso-nonyl phthalate (DiNP) and di-iso-decyl phthalate (DiDP) have
been used in flooring and building materials, garden hoses, shoes, and toys. Butyl benzyl
phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) have been banned in the manufac-
ture of toys for children, but are still used to make vinyl-flooring products, food packing
materials, and a variety of medical plastic devices. Low molecular weight phthalates, such
as dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP),
are used in cosmetics, personal care products, perfumes, creams, candles, shampoos, and
surface-coating materials [1].

The major route of exposure to most phthalates is food ingestion; however, other
minor routes of phthalate exposure include inhalation, drinking contaminated water,
and absorption through the skin [2,3]. People living near phthalate-producing factories
or hazardous waste sites may be exposed to phthalates released into the air or ground
water [4]. Studies have revealed that the deposition rate for DEHP decreases with increasing
distance from a smokestack at a phthalate-consuming factory [4]. The estimated quantities
of vinyl chloride monomer (VCM) and PVC produced at the No. 6 Naphtha Cracking
Complex in central Taiwan were 2.76 and 2.93 million tons, respectively, and the estimated
annual emissions of VCM and 1,2-dichloroethane from the stack and equipment were 24.9
and 11.5 tons, respectively.

Previous nationwide human biomonitoring studies have revealed that phthalate ex-
posure levels among a 7–17-year-old group in Taiwan were higher than those among
individuals in the United States (NHANES 2015–2016), Canada (CHMS 2016–2017), and
Germany (GerES V 2014–2017), particularly for DMP, DBP, and DEHP metabolites [5].
Moreover, participants from central Taiwan had higher phthalate exposure levels than did
those from other areas [5]. Research has revealed that multifactorial phthalate exposure
in pregnant women is associated with temporal trends and geographic variation across
countries [6], but phthalate exposure variations among children remain unclear. Previously,
our group demonstrated that school-aged children living nearest to a petrochemical com-
plex had the highest urinary thiodiglycolic acid levels [7] and an increased risk of liver
fibrosis [8] and non-alcoholic fatty liver disease [9].

The hazard index (HI) is the sum of the hazard quotients (HQs) of individual chemicals
in a mixture, and an HI exceed one is considered indicative of potential adverse health
effects [10,11]. The HQ of a chemical is estimated as the ratio of the calculated exposure
level to the reference exposure values (RfVs) for that chemical. A study revealed that an
HI of >1 derived for plasticizers with antiandrogen-based reference doses was exhibited
by 86%, 80%, and 49% of Saudi, Indonesian, and Thai children, respectively, where DEHP
was identified as a common major risk factor for children in all three countries, followed by
DnBP and DiBP [12]. Another study in China demonstrated that at least 36% of children
from a manufacturing-intensive region had an HI higher than one [13].

The aim of this study was to (1) investigate urinary concentrations of phthalate metabo-
lites (mPAEs) in children living near PVC and VCM factories and (2) estimate their cumula-
tive risk of exposure to phthalates.

2. Materials and Methods
2.1. Ethics Statement

The study protocol was approved by the Institutional Review Board of the National
Health Research Institutes (No. EC1020607). Prior to study enrollment, all children pro-
vided informed consent and the parents of the children signed an additional agreement.

2.2. Participants and Study Design

We used a well-established cohort (Taiwan Petrochemical Complex Cohort for Chil-
dren, TPE3C) of school-aged children (6–13 years old) living near VCM and PVC factories in
a petrochemical complex in Yunlin County, central Taiwan, from October 2013 to September
2014 [7,8]. A total of 343 children were chosen from five elementary schools: Syu-Cuo
Branch (n = 69, school A, ~0.9 km), Feng-An (n = 59, school B, ~2.7 km), Ciao-Tou (n = 67,
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school C, ~5.5 km), Mai-Liao (n = 75, school D, ~6.9 km), and Lung-Feng (n = 73, school
E, ~8.6 km; Figure 1). Each student was then randomly matched by sex using their school
identification number. The following individuals were enrolled: students in grades 1–6
of elementary school with a minimum of 1 year of local residence and a minimum age of
6 years. Children who had not fasted for at least 10 h (n = 39) were initially excluded. Then,
in accordance with World Health Organization (WHO) guidelines, we excluded samples
that exhibited creatinine concentrations below 30 mg/dL or above 300 mg/dL for valid
urine samples (n = 27) [14]. Children who had consumed vitamin supplements less than
1 week before the study (n = 5) or who had chronic hepatitis B or C (n = 1) were excluded.
We also excluded children with insufficient biochemistry data (n = 14). In total, 257 children
were included in the final study.
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Figure 1. Sample elementary schools (A–E) near polyvinyl chloride (PVC) and vinyl chloride
monomer (VCM) factories in central Taiwan.

2.3. Analytical Method

Urine samples for the phthalate metabolite analysis were collected in polypropylene
containers and stored at −80 ◦C until analysis. Liquid chromatography–electrospray tan-
dem mass spectrometry (LC-ESI-MS/ MS) [15] was employed to measure the concentrations
of 11 phthalate metabolites, namely monoethylhexyl phthalate (MEHP), mono-(2-ethyl-
5-oxo-hexyl) phthalate (MEOHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP),
mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-carboxymethylhexyl) ph-
thalate (MCMHP), mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP),
mono-ethyl phthalate (MEP), monoiso-nonyl phthalate (MiNP), MBzP, and mono-methyl
phthalate (MMP). A urine sample (100 µL) was incubated at 37 ◦C for 90 min with am-
monium acetate (20 µL, >98%; Sigma-Aldrich, St. Louis, MO, USA), β-glucuronidase
(10 µL, E. coli K12; Roche Biomedical, Germany), and a mixture of 10 isotopic (13C4) phtha-
late metabolite standards (100 µL, Cambridge Isotope Laboratories, Andover, MA, USA).
LC-ESI-MS/MS (Agilent 1200/API 4000; Applied Biosystems, Foster City, CA, USA) was
used together with an online system. The limits of detection (LOD) for MMP, MEP, MiBP,
MnBP, MBzP, MEHP, MEHHP, MEOHP, MECPP, MCMHP, and MiNP were 0.3, 0.3, 1.0,
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1.0, 0.3, 0.7, 0.3, 0.3, 0.3, 0.1, and 0.1 ng/mL, respectively. One blank repeated quality
control (QC) sample and one spiked QC sample were included in each batch. The blank
sample concentration was lower than twice the LOD. The QC sample for each sample
batch in pooled urine samples was spiked with a mixture of phthalate metabolite standards
(20–50 ng/mL). The relative percentage difference of the QC sample was less than ±30%,
and the recovery rate of the QC sample was 100 ± 20%. Concentration values below the
calibration curve were analyzed as 1/2 LOD values [16].

2.4. Estimation of Phthalates Daily Intake of

We estimated the daily intake (DI) of each phthalate using urinary phthalate metabo-
lites. The formula is represented by Equation (1) [17], where UE is the urinary excretion
of the measured urinary phthalate metabolites per gram of creatinine; CEsmoothed is the
smoothed creatinine excretion rate, which is an age, body weight (BW), height (ht), and sex-
based value for urinary creatinine excretion rate used in [18,19]; FUE is the molar fraction,
which describes the molar ratio between the excreted amounts of the specific metabolites
of each phthalate corresponding to the dietary intake of the parent phthalate; MWd is
the molar weight of the diester parent compounds; and MWm is the molar weight of the
corresponding monoesters.

