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Abstract: Background: In China, the increasing concentration of ozone (O3) has emerged as a
significant air pollution issue, leading to adverse effects on public health, particularly the respiratory
system. Despite the progress made in managing air pollution in China, it is crucial to address the
problem of environmental O3 pollution at present. Methods: The connection between O3 exposure
and respiratory mortality in Shenyang, China, from 2014 to 2018 was analyzed by a time-series
generalized additive regression model (GAM) with quasi-Poisson regression. Additionally, the
potential combined effects of fine particulate matter (PM2.5) and O3 were investigated using the
synergy index (SI). Results: Our findings indicate that each 10 µg/m3 increase in O3 at lag 2 days
was associated with a maximum relative risk (RR) of 1.0150 (95% CI: 1.0098–1.0202) for respiratory
mortality in the total population. For individuals aged ≥55 years, unmarried individuals, those engaged
in indoor occupations, and those with low educational attainment, each 10 µg/m3 increase in O3 at
lag 07 days was linked to RR values of 1.0301 (95% CI: 1.0187–1.0417), 1.0437 (95% CI: 1.0266–1.0610),
1.0317 (95% CI: 1.0186–1.0450), and 1.0346 (95% CI: 1.0222–1.0471), respectively. Importantly, we
discovered a synergistic effect of PM2.5 and O3, resulting in an SI of 2.372 on the occurrence of
respiratory mortality. Conclusions: This study confirmed a positive association between O3 exposure
and respiratory mortality. Furthermore, it highlighted the interaction between O3 and PM2.5 in
exacerbating respiratory deaths.

Keywords: O3; PM2.5; synergistic interaction; respiratory mortality

1. Introduction

Globally, the COVID-19 pandemic claimed over 6.9 million lives, primarily due to
respiratory illnesses [1]. However, even before the pandemic, several respiratory diseases
ranked among the top 10 causes of mortality worldwide [2]. For instance, chronic respira-
tory diseases, affecting approximately 544.9 million people, were the third leading cause
of mortality in 2017 [3], and lower respiratory tract infections held the fifth position in
2015 [4]. In China alone, respiratory diseases resulted in an estimated 3.25 million deaths in
2015 [5]. With the effects of population aging, the number of respiratory deaths is expected
to steadily increase, imposing a significant burden on society. Therefore, investigating risk
factors for respiratory diseases in public health is of utmost importance. Common respira-
tory diseases include chronic obstructive pulmonary disease (COPD), lower respiratory
tract infections, asthma, occupational lung disease, and pulmonary hypertension. These
diseases have numerous potential and complex causative factors, including ambient air
pollution [6–8].

Toxics 2023, 11, 892. https://doi.org/10.3390/toxics11110892 https://www.mdpi.com/journal/toxics

https://doi.org/10.3390/toxics11110892
https://doi.org/10.3390/toxics11110892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0009-0001-4255-0508
https://doi.org/10.3390/toxics11110892
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics11110892?type=check_update&version=2


Toxics 2023, 11, 892 2 of 15

Approximately 4 million fatalities occur annually due to ambient air pollution [9].
Consequently, air pollution represents one of the most critical environmental hazards to
human health [10] and has gained prominence on the global health agenda [11]. Fortunately,
the implementation of environmental management measures in recent years has led to a de-
cline in air pollution across most regions in China [12]. Nevertheless, the aging society and
growing population significantly modify the group susceptible to respiratory diseases [13].
Population-weighted annual average ozone (O3) concentrations in China have consistently
risen between 2013 and 2017, particularly in the eastern coastal regions [14]. Although age
and gender have been identified as factors influencing respiratory susceptibility to O3 [15],
the subgroups specifically sensitive to O3 have not been systematically studied.

Past systematic reviews and meta-analyses have revealed that inhaling fine particulate
matter (PM2.5) can have detrimental effects on respiratory health [16,17]. It is attributed to
the induction of an inflammatory response [18,19], stimulation of oxidative stress [20], and
activation of immune cells [21]. Furthermore, rising levels of O3 in the atmosphere pose
a significant challenge in controlling air pollution, leading to adverse impacts on public
health [14,15]. Global O3-attributable mortality has increased by 46% between 2000 and
2019 [22], raising concerns about its potential negative effects on various physiological
systems, including cardiovascular [23–25], neurological [26], and respiratory [27,28] sys-
tems. Therefore, it is crucial to comprehensively investigate both PM2.5 and O3, which are
two major atmospheric toxins. Although several epidemiological studies have examined
the potential synergy between PM2.5 and O3, with a specific focus on cardiovascular and
nonaccidental mortality [29,30], the evidence for O3 and its interaction with PM2.5 on
respiratory mortality remains unclear.

The primary objective of this research was to assess the association between exposure
to O3 and PM2.5 and the potential risk of respiratory mortality. Additionally, the study
aimed to elucidate the possible synergistic effect of PM2.5 and O3 on respiratory mortality.

2. Materials and Methods
2.1. Study Area

Shenyang is located in the northeast of China, with a sub-humid temperate continental
climate. Here, summers are hot and wet, while winters are frigid and dry, with sufficient
sunlight, strong winds, and low levels of relative humidity. The urban population of
Shenyang reached 3.8 million in 2014 and was growing every year. In parallel, Shenyang
has confronted severe air pollution issues in recent years due to the burning of coal for
winter heating, as well as its status as one of China’s industrial centers in the past.

2.2. Data on Mortality Associated with Respiratory Disease

This study employed cluster sampling to gather data on respiratory disease mortality
in Shenyang City, from the death registration system of the Liaoning Provincial Center for
Disease Control and Prevention, between 2014 and 2018. This data recorded the personal
information of each deceased person, including time of death, gender, age, nationality,
marital status, work, education level, and the direct cause of death with its ICD-10 (Interna-
tional Classification of Diseases, 10th Revision) code. The data on fatalities for respiratory
diseases (J00–J99) were analyzed. Lung cancer (C33–C34) was not included in this study,
because the cause and course of lung cancer were more complex compared with common
respiratory diseases. After filtering out unknown causes, abnormal records, and absent
data, the number of respiratory disease fatalities was 35,385.

2.3. Data on Environmental Exposure

The Department of Ecology and Environment of Liaoning Province set up 11 fixed-
site stations at a 2 km × 2 km spatial resolution to monitor air quality in Shenyang. Air
pollutants were measured and recorded daily at the 11 stations, including particulate mat-
ter < 2.5 µm in diameter (PM2.5), particulate matter measuring between 2.5 and 10 µm in
diameter (PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2) and sulfur
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dioxide (SO2). Meteorology data was also obtained from the 11 stations, which encom-
passed daily average temperature, barometric pressure, wind speed, and relative humidity.
Air pollutants and meteorology data were quantified at a time resolution of 1 h.

2.4. Statistical Modeling

In this study, we used a time-series generalized additive regression model (GAM)
with quasi-Poisson regression [31] to investigate the connection between air pollution and
respiratory disorders in Shenyang. The model adjusted the influence of time, meteorology
factors, and the holiday effect. First, a natural cubic spline function was established
for temperature, relative humidity, and time variables, respectively, accounting for their
potential non-linear effects on the respiratory system [32]. To streamline repetitive testing
and model selection procedures, we adhered to prior model specifications and degrees of
freedom (df) [24,33]. Therefore, we set a df of 7 per year for time, a df of 6 for temperature,
and a df of 3 for relative humidity and incorporated weekends and official holidays into
the model. Lastly, PM2.5 and O3 were included in the regression model, respectively. We
proceeded with model diagnostics by evaluating the residuals of the core model.

The core model was established as follows:

Log(E[Yn]) = α + β(Xn) + ns(T, df = 6) + ns(RH, df = 3)+ ns(Time, df = 7 per year) + DOW + OH

where n is the time of the observation, E (Yn) is the expected number of deaths from
respiratory diseases, Xn is the concentration of air pollutant; β is the log-relative risk of
respiratory mortality associated with a unit increment in pollutant concentration; ns ( )
represents the natural cubic spline function; T, RH and Time indicate the daily average
temperature, relative humidity and time variables, respectively; DOW is the weekend
effect; and OH is the official holiday effect during the study period.

To assess the lag effect of pollutants, we further added lag structures to the model [24,34].
The Lag function was used to investigate the effect of single-day lags, while the runMean
function was utilized to investigate the cumulative effect of moving average lags. According
to the significance of the model analysis results, the effects of O3 were explored at single-day
lags of lag 0–lag 7 and multi-day moving average lags of lag 01–lag 07 [35]. Lag 0 is the
average concentration of O3 on the current day and lag1 is the average concentration of O3
on the previous day, etc. Lag 01 is the moving average concentration of O3 on the present
day and the previous day, and so on. Then, we discovered no short-term effect of PM2.5 on
respiratory mortality at lag 0–lag 7 or lag 01–lag 07 (Figure S3). Previous studies suggested
that the dominant effects of PM2.5 on death could be observed at long-term exposure [36,37].
Accordingly, we extended PM2.5 multi-day cumulative lag days to 50 days. To investigate
potential non-linear correlations, we also displayed the exposure-response curves for the
links between pollutants and respiratory illness mortality [38].