Daily intake (µg/kg/day) =
UE(µg/g crea)× CEsmoothed(mg/day)

FUE × BW(kg)× 1000(mg/g)
× MWd

MWm
(1)

For minors ( ≥ 6− < 18 years old) :
CEsmoothed = ht× {6.265 + 0.0564× (ht− 168)} . . . ht < 168 cm . . . (male)

CEsmoothed = ht× {6.265 + 0.2550× (ht− 168)} . . . ht ≥ 168 cm . . . (male)

CEsmoothed = 2.045× ht× exp{0.01552× (ht− 90)} . . . (female)

For DEHP DI, the formula is represented by Equation (2), where UE is the urinary
excretion of the measured total urinary DEHP metabolites per gram of creatinine [20].

Daily intake (µg/kg/day) =
UE(moles/g crea)× CEsmoothed(mg/day)×MWd

FUE × BW(kg)× 1000(mg/g)
(2)

2.5. Hazard Quotients and Hazard Index of Phthalates

We utilized HQs to calculate each participant’s risk of exposure to each phthalate. The
formula for HQs is as follows [12].

HQ =
DI

Reference limit value
(3)

An HI lower than 1indicates a low probability of adverse effects from exposure to
several chemicals [21]. The HI for cumulative hepatic effect derived from the reference
doses (RfDs) is the sum of the HQs of DEHP, DiNP, and BBzP. The HI for cumulative
reproductive effect derived from the tolerable daily intake (TDI) is the sum of the HQs of
DEHP, DnBP, DiBP, and BBzP [12].

HIhep = HQDEHP + HQDiNP + HQBBzP (4)

HIrep = HQDEHP + HQDnBP + HQDiBP + HQBBzP (5)

2.6. Statistical Analysis

We used the Kruskal–Wallis test to examine the differences in continuous variables for
all participants at the five elementary schools. The Chi-squared test was employed to assess
the difference in categorical variables for all participants at the five elementary schools. We
compared differences in participant urinary phthalate metabolite levels between the five
elementary schools using the Kruskal–Wallis test. We also applied ANCOVA (adjusting
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for confounders) to compare the differences in urinary phthalate metabolite levels, DIs
of phthalates, HQs of phthalates, and the HI for phthalates of our participants. R version
4.1.0 (R Foundation for Statistical Computing, Vienna, Austria) was used to conduct all
statistical analyses.

3. Results
3.1. Demographic Characteristics of Participants

Table 1 shows the demographic characteristics of the participating students in this
study. We enrolled 6.1–12.5-year-old elementary school students with a mean age of
10.1 years. The participants’ sex ratio was approximately even (boys,52.2%; girls,47.8%),
and they had a mean body mass index (BMI) of 18.1 with a range of 12.2 to 32.7. Most
of the parents of the participants had completed senior high school (~46%), ~37% had
completed junior high school, and ~16% had a university degree. Approximately half of
the parents had an annual family income of less than USD 15,600, and more than 20% of
the parents had worked at the petrochemical complex. Approximately 65% of the children
were exposed to passive smoke, and nearly 60% of the children self-reported having been
exposed to an unknown odor in their neighborhood.

Table 1. Demographic characteristics of participants from five elementary schools (n = 257).

Characteristics/
Students from Schools All (n = 257) A

(n = 60)
B

(n = 40)
C

(n = 59)
D

(n = 38)
E

(n = 60) p a

Continuous variables

Age (y) 10.1
(6.1–12.5)

10.3
(6.5–12.1)

10.2
(6.3–12.1)

10.9
(6.9–12.5)

9.8
(6.9–12.4)

9.1
(6.1–12.0) 0.008 *

Body mass index (kg/m2)
18.1

(12.2–32.7)
16.9

(12.8–28.8)
18.4

(12.2–29.3)
19.0

(14.6–32.7)
17.5

(12.7–27.8)
18.6

(12.6–31.8) 0.149

Categorical variables [n (%)]
Gender . . . . . . 0.440

Male 126 (49.0) 27 (45.0) 25 (62.5) 28 (47.5) 19 (50.0) 27 (45.0) .
Female 131 (51.0) 33 (55.0) 15 (37.5) 31 (52.5) 19 (50.0) 33 (55.0) .

Father’s education 0.232
≤Junior high school 98 (38.1) 26 (43.3) 14 (35.0) 20 (33.9) 15 (39.5) 23 (38.3) .
Senior high school 118 (45.9) 28 (46.7) 19 (47.5) 32 (54.2) 12 (31.6) 27 (45.0) .
≥University 40 (15.6) 5 (8.3) 7 (17.5) 7 (11.9) 11 (28.9) 10 (16.7) .

Mother’s education 0.370
≤Junior high school 93 (36.2) 28 (46.7) 13 (32.5) 19 (32.2) 12 (31.6) 21 (35.0) .
Senior high school 121 (47.1) 24 (40.0) 20 (50.0) 32 (54.2) 15 (39.5) 30 (50.0) .
≥University 43 (16.7) 8 (13.3) 7 (17.5) 8 (13.6) 11 (28.9) 9 (15.0) .

Annual family income (USD) 0.095
≤15,600 131 (51.0) 36 (60.0) 15 (37.5) 32 (54.2) 16 (42.1) 32 (53.3) .
15,600–31,250 90 (35.0) 21 (35.0) 18 (45.0) 19 (32.2) 17 (44.7) 15 (25.0) .
≥31,250 36 (14.0) 3 (5.0) 7 (17.5) 8 (13.6) 5 (13.2) 13 (21.7) .

Father’s job b . . . . . . 0.108
Yes 130 (50.6) 35 (58.3) 15 (37.5) 34 (57.6) 21 (55.3) 25 (41.7) .
No 127 (49.4) 25 (41.7) 25 (62.5) 25 (42.4) 17 (44.7) 35 (58.3) .

Mother’s job b . . . . . . 0.469
Yes 53 (20.6) 16 (26.7) 9 (22.5) 13 (22.0) 7 (18.4) 8 (13.3) .
No 204 (79.4) 44 (73.3) 31 (77.5) 46 (78.0) 31 (81.6) 52 (86.7) .

Passive smoking . . . . . . 0.966
Yes 166 (64.6) 40 (66.7) 27 (67.5) 38 (64.4) 23 (60.5) 38 (63.3) .
No 91 (35.4) 20 (33.3) 13 (32.5) 21 (35.6) 15 (39.5) 22 (36.7) .

Unknown odor . . . . . . 0.119
Yes 155 (60.3) 42 (70.0) 28 (70.0) 30 (50.8) 23 (60.5) 32 (53.3) .
No 102 (39.7) 18 (30.0) 12 (30.0) 29 (49.2) 15 (39.5) 28 (46.7) .

Physical activity . . . . . . <0.001 *
Low 95 (37.0) 33 (55.0) 24 (60.0) 13 (22.0) 7 (18.4) 18 (30.0) .
Moderate 113 (44.0) 21 (35.0) 12 (30.0) 22 (37.3) 19 (50.0) 39 (65.0) .
High 49 (19.0) 6 (10.0) 4 (10.0) 24 (40.7) 12 (31.6) 3 (5.0) .

a Kruskal–Wallis test for continuous variables and Chi-squared test for categorical variables, * p < 0.05. b We asked
whether participants’ fathers or mothers had ever worked at the petrochemical complex.
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3.2. Distributions of Urinary Phthalates

Table 2 presents the levels of phthalate metabolites measured in this study. The
detection rate of the phthalate metabolites was lowest for MiNP (school B, 7.5%) and
highest for MEHHP (school B, 100%). The geometric means (GMs;ng/mL) of the ph-
thalate metabolite concentrations among school-aged children were 14.12, 10.23, 10.95,
17.26, 0.75, 16.05, 26.19, 10.47, 33.15, 10.63, 0.77, 0.51 (nmole/mL) and 0.14 (nmole/mL)
for MMP, MEP, MiBP, MnBP, MBzP, MEHP, MEHHP, MEOHP, MECPP, MCMHP, MiNP,
ΣDEHPm and ΣDBPm, respectively. We found that children at school A exhibited the
highest concentrations of MiBP, MBzP, MEOHP, MiNP, and ΣDBPm (MiBP: 16.33 ng/mL,
p = 0.003; MBzP: 3.79 ng/mL, p < 0.001; MEOHP: 22.30 ng/mL, p < 0.001; MiNP: 8.67 ng/mL,
p < 0.001; ΣDBPm: 0.21 nmole/mL, p < 0.001); children at school D exhibited the high-
est concentrations of MMP, MnBP, and MCMHP (MMP: 28.59 ng/mL, p < 0.001; MnBP:
25.47 ng/mL, p = 0.003; MCMHP: 22.89 ng/mL, p < 0.001),and children at school E exhib-
ited the highest concentrations of MEHP, MECPP, and ΣDEHPm (MEHP: 208.92 ng/mL,
p < 0.001; MECPP: 80.77 ng/mL, p < 0.001; ΣDEHPm: 1.22 nmole/mL, p < 0.001).

3.3. Distributions of Estimated DIs, HQs, and HI of Phthalates

Figure 2 and Table S1 show the estimated DIs of phthalates, and Table 3 shows the
distributions of HQs and the HI of phthalates by TDI. The GM DI levels of school-aged
children were 5.60, 0.47, 0.36, 0.95, 0.02, 0.32 and 0.40 for DEHP, DnBP, DiBP, DiNP, BBzP,
DEP and DMP, respectively. For children from specific schools, DIs (median, µg/kg/day)
of DEHP (school E, 13.75; p < 0.001), DnBP (school D, 0.56; p < 0.001), DiBP (school A, 0.57;
p < 0.001), DiNP (school A, 8.94; p < 0.001), BBzP (school A, 0.10; p < 0.001) and DMP (school
D, 0.86; p < 0.001) were significantly higher than those of children from other schools. The
GM HQ levels of school-aged children were 0.11, 0.05, 0.04, 0.02, 0.0004 and 0.0006 for
DEHP, DnBP, DiBP, DiNP, BBzP and DEP, respectively. The GM of the HIhep was 0.33, and
13.2% of participants had an HIhep greater than 1; the GM of the HIrep was 0.24, and 7.8%
of participants had an HIrep greater than 1.

3.4. Comparison of Phthalates Concentrations, DIs, HQs, and HI of Children between Schools

Using ANCOVA, after adjustment for urinary TDGA, urinary creatinine, age, sex,
passive smoking exposure, BMI, parental employment at the petrochemical complex, and
home location close to a main road, we found that the phthalate metabolite concentra-
tions (mean, ng/mL) of MEHP (school E, 1384.67; p = 0.004) and ΣDEHPm (school E,
5.64 nmole/mL, p = 0.004) were significantly higher among children at school E than
among children at other schools (Table S2). This trend was consistent for phthalate metabo-
lite concentrations among all groups (Tables S3 and S4). The DIs (mean, µg/kg/day) of
DEHP (school E, 80.44; p = 0.011) and DMP (school D, 1.28; p = 0.013) of children at schools
E and D, respectively, were significantly higher than those of children from other schools
after adjustment for confounders (Table 4). Moreover, we observed a U shaped distribution
of the DEHP exposure by school distance from the PVC and VCM factories (school A:
7.48 µg/kg/day and school E: 80.44 µg/kg/day). This trend was consistent for DIs among
all groups (Table S5). The HIhep (median) and HIrep (median) values for children at school
E (HIhep: 4.22; p = 0.010; HIrep: 1.77; p = 0.014) were significantly higher than those for
children at other schools (Table 4). We also observed a U shaped distribution of HIhep
exposure by school distance from the PVC and VCM factories (school A: 0.53 and school E:
4.22). This trend was consistent for HIhep (median) and HIrep (median) values among all
groups (Table S6).
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Table 2. Distributions of phthalate (ng/mL) in participants by elementary school groups (n = 257).

mPAEs/ n %>LOD a GM (95%CI) Min Selected Percentiles Max p-Value b

Schools 25th (95%CI) 50th (95%CI) 75th (95%CI) 95th (95%CI)

MMP <0.001 ***
All 257 96.1 14.40 (12.28–16.88) ND 9.49 (7.87–11.84) 17.82 (15.68–19.44) 27.81 (24.46–30.73) 84.97 (62.56–110.46) 408.02
A 60 90.0 7.92 (5.17–12.12) ND 5.95 (1.57–7.84) 13.73 (7.84–18.06) 20.39 (18.06–24.57) 47.90 (27.69–137.30) 137.30
B 40 97.5 15.53 (11.37–21.20) ND 11.61 (7.33–16.06) 19.52 (14.53–22.79) 25.66 (22.06–30.76) 36.74 (30.76–62.00) 62.00
C 59 96.6 17.86 (12.88–24.77) ND 11.41 (8.08–14.40) 21.27 (15.06–26.55) 32.04 (26.85–35.55) 105.85 (45.31–235.44) 235.44
D 38 97.4 25.68 (16.21–40.66) ND 13.84 (7.87–21.72) 28.59 (19.22–34.48) 49.37 (33.39–91.24) 181.00 (91.24–408.02) 408.02
E 60 100 13.96 (11.55–16.88) 2.59 9.45 (6.99–12.77) 15.78 (12.77–18.15) 20.85 (18.15–25.54) 31.36 (29.74–83.72) 83.72

MEP 0.413
All 257 90.3 10.83 (8.61–13.63) ND 5.54 (4.12–6.32) 11.48 (10.02–13.52) 30.47 (21.78–36.92) 170.77 (120.72–289.87) 4746.88
A 60 86.7 10.59 (6.24–17.97) ND 5.76 (2.15–9.80) 13.27 (9.80–19.68) 32.23 (19.68–39.61) 176.10 (61.98–1805.85) 1805.85
B 40 92.5 12.17 (6.82–21.72) ND 5.35 (2.51–8.29) 11.52 (6.91–22.49) 31.67 (18.63–84.24) 202.80 (84.24–430.66) 430.66
C 59 94.9 14.62 (9.52–22.47) ND 8.15 (3.98–9.73) 12.51 (9.76–21.73) 39.35 (22.90–58.27) 92.14 (62.94–4746.88) 4746.88
D 38 89.5 9.29 (4.90–17.60) ND 4.18 (2.07–6.30) 10.52 (5.75–15.82) 26.38 (13.52–39.85) 139.43 (39.85–1673.19) 1673.19
E 60 88.3 8.41 (5.16–13.72) ND 4.87 (2.10–6.77) 10.24 (6.77–13.03) 18.58 (13.03–31.99) 160.40 (107.94–876.81) 876.81