Next, we conducted a stratified study of O3 between the cold season (November to
March) and the warm season (April to October) due to a significant confounding factor:
temperature [39]. Moreover, to identify potentially susceptible subgroups with a higher
risk of O3 exposure, stratified analyses were performed based on several socioeconomic
and personal factors, including age, gender, nationality, marital status, job, and level of
education (high education is junior high school and above; low education is below junior
high school). To identify potential subtypes of respiratory diseases with a higher risk
of O3 exposure, stratified analyses were performed based on specific respiratory disease
categories, including influenza and pneumonia, lower respiratory tract infection disease,
chronic lower respiratory disease, and respiratory failure.

Spearman’s rank correlation was then used to analyze the association between atmo-
spheric pollutants and meteorology factors. Finally, we performed sensitivity analyses to
assess the robustness of our results. Dual-pollutant and multi-pollutant models were set
up to evaluate the robustness of the association between O3 and respiratory mortality [28].
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2.5. Interaction Analysis

The study further conducted a comprehensive analysis of the potential association
between PM2.5 and O3, applying both multiplicative and additive interaction models.
To assess multiplicative interactions, a product term of PM2.5 and O3 was included in
the generalized additive model. The synergy index (SI) was used to assess addictive
interactions [40,41]. An SI value of >1 indicates a cooperative interaction, implying that the
combined impacts of PM2.5 and O3 were greater than the total of their individual effects.
On the contrary, it suggests an antagonist effect when an SI value is <1.

O3 was divided into two levels, namely low and high, based on a cut-point of
100 µg/m3, as required by the Grade II national standards for O3 concentration. PM2.5
was also divided into two levels, based on a cut-point of 71 µg/m3—the 75th percentile
value of PM2.5 concentrations from the obtained data. Subsequently, the combination of
these two variables was represented by a novel variable that consisted of the following four
classifications: (1) low PM2.5 and low O3; (2) low PM2.5 and high O3; (3) high PM2.5 and
low O3; and (4) high PM2.5 and high O3.

We conducted all statistical analyses using R, version 4.3.0. Effect estimates were
presented as relative risks (RR) with 95% confidence intervals (CIs). A two-sided p value of
<0.05 was considered statistically significant.

3. Results
3.1. Characteristics of the Study Population

Table 1 presents the characteristics of the participants included in the research. The
study encompassed 35,385 deaths from respiratory diseases. Approximately 90% of the
deaths were aged 55 years and older. Only 8148 individuals, accounting for 23.03% of the
total deaths, had received education of junior high school and higher. The distribution of
the respiratory deaths is revealed in Table S1.

3.2. Distribution of Air Pollutants

Table 2 shows the statistical characteristics of the environmental meteorology factors
and air quality. Here, meteorology and air quality data were collected from 2014 to 2018,
in Shenyang. Meanwhile, a total of 35,385 people died from respiratory diseases over the
five-year period. The average concentration of NO2 is higher than the Grade II national
standards for air quality (40 µg/m3); the median and average concentrations of both PM2.5
and PM10 are also higher than the Grade II national standards for air quality (35 and
70 µg/m3). Table S2 and Figure S1 show the variation in pollutant exposure. The annual
average concentration of the six pollutants (O3, PM2.5, PM10, SO2, NO2, CO) reached their
highest levels in 2014. NO2 concentration has exhibited a gradual decline. Furthermore,
it is worth noting that a cyclic variation can be observed for concentration changes of
both O3 and PM2.5. However, PM2.5 reaches a maximum in winter and O3 reaches its
maximum in summer of every year (Figure S1). With regard to meteorology factors, the
mean temperature was 9.1 ◦C and the mean relative humidity was 59.9% (Table 2).

Table 3 indicates that there is a positive correlation among the five pollutants (PM2.5,
PM10, SO2, NO2, and CO), particularly between PM2.5 and PM10 (r = 0.90). Nevertheless, the
five pollutants mentioned are negatively correlated with O3, and temperature is positively
correlated with O3 (r = 0.70).
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Table 1. Characteristics of the respiratory deaths in Shenyang, China, during 2014–2018.