MBzP <0.001 ***
All 257 42.8 0.76 (0.59–0.97) ND ND (ND-ND) ND (ND-ND) 4.39 (3.31–5.78) 16.16 (12.76–32.92) 589.17
A 60 65.0 2.20 (1.24–3.92) ND ND (ND-2.05) 3.79 (2.05–5.58) 9.17 (5.58–11.63) 70.28 (19.08–589.17) 589.17
B 40 12.5 0.24 (0.16–0.35) ND ND (ND-ND) ND (ND-ND) ND (ND-ND) 3.52 (ND-26.01) 26.01
C 59 45.8 0.72 (0.45–1.17) ND ND (ND-ND) ND (ND-2.34) 3.09 (2.43–4.66) 14.29 (8.33–84.25) 84.25
D 38 15.8 0.26 (0.17–0.40) ND ND (ND-ND) ND (ND-ND) ND (ND-3.37) 4.41 (3.37–13.12) 13.12
E 60 55.0 1.17 (0.71–1.95) ND ND (ND-ND) 2.17 (ND-4.26) 7.07 (4.26–10.13) 15.15 (11.17–32.92) 32.92

MiBP 0.003 **
All 257 94.6 11.04 (9.19–13.26) ND 6.00 (5.12–7.12) 9.95 (8.77–11.72) 22.07 (18.11–26.90) 163.88 (98.98–222.38) 528.62
A 60 85.0 12.21 (6.95–21.45) ND 7.81 (ND-9.65) 16.33 (9.65–29.07) 36.19 (29.07–61.52) 307.14 (98.98–528.62) 528.62
B 40 100 12.22 (9.47–15.77) 2.73 7.82 (4.58–8.63) 9.48 (8.52–15.36) 21.32 (11.72–26.80) 40.97 (26.80–117.90) 117.90
C 59 93.2 7.18 (4.99–10.32) ND 5.15 (3.64–5.59) 7.82 (5.68–8.65) 12.48 (8.70–14.04) 48.85 (20.87–209.63) 209.63
D 38 97.4 15.03 (9.25–24.41) ND 6.09 (3.97–9.84) 12.17 (8.39–19.25) 33.63 (17.93–95.64) 153.16 (95.64–420.27) 420.27
E 60 100 11.72 (9.08–15.12) 2.29 6.69 (4.67–7.80) 10.10 (7.80–13.72) 17.63 (13.72–21.76) 114.64 (22.35–310.12) 310.12

MnBP 0.003 **
All 257 97.3 17.63 (15.08–20.60) ND 9.75 (8.38–11.21) 18.12 (15.32–19.73) 29.26 (27.45–34.28) 176.20 (103.51–228.57) 1218.8
A 60 88.3 15.71 (9.36–26.38) ND 10.06 (6.09–12.70) 21.15 (12.70–29.04) 35.14 (29.04–86.84) 183.74 (109.11–1218.8) 1218.8
B 40 100 19.16 (14.53–25.26) 3.68 11.24 (6.91–15.79) 18.88 (14.38–23.01) 28.54 (20.94–37.23) 46.81 (37.23–425.77) 425.77
C 59 100 12.69 (10.58–15.22) 3.00 8.27 (7.05–9.75) 11.62 (9.98–15.13) 18.36 (15.13–21.89) 30.89 (27.66–186.05) 186.05
D 38 100 24.42 (16.66–35.81) 3.52 9.01 (5.54–19.72) 25.47 (17.49–31.81) 36.01 (28.12–99.10) 156.33 (99.10–552.53) 552.53
E 60 100 21.02 (16.39–26.95) 4.80 11.87 (7.14–14.36) 18.17 (14.36–23.11) 29.28 (23.11–37.81) 194.68 (38.46–379.87) 379.87
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Table 2. Cont.

mPAEs/ n %>LOD a GM (95%CI) Min Selected Percentiles Max p-Value b

Schools 25th (95%CI) 50th (95%CI) 75th (95%CI) 95th (95%CI)

MEHP <0.001 ***
All 257 82.1 17.10 (12.33–23.71) ND 6.87 (2.94–8.95) 18.95 (15.57–28.10) 147.92 (133.73–170.30) 342.11 (266.53–510.44) 37,009
A 60 46.7 2.03 (0.93–4.40) ND ND (ND-ND) ND (ND-14.33) 29.01 (14.33–89.52) 245.69 (137.50–450.07) 450.07
B 40 100 18.06 (12.77–25.53) 4.61 9.03 (6.87–11.05) 14.43 (10.12–17.37) 24.40 (15.71–101.09) 135.87 (101.09–395.58) 395.58
C 59 89.8 18.42 (10.86–31.26) ND 9.18 (5.65–11.36) 18.11 (11.39–32.42) 128.65 (38.02–143.91) 161.95 (147.92–309.86) 309.86
D 38 78.9 5.82 (2.85–11.87) ND 2.56 (ND-8.00) 9.57 (5.46–16.03) 20.06 (13.19–27.29) 129.36 (27.29–147.80) 147.80
E 60 100 255.7 (193.2–338.6) 39.9 156.7 (139.3–172.0) 208.9 (172.0–223.2) 287.1 (223.2–355.9) 970.2 (384.9–37,009) 37,009

MEHHP 0.552
All 257 98.4 26.24 (22.56–30.52) ND 14.96 (12.78–16.70) 24.62 (21.90–25.91) 46.67 (35.33–84.23) 186.76 (164.11–215.20) 680.01
A 60 93.3 23.35 (14.54–37.50) ND 14.11 (6.73–18.94) 26.79 (18.94–36.19) 79.30 (36.19–138.29) 191.05 (175.39–221.48) 221.48
B 40 100 26.97 (19.94–36.49) 6.10 14.86 (10.05–20.18) 24.16 (16.74–27.73) 33.37 (26.51–85.24) 128.84 (85.24–680.01) 680.01
C 59 100 25.17 (19.96–31.72) 2.79 16.08 (13.10–18.58) 24.90 (19.78–26.80) 33.03 (27.95–38.35) 156.49 (75.29–263.28) 263.28
D 38 100 23.28 (16.29–33.27) 2.05 12.17 (7.12–15.84) 20.64 (14.30–26.24) 35.08 (23.19–96.92) 172.75 (96.92–259.08) 259.08
E 60 100 32.54 (25.07–42.23) 4.56 16.65 (10.81–18.88) 24.47 (18.88–35.10) 85.97 (35.10–125.73) 180.32 (126.52–201.20) 201.20

MEOHP <0.001 ***
All 257 92.6 10.56 (8.84–12.62) ND 7.07 (5.44–8.64) 14.36 (11.94–16.11) 23.92 (20.72–27.11) 62.04 (37.85–108.89) 121.55
A 60 86.7 12.02 (7.34–19.67) ND 9.68 (2.04–13.85) 22.30 (13.85–26.70) 32.42 (26.70–48.04) 109.32 (61.81–121.55) 121.55
B 40 77.5 3.67 (1.87–6.05) ND 2.58 (ND-4.28) 5.25 (3.52–8.94) 14.12 (6.39–20.46) 26.89 (20.46–38.97) 38.97
C 59 98.3 14.61 (11.66–18.31) ND 10.63 (8.29–13.65) 16.79 (14.52–19.24) 21.87 (19.27–27.35) 34.41 (31.93–93.82) 93.82
D 38 97.4 10.58 (7.46–15.01) ND 6.72 (4.27–9.08) 11.29 (8.78–15.26) 17.79 (13.16–25.11) 40.85 (25.11–109.30) 109.30
E 60 100 14.44 (11.59–17.99) 2.68 8.25 (5.57–9.86) 14.18 (9.86–19.18) 24.64 (19.18–32.35) 85.14 (34.31–118.38) 118.38

MECPP <0.001 ***
All 257 97.3 33.29 (27.90–39.72) ND 16.83 (14.75–19.56) 29.91 (25.98–31.77) 88.37 (62.08–117.64) 296.82 (243.38–380.21) 621.22
A 60 88.3 30.20 (16.70–54.61) ND 15.72 (5.36–26.95) 39.08 (26.95–77.19) 185.27 (77.19–245.94) 336.72 (277.63–523.22) 523.22
B 40 100 23.84 (18.38–30.91) 6.63 14.91 (9.90–19.63) 21.74 (17.28–26.41) 31.60 (24.98–35.77) 109.45 (35.77–621.22) 621.22
C 59 100 27.48 (21.72–34.77) 2.68 15.93 (11.35–20.82) 25.98 (20.84–30.58) 34.63 (30.63–64.08) 210.12 (82.48–256.64) 256.64
D 38 100 29.16 (20.47–41.53) 3.93 15.00 (10.15–19.66) 24.14 (18.82–30.28) 32.83 (28.22–101.68) 279.61 (101.68–339.74) 339.74
E 60 100 60.19 (45.05–80.42) 8.21 23.67 (16.95–30.62) 80.77 (30.62–98.97) 153.63 (98.97–210.92) 339.18 (234.05–504.30) 504.30
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Table 2. Cont.

mPAEs/ n %>LOD a GM (95%CI) Min Selected Percentiles Max p-Value b

Schools 25th (95%CI) 50th (95%CI) 75th (95%CI) 95th (95%CI)

MCMHP <0.001 ***
All 257 94.6 10.64 (8.90–12.73) ND 5.59 (4.45–6.34) 11.67 (9.09–14.37) 24.25 (21.25–29.44) 98.62 (60.50–169.48) 393.04
A 60 90.0 13.12 (8.47–20.31) ND 10.41 (7.63–14.37) 19.67 (14.37–24.97) 33.85 (24.97–36.38) 62.85 (38.18–364.15) 364.15
B 40 95.0 4.80 (3.41–6.74) ND 3.44 (2.53–3.69) 5.38 (3.65–6.35) 7.44 (6.07–10.26) 13.16 (10.26–109.03) 109.03
C 59 96.6 8.55 (6.20–11.79) ND 4.72 (3.71–5.21) 7.46 (5.24–9.50) 16.37 (10.59–28.35) 61.50 (29.44–240.95) 240.95
D 38 94.7 20.91 (11.80–37.05) ND 10.29 (4.04–16.77) 22.89 (14.56–31.99) 37.14 (28.77–114.52) 322.69 (114.52–393.04) 393.04
E 60 96.7 11.88 (8.79–16.06) ND 7.37 (4.79–9.01) 13.84 (9.01–17.54) 21.31 (17.54–28.27) 81.77 (34.39–101.69) 101.69

MiNP <0.001 ***
All 257 36.6 0.79 (0.59–1.04) ND ND (ND-ND) ND (ND-ND) 8.37 (4.29–11.13) 37.46 (28.67–134.00) 462.14
A 60 70.0 3.63 (2.01–6.53) ND ND (ND-2.73) 8.67 (2.73–14.44) 18.83 (14.44–24.87) 42.47 (28.82–230.50) 230.50
B 40 7.5 0.19 (0.14–0.26) ND ND (ND-ND) ND (ND-ND) ND (ND-ND) 2.36 (ND-7.57) 7.57
C 59 11.9 0.26 (0.17–0.41) ND ND (ND-ND) ND (ND-ND) ND (ND-ND) 10.68 (ND-346.37) 346.37
D 38 18.4 0.30 (0.18–0.50) ND ND (ND-ND) ND (ND-ND) ND (ND-5.59) 8.56 (5.59–14.67) 14.67
E 60 58.3 2.33 (1.22–4.48) ND ND (ND-ND) 4.24 (ND-11.13) 16.99 (11.13–30.64) 118.47 (37.67–462.14) 462.14

ΣDEHPm (nmole/mL) c <0.001 ***
All 257 0.54 (0.46–0.63) <0.01 0.25 (0.22–0.29) 0.56 (0.44–0.67) 1.17 (1.00–1.42) 2.96 (2.57–4.26) 133.14
A 60 0.43 (0.29–0.64) <0.01 0.22 (0.16–0.27) 0.43 (0.27–0.71) 1.52 (0.71–1.99) 2.67 (2.16–4.74) 4.74
B 40 0.31 (0.23–0.41) 0.09 0.17 (0.12–0.22) 0.27 (0.20–0.37) 0.51 (0.32–0.69) 1.33 (0.69–5.24) 5.24
C 59 0.46 (0.37–0.57) 0.03 0.29 (0.23–0.33) 0.52 (0.33–0.69) 0.74 (0.70–0.93) 1.72 (1.07–2.00) 2.00
D 38 0.36 (0.25–0.52) 0.03 0.20 (0.13–0.25) 0.30 (0.23–0.38) 0.56 (0.37–1.17) 2.83 (1.17–4.07) 4.07
E 60 1.52 (1.16–2.00) 0.20 0.87 (0.67–1.04) 1.22 (1.04–1.43) 2.05 (1.43–2.67) 4.96 (2.98–133.14) 133.14

ΣDBPm (nmole/mL) d <0.001 ***
All 257 0.14 (0.12–0.17) <0.01 0.08 (0.07–0.09) 0.14 (0.12–0.15) 0.23 (0.22–0.27) 1.50 (0.90–2.42) 5.93
A 60 0.16 (0.09–0.26) <0.01 0.09 (0.05–0.13) 0.21 (0.13–0.25) 0.41 (0.25–0.70) 2.78 (0.90–5.93) 5.93
B 40 0.15 (0.12–0.19) 0.04 0.10 (0.06–0.12) 0.14 (0.11–0.17) 0.22 (0.16–0.28) 0.72 (0.28–2.28) 2.28
C 59 0.10 (0.08–0.12) 0.01 0.06 (0.05–0.07) 0.09 (0.07–0.12) 0.15 (0.12–0.19) 0.52 (0.20–1.75) 1.75
D 38 0.20 (0.14–0.30) 0.02 0.09 (0.04–0.14) 0.20 (0.11–0.27) 0.44 (0.22–0.79) 1.61 (0.79–3.34) 3.34
E 60 0.15 (0.12–0.20) 0.03 0.09 (0.05–0.11) 0.14 (0.11–0.16) 0.22 (0.16–0.25) 1.43 (0.57–2.42) 2.42

a Limit of detection (LOD), ND was calculated as half LOD. The LODs for MMP, MEP, MiBP, MnBP, MBzP, MEHP, MEHHP, MEOHP, MECPP, MCMHP, and MiNP were 0.3, 0.3, 1.0, 1.0,
0.3, 0.7, 0.3, 0.3, 0.3, 0.1, and 0.1 ng/mL, respectively. b Comparison of school groups using the Kruskal–Wallis test. * p < 0.05, ** p < 0.01, *** p < 0.001. c ΣDEHPm = sum of molar
concentrations of MEHP + MEHHP + MEOHP + MECPP + MCMHP. d ΣDBPm = sum of molar concentrations of MiBP + MnBP.
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Table 3. Hazard quotients and the hazard index for participants by elementary school group (n = 257).