Characteristic n (%)

Total 35,385 (100.00)
Gender
Males 20,572 (58.14)

Females 14,813 (41.86)
Age of mortality

≥55 years 32,780 (92.64)
<55 years 2605 (7.36)

Nationality
The Han nationality 33,465 (94.57)
Minority nationality 1911 (5.40)

unknown 9 (0.03)
Marital status

Married 20,932 (59.16)
Non-married 14,196 (40.12)

unknown 257 (0.73)
Work

Interior work 24,374 (68.89)
Outside work 6532 (18.46)

unknown 4479 (12.66)
Education

High education 8148 (23.03)
Low education 27,237 (76.97)
Cause of deaths

Influenza and pneumonia (J09–J18) 13,466 (38.06)
Lower respiratory tract infection disease

(J12–J18, J20–J22) 13,578 (38.37)

Chronic lower respiratory disease (J40–J47) 2799 (7.91)
Respiratory failure (J96) 17,081 (48.27)

Table 2. Distribution of meteorological elements and concentrations of air pollutants.

Mean Min P25 P50 P75 Max

T (°C) 9.1 −22.8 −2.8 11.0 21.2 32.4
RH (%) 59.9 15.1 47.8 61.3 72.0 98.0

O3 (µg/m3) 66.7 9.0 35.0 59.0 88.0 250.0
PM2.5 (µg/m3) 56.1 4.0 28.0 43.0 72.0 291.0
PM10 (µg/m3) 94.6 8.0 56.0 81.0 119.0 396.0
SO2 (µg/m3) 47.5 3.0 15.0 26.0 57.0 332.0
NO2 (µg/m3) 41.8 12.0 29.0 39.0 51.0 125.0
CO (mg/m3) 1.0 0.3 0.7 0.9 1.2 3.3

Table 3. Spearman’s rank correlation coefficients between pollutants and meteorological variables.

O3 PM2.5 PM10 SO2 NO2 CO T RH

O3 (µg/m3) 1.00
PM2.5 (µg/m3) −0.17 * 1.00
PM10 (µg/m3) −0.09 * 0.90 * 1.00
SO2 (µg/m3) −0.39 * 0.70 * 0.67 * 1.00
NO2 (µg/m3) −0.34 * 0.74 * 0.68 * 0.71 * 1.00
CO (mg/m3) −0.19 * 0.80 * 0.70 * 0.63 * 0.72 * 1.00

T (°C) 0.70 * −0.37 * −0.35 * −0.67 * −0.40 * −0.21 * 1.00
RH (%) −0.07 * −0.01 −0.20 * −0.21 * −0.02 0.18 * 0.32 * 1.00

* p < 0.01.
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3.3. Air Pollution Exposure and Respiratory Mortality

Figure 1 shows the impact of O3 on total respiratory deaths on the day of non-lag,
single-day lags of 1–7 days, and multi-day moving average lags of 01–07 days (expressed
as RR and its 95% CI). The greatest impact of O3 was observed at lag 2 of all single-day lags,
with RR = 1.0150 (95% CI: 1.0098–1.0202). As for the moving average lags, the effect of O3
grows slowly from lag 01 to lag 07, reaching a maximum at lag 07, with RR = 1.0272 (95% CI:
1.0162–1.0384). Notably, O3 exposure significantly elevates the risk of respiratory fatalities
during the warm season, while no statistically significant association has been observed
during the cold season (Figure S2). Meanwhile, we discovered no effect of short-term
exposure to PM2.5 (Figure S3) but a significant effect of long-term exposure to PM2.5 at a
moving average lag of 46 days, with RR = 1.0351 (95% CI: 1.0095–1.0613) (Figure 2).
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Figure 3 indicates that the respiratory mortality risk is augmented with O3 and PM2.5
concentrations. A safety threshold of O3 concentration at 52 µg/m3 for respiratory mortality
was observed. There was no safety threshold in the exposure-response relationships
between PM2.5 and respiratory mortality.
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3.4. Joint Effects of Air Pollutants on Respiratory Mortality

Table 4 describes the interactions between O3 and PM2.5 on the mortality rate of
respiratory illnesses. The individual effect of PM2.5 is 0.978 (95% CI: 0.945–1.013), the
individual effect of O3 is 1.065 (95% CI: 1.017–1.116), and their cooperative effect is 1.102
(95% CI: 1.015–1.196). Despite the 95% CI for the relative excess risk due to interaction
(RERI) and attributable proportion of interaction (AP) encompassing a value of 0, it is
noteworthy that the synergy index (SI) is a statistically significant value of 2.372 (95% CI:
1.127–3.617). The interaction item added to the model failed to attain statistical significance
in the multiplicative model (p > 0.05).