Index n >1 (%) GM (95%CI) Min Selected Percentiles Max p-Value a

25th (95% CI) 50th (95% CI) 75th (95% CI) 95th (95% CI)

HQDEHP <0.001 ***
All 257 1.6 0.11 (0.10–0.13) <0.01 0.05 (0.05–0.06) 0.11 (0.09–0.13) 0.24 (0.20–0.27) 0.55 (0.47–0.70) 53.51

A 60 0 0.08 (0.06–0.12) <0.01 0.05 (0.03–0.07) 0.11 (0.07–0.15) 0.21 (0.15–0.27) 0.43 (0.30–0.68) 0.68
B 40 0 0.07 (0.06–0.08) 0.01 0.05 (0.03–0.05) 0.06 (0.05–0.09) 0.09 (0.08–0.13) 0.17 (0.13–0.51) 0.51
C 59 0 0.09 (0.07–0.11) 0.01 0.05 (0.04–0.05) 0.08 (0.06–0.11) 0.15 (0.11–0.22) 0.30 (0.24–0.55) 0.55
D 38 0 0.08 (0.06–0.11) 0.03 0.05 (0.03–0.05) 0.06 (0.05–0.09) 0.13 (0.08–0.27) 0.38 (0.27–0.93) 0.93
E 60 6.7 0.33 (0.25–0.43) 0.05 0.18 (0.14–0.23) 0.27 (0.23–0.36) 0.46 (0.36–0.56) 1.41 (0.65–53.51) 53.51

HQDnBP <0.001 ***
All 257 1.2 0.05 (0.04–0.05) <0.01 0.03 (0.03–0.03) 0.04 (0.04–0.05) 0.07 (0.06–0.08) 0.32 (0.20–0.51) 1.42

A 60 1.7 0.04 (0.02–0.06) <0.01 0.03 (0.02–0.04) 0.06 (0.04–0.06) 0.13 (0.06–0.16) 0.32 (0.17–1.04) 1.04
B 40 2.5 0.05 (0.04–0.07) 0.01 0.03 (0.03–0.04) 0.05 (0.04–0.06) 0.07 (0.05–0.10) 0.14 (0.10–1.16) 1.16
C 59 0 0.03 (0.03–0.04) 0.01 0.02 (0.02–0.03) 0.03 (0.03–0.03) 0.04 (0.03–0.05) 0.07 (0.05–0.34) 0.34
D 38 2.6 0.07 (0.05–0.10) 0.02 0.03 (0.03–0.04) 0.06 (0.04–0.08) 0.10 (0.08–0.17) 0.50 (0.17–1.42) 1.42
E 60 0 0.06 (0.05–0.07) 0.02 0.04 (0.03–0.04) 0.05 (0.04–0.06) 0.07 (0.06–0.13) 0.25 (0.17–0.96) 0.96

HQDiBP <0.001 ***
All 257 0.8 0.04 (0.03–0.04) <0.01 0.02 (0.02–0.02) 0.03 (0.03–0.04) 0.07 (0.06–0.09) 0.42 (0.22–0.59) 2.78

A 60 1.7 0.04 (0.02–0.06) <0.01 0.02 (<0.01–0.04) 0.06 (0.04–0.08) 0.12 (0.08–0.15) 0.59 (0.28–1.30) 1.30
B 40 0 0.04 (0.03–0.05) 0.01 0.02 (0.02–0.04) 0.04 (0.04–0.05) 0.06 (0.04–0.09) 0.19 (0.09–0.27) 0.27
C 59 0 0.02 (0.02–0.03) <0.01 0.01 (0.01–0.02) 0.02 (0.02–0.03) 0.03 (0.03–0.04) 0.13 (0.06–0.45) 0.45
D 38 2.6 0.05 (0.03–0.08) <0.01 0.02 (0.01–0.03) 0.04 (0.03–0.06) 0.09 (0.05–0.27) 0.60 (0.27–2.78) 2.78
E 60 0 0.04 (0.03–0.05) 0.01 0.02 (0.02–0.03) 0.03 (0.03–0.04) 0.04 (0.04–0.09) 0.20 (0.13–0.84) 0.84

HQDiNP <0.001 ***
All 257 5.4 0.02 (0.01–0.03) <0.01 <0.01 (<0.01–<0.01) 0.01 (0.01–0.01) 0.16 (0.09–0.27) 1.12 (0.61–2.84) 7.44

A 60 6.7 0.08 (0.05–0.15) <0.01 0.01 (<0.01–0.06) 0.18 (0.06–0.36) 0.47 (0.36–0.55) 1.09 (0.74–6.15) 6.15
B 40 0 <0.01 (<0.01–0.01) <0.01 <0.01 (<0.01–<0.01) <0.01 (<0.01–0.01) 0.01 (0.01–0.01) 0.06 (0.01–0.09) 0.09
C 59 3.4 0.01 (<0.01–0.01) <0.01 <0.01 (<0.01–<0.01) <0.01 (<0.01–<0.01) 0.01 (0.01–0.01) 0.21 (0.01–7.02) 7.02
D 38 0 0.01 (<0.01–0.01) <0.01 <0.01 (<0.01–<0.01) <0.01 (<0.01–0.01) 0.01 (0.01–0.09) 0.22 (0.09–0.49) 0.49
E 60 13.3 0.06 (0.03–0.11) <0.01 0.01 (<0.01–0.01) 0.09 (0.01–0.23) 0.42 (0.23–0.64) 2.88 (1.41–7.44) 7.44
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Table 3. Cont.

Index n >1 (%) GM (95%CI) Min Selected Percentiles Max p-Value a

25th (95% CI) 50th (95% CI) 75th (95% CI) 95th (95% CI)

HQBBzP <0.001 ***

All 257 0 4.4 × 10−4

(3.6 × 10−4–5.7 × 10−4) 3.1 × 10−5 9.4 × 10−5

(7.4 × 10−5–1.1 × 10−4)
1.9 × 10−4

(1.5 × 10−4–3.2 × 10−4)
2.5 × 10−3

(1.7 × 10−3–3.1 × 10−3)
9.2 × 10−3

(6.7 × 10−3–1.5 × 10−2) 2.2 × 10−1

A 60 0 1.2 × 10−3

(7.3 × 10−4–2.1 × 10−3) 4.8 × 10−5 1.5 × 10−4

(9.6 × 10−5–6.5 × 10−4)
2.1 × 10−3

(6.5 × 10−4–3.1 × 10−3)
5.8 × 10−3

(3.1 × 10−3–7.2 × 10−3)
3.2 × 10−2

(9.2 × 10−3–2.2 × 10−1) 2.2 × 10−1

B 40 0 1.5 × 10−4

(1.0 × 10−4–2.2 × 10−4) 3.2 × 10−5 7.3 × 10−5

(6.2 × 10−5–9.2 × 10−5)
1.1 × 10−4

(8.7 × 10−5–1.3 × 10−4)
1.7 × 10−4

(1.3 × 10−4–3.0 × 10−4)
2.6 × 10−3

(3.0 × 10−4–6.1 × 10−3) 6.1 × 10−3

C 59 0 3.9 × 10−4

(2.4 × 10−4–6.3 × 10−4) 4.0 × 10−5 7.1 × 10−5

(5.9 × 10−5–1.1 × 10−4)
1.7 × 10−4

(1.1 × 10−4–9.0 × 10−4)
1.7 × 10−3

(1.2 × 10−3–2.7 × 10−3)
6.6 × 10−3

(3.6 × 10−3–2.8 × 10−2) 2.8 × 10−2

D 38 0 1.7 × 10−4

(1.1 × 10−4–2.6 × 10−4) 3.3 × 10−5 7.7 × 10−5

(5.3 × 10−5–9.4 × 10−5)
1.1 × 10−4

(9.0 × 10−5–1.6 × 10−4)
2.1 × 10−4

(1.4 × 10−4–9.3 × 10−4)
3.0 × 10−3

(9.3 × 10−4–5.3 × 10−3) 5.3 × 10−3

E 60 0 7.2 × 10−4

(4.5 × 10−4–1.2 × 10−3) 3.1 × 10−5 1.3 × 10−4

(9.2 × 10−5–1.9 × 10−4)
9.7 × 10−4

(1.9 × 10−4–1.8 × 10−3)
4.2 × 10−3

(1.8 × 10−3–5.6 × 10−3)
9.4 × 10−3

(6.4 × 10−3–2.7 × 10−2) 2.7 × 10−2

HQDEP 0.493

All 257 0 6.4 × 10−4

(5.1 × 10−4–7.9 × 10−4) 5.1 × 10−6 3.2 × 10−4

(2.6 × 10−4–3.7 × 10−4)
6.5 × 10−4

(5.6 × 10−4–7.9 × 10−4)
1.6 × 10−3

(1.3 × 10−3–2.3 × 10−3)
7.7 × 10−3

(5.7 × 10−3–1.4 × 10−2) 4.3 × 10−1

A 60 0 5.9 × 10−4

(3.5 × 10−4–1.0 × 10−3) 5.1 × 10−6 2.8 × 10−4

(1.2 × 10−4–5.5 × 10−4)
8.3 × 10−4

(5.5 × 10−4–1.3 × 10−3)
1.6 × 10−3

(1.3 × 10−3–2.8 × 10−3)
6.8 × 10−3

(3.5 × 10−3–5.1 × 10−2) 5.1 × 10−2

B 40 0 7.7 × 10−4

(4.4 × 10−4–1.3 × 10−3) 6.2 × 10−6 3.6 × 10−4

(2.2 × 10−4–5.9 × 10−4)
7.8 × 10−4

(4.6 × 10−4–1.2 × 10−3)
2.1 × 10−3

(1.1 × 10−3–4.1 × 10−3)
8.0 × 10−3

(4.1 × 10−3–3.3 × 10−2) 3.3 × 10−2

C 59 0 7.9 × 10−4

(5.3 × 10−4–1.2 × 10−3) 2.5 × 10−5 3.7 × 10−4

(3.1 × 10−4–4.4 × 10−4)
6.7 × 10−4

(4.7 × 10−4–9.7 × 10−4)
2.2 × 10−3

(1.1 × 10−3–2.9 × 10−3)
5.1 × 10−3

(3.1 × 10−3–4.3 × 10−1) 4.3 × 10−1

D 38 0 6.0 × 10−4

(3.2 × 10−4–1.1 × 10−3) 5.7 × 10−6 2.6 × 10−4

(1.6 × 10−4–4.4 × 10−4)
5.2 × 10−4

(3.4 × 10−4–9.8 × 10−4)
1.2 × 10−3

(8.2 × 10−4–4.7 × 10−3)
7.9 × 10−3

(4.7 × 10−3–7.8 × 10−2) 7.8 × 10−2

E 60 0 5.1 × 10−4

(3.3 × 10−4–8.0 × 10−4) 1.1 × 10−5 3.1 × 10−4

(1.3 × 10−4–3.6 × 10−4)
5.2 × 10−4

(3.6 × 10−4–6.8 × 10−4)
9.6 × 10−4

(6.8 × 10−4–2.0 × 10−3)
7.8 × 10−3

(4.2 × 10−3–3.6 × 10−2) 3.6 × 10−2
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Table 3. Cont.

Index n >1 (%) GM (95%CI) Min Selected Percentiles Max p-Value a

25th (95% CI) 50th (95% CI) 75th (95% CI) 95th (95% CI)

HIhep
b <0.001 ***

All 257 13.2 0.33 (0.28–0.38) <0.01 0.15 (0.13–0.17) 0.32 (0.26–0.41) 0.66 (0.58–0.75) 1.79 (1.37–2.67) 133.78
A 60 8.3 0.30 (0.21–0.43) <0.01 0.19 (0.10–0.26) 0.43 (0.26–0.49) 0.61 (0.49–0.84) 1.78 (0.94–2.67) 2.67
B 40 2.5 0.17 (0.14–0.21) 0.03 0.12 (0.09–0.14) 0.15 (0.13–0.22) 0.23 (0.20–0.32) 0.44 (0.32–1.29) 1.29
C 59 3.4 0.24 (0.19–0.30) 0.02 0.13 (0.10–0.17) 0.25 (0.18–0.28) 0.42 (0.29–0.60) 0.79 (0.69–2.47) 2.47
D 38 5.3 0.22 (0.17–0.29) 0.07 0.13 (0.08–0.16) 0.17 (0.14–0.23) 0.33 (0.19–0.68) 0.96 (0.68–2.33) 2.33
E 60 40.0 0.96 (0.73–1.28) 0.13 0.52 (0.46–0.61) 0.72 (0.61–1.09) 1.37 (1.09–1.69) 3.85 (1.85–133.78) 133.78

HIrep <0.001 ***
All 257 7.8 0.24 (0.21–0.28) <0.01 0.14 (0.12–0.15) 0.24 (0.21–0.27) 0.41 (0.37–0.48) 1.19 (0.94–1.97) 53.81

A 60 11.7 0.22 (0.15–0.32) <0.01 0.15 (0.10–0.23) 0.32 (0.23–0.39) 0.48 (0.39–0.54) 1.19 (0.70–1.97) 1.97
B 40 2.5 0.18 (0.15–0.23) 0.04 0.12 (0.10–0.15) 0.17 (0.13–0.21) 0.25 (0.20–0.29) 0.60 (0.29–1.53) 1.53
C 59 0 0.16 (0.13–0.19) 0.05 0.09 (0.07–0.11) 0.15 (0.11–0.20) 0.27 (0.20–0.30) 0.41 (0.35–0.84) 0.84
D 38 7.9 0.26 (0.19–0.35) 0.06 0.14 (0.11–0.17) 0.18 (0.15–0.31) 0.36 (0.29–0.62) 2.11 (0.62–3.16) 3.16
E 60 15.0 0.47 (0.36–0.61) 0.12 0.25 (0.21–0.29) 0.41 (0.29–0.49) 0.62 (0.49–0.79) 1.97 (1.03–53.81) 53.81

Abbreviations: confidence interval (CI), hazard quotient (HQ), hazard index (HI). a Comparison of different school groups using the Kruskal–Wallis test. * p < 0.05, ** p < 0.01,
*** p < 0.001. b RfDs proposed by the U.S. EPA and EFSA for DEHP, BBzP, and DiNP are 20, 200, and 150 µg/kg/day, respectively.
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Table 4. Comparison of estimated daily phthalate intake (µg/kg/day), hazard quotients, and hazard
indices for participants (n = 257) from different elementary schools.

Daily
Intakes/Index

A
(n = 60)

B
(n = 40)

C
(n = 59)

D
(n = 38)

E
(n = 60) p Value a

Mean b

DEHP 7.48 4.30 5.87 6.45 80.44 0.011 *
DnBP 0.99 0.94 0.39 1.41 0.91 0.924
DiBP 1.37 0.58 0.43 1.76 0.68 0.358
DEP 1.24 1.25 4.28 1.79 1.04 0.864
DMP 0.39 0.57 0.67 1.28 0.50 0.013 *

HQDEHP 0.15 0.09 0.12 0.13 1.61 0.011 *
HQDnBP 0.10 0.09 0.04 0.14 0.09 0.924
HQDiBP 0.14 0.06 0.04 0.18 0.07 0.358
HQDEP 0.002 0.003 0.009 0.004 0.002 0.864
HIhep 0.53 0.22 0.35 0.34 4.22 0.010 *
HIrep 0.39 0.24 0.20 0.45 1.77 0.014 *

a ANCOVA for mean. * p < 0.05, ** p < 0.01, *** p < 0.001. b ANCOVA adjusted for age, sex, passive smoking
exposure, BMI, father ever employed at petrochemical complex, and home location close to a main road.

4. Discussion

This is the first study to assess the risk of exposure to phthalates in children living near
a petrochemical complex. We measured the phthalate DIs, HQs and HIs for school-aged
children from five elementary schools in the vicinity of PVC and VCM factories in central
Taiwan. The children at school E (farthest from PVC and VCM factories) and school A
(closest to PVC and VCM factories) had a significantly higher risk of HIs exceeding one.

Concentrations of the airborne phthalate DEHP are influenced by temperature in the
vapor phase, are also associated with particulate mass concentrations, and are subject to both
wet (rain or snow) and dry (wind or settling) deposition on the Earth’s surface [4,22]. This
dispersion is likely due to particle-sorbed DEHP not reacting rapidly with hydroxyl radicals;
however, vapor-phase DEHP reacts rapidly with hydroxyl radicals in the atmosphere [23].
The annual monitoring data from Taiwan’s EPA for air pollution in the area surrounding
the petrochemical complex were examined. The annual mean level of VCM in the ambient
air was 2.2 ppb (maximum level, 165 ppb) at school A, whereas that of 1-1dichloroethane
was approximately one-fifth of the VCM level. Air monitoring stations near the other
schools (B, C, D, and E) revealed a similar phenomenon (Table S7 and Figure S1). A study
in central Taiwan demonstrated that spatial variations in particle-phase polycyclic aromatic
hydrocarbon (PAH) concentrations occurred in the vicinity of the petrochemical complex
occurred during seasonal downwind weather patterns [24]. The study produced consistent
findings from air and biological monitoring, suggesting that the petrochemical complex
was a major source of PAH exposure for the area and residents in its vicinity and that the
increased external PAH levels in air might have contributed to elevated urinary 1-OHP
levels in residents living near the complex. Another study further demonstrated that
because of southerly winds blowing fumes from smokestacks of the complex, pollutants
were carried northward to Tai-Si Village, the nearest village in Da-Cheng Township to the
complex. This caused higher concentrations of V, Cr, Mn, Ni, Cu, As, Cd, and Tl and higher
all-cause cancer incidence among Tai-Si residents [25]. Therefore, the highest levels of total
phthalates, DEHP, and MEHP among school E children may have resulted from inhalation
or dust ingestion. Thus, the spatial variation in phthalate metabolite concentrations in our
study suggested inhalation as an additional exposure source. However, phthalate disper-
sion from the PVC and VCM factories and concentrations in the air near the petrochemical
complex was unclear and require further investigation.

Compared with that of children sampled from 22 cities and counties in Taiwan in a
previous study [12], the proportion of participants living near to a petrochemical complex
in this study with an HI exceeding one was higher (13.2% and 7.8% vs. 5.6%). However,
the proportion of children in our study with an HI exceeding one was lower than that in
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other countries (86%, 80%, 49%, and 36% of Saudi, Indonesian, Thai and Chinese children,
respectively). In addition, children living near to a region with intensive consumer goods
manufacturing in Yuhuan, China, had HI values two to three times higher than those in
the two other regions with results comparable to ours in a study [13]. Figure 3 shows
compared weights (%) of phthalate exposure in 7–11-year-old individuals fromTEST13-16
(Liao et al., 2021) and TPE3C. Children at school E had a higher total phthalate exposure
than that of TEST13-16 7–11-year-olds, and MEHP exposure at school E was considerably
higher. These results suggest that individuals in manufacturing-intensive regions are
likely to be at greater health risk from phthalate exposure and should be prioritized for
intervention. Major risk contributors among the plasticizers in our study were DEHP, DiBP
and DnBP, which is comparable to the studies of Saudi, Thai, Indonesian, Chinese and
Brazilian children [13,26,27]. DEHP has frequently been identified as a major risk-driving
phthalate in general populations [28] and pregnant women [29]. Therefore, identification
of exposure sources of DEHP among children is the most critical factor in risk management
for phthalate exposure.
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Figure 3. Comparison of the weights (%) of phthalate exposure in TEST13-16 7–11-year-olds and
TPE3C participants.

The strength of this study is that we evaluated the risk of exposure to phthalates in
school-aged children living near PVC and VCM factories. We assessed the spatial variation
in phthalate exposure using human biomonitoring of our participants. This study has some
limitations. First, we did not measure ambient air levels of the phthalates (this could be
achieved by collecting outdoor and indoor PM2.5 samples). Second, the wind direction
did not vary during our sampling period, autumn, and spring. Third, we did not utilize
a detailed questionnaire regarding food contamination by phthalate, including exposure
from containers and personal care products.
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5. Conclusions

This is the first study to evaluate urinary phthalate metabolites in school-aged children
living near PVC and VCM factories. Our findings suggest that children living near the
petrochemical complex were at a greater health risk of phthalate exposure than were general
school-aged children in Taiwan and that exposure to DnBP, DiBP, and DEHP constituted
the majority of phthalate exposure. In addition, inhalation may have been a risk factor
for individuals living near PVC and VCM factories. These findings should spur action to
reduce the phthalate exposure risk in school-aged children, especially in PVC- and VCM-
producing regions. However, whether inhalation or dust ingestion increases exposure to
phthalates warrants further investigation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11010057/s1, Table S1: Estimated daily intake (µg/kg/day)
for seven PAEs in participants by school group (n = 257); Table S2: Comparison of urinary phthalate
levels for participants (n = 257) from different schools by mean after adjusting for covariance;
Table S3: Comparison of urinary phthalate levels for participants (n = 257) from different schools by
median; Table S4: Comparison of urinary phthalate levels for participants (n = 257) from different
schools by mean after adjusting for covariance; Table S5: Comparison of estimated daily phthalate
intake (µg/kg/day) for participants (n = 257) from different schools; Table S6: Comparison of
hazard quotients and hazard index by tolerable daily intake for participants (n = 257) from different
schools; Table S7: Annual levels of air vinyl chloride monomers (VCM) and 1,1-dichloroethane at
petrochemical complex and surrounding region (schools and community) from May 2012 to June 2014
per local EPA of Yun-Lin County, Taiwan; Figure S1: Locations of air VCM and 1,1-dichloroethane
monitoring sites inside (1–3) and outside (4–7) petrochemical complex (No. 6 Naphtha Cracking
Complex) in central Taiwan.
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