Table 4. The interactions between O3 and PM2.5 on respiratory mortality.

Category Value & 95% CI

OR
low O3 + low PM2.5 1
high O3 + low PM2.5 1.065 (1.017, 1.116)
low O3 + high PM2.5 0.978 (0.945, 1.013)
high O3 + high PM2.5 1.102 (1.015, 1.196)

SI 2.372 (1.127, 3.617)
RERI 0.059 (−0.021, 0.139)
AP 0.054 (−0.015, 0.123)

3.5. Subgroup Analysis of O3 Exposure

Figure 4 shows the impact of O3 on respiratory mortality after stratification according to
specific respiratory disease categories, including influenza and pneumonia, lower respiratory
tract infection disease, chronic lower respiratory disease, and respiratory failure. Per 10 µg/m3

increase of O3 at lag 07 days is associated with 1.0365 (95% CI: 1.0195–1.0538), 1.0384 (95% CI:
1.0214–1.0556), 1.0252 (95% CI: 0.9898–1.0619), and 1.0179 (95% CI: 1.0026–1.0334) RR of death
from influenza and pneumonia, lower respiratory tract infection disease, chronic lower
respiratory disease, and respiratory failure.

Figure 5 and Figure S4 show the impact of O3 on respiratory mortality after stratification
according to personal characteristics and social factors of the population, including age, gender,
nationality, marital status, job, and level of education (high education is junior high school and
above; low education is below junior high school). Per 10 µg/m3 increase of O3 at lag 07 is
associated with 1.0346 (95% CI: 1.0182–1.0513), 1.0301 (95% CI: 1.0187–1.0417), 1.0276 (95% CI:
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1.0163–1.0390), 1.0437 (95% CI: 1.0266–1.0610), 1.0317 (95% CI: 1.0186–1.0450), and 1.0346
(95% CI: 1.0222–1.0471) RR of respiratory mortality in females, the elderly (≥55 years old),
the Han nationality, non-married individuals, those engaged in indoor occupations, and
those with low educational attainment. Figure 5 shows statistically significant differences
in age groups, nationality groups, marriage groups, work groups, and education groups,
but not in gender groups.
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3.6. Sensitivity Analyses

The sensitivity analyses indicate that the findings obtained from the primary models
are robust. When including one or several pollutants in the models for modification, the
effects of O3 remain statistically significant. With more pollutants included in the model,
the effects of O3 became slightly greater at both lag 2 and lag 07, as shown in Table 5.

Table 5. Relative risk of respiratory mortality per 10 µg/m3 increase in O3 concentration in single-
pollutant, double-pollutant, and multi-pollutant models.

Pollutant(s) Lag 2 Lag 07

O3 1.0150 (1.0098, 1.0202) 1.0272 (1.0162, 1.0384)
O3 + PM2.5 1.0150 (1.0098, 1.0203) 1.0273 (1.0162, 1.0385)
O3 + PM10 1.0149 (1.0097, 1.0201) 1.0269 (1.0159, 1.0381)
O3 + SO2 1.0150 (1.0098, 1.0203) 1.0276 (1.0165, 1.0388)
O3 + NO2 1.0152 (1.0099, 1.0205) 1.0278 (1.0166, 1.0391)

O3 + PM 2.5 + SO2 1.0150 (1.0098, 1.0203) 1.0275 (1.0164, 1.0388)
O3 + PM 2.5 + NO2 1.0152 (1.0100, 1.0205) 1.0279 (1.0167, 1.0392)

O3 + SO2 + NO2 1.0152 (1.0099, 1.0205) 1.0278 (1.0166, 1.0391)
O3 + PM 2.5 + SO2 + NO2 1.0152 (1.0100, 1.0205) 1.0279 (1.0167, 1.0392)
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4. Discussion

This study revealed a significant association between ambient O3 and respiratory
mortality among residents, specifically influenza and pneumonia, and lower respiratory
tract infection disease. The research presented a methodology for assessing the impact
of O3 on respiratory mortality, particularly the interaction between PM2.5 and O3, in
Shenyang, China from 2014 to 2018. The exposure-response curve indicated a safety
threshold for O3 concentrations at 52 µg/m3 regarding respiratory mortality. With every
10 µg/m3 increase in O3 at lag 2 days, the highest RR for respiratory mortality was 1.0150
(95% CI: 1.0098–1.0202). Furthermore, by analyzing O3 concentrations of the moving
average lag, the cumulative exposure to O3 was found to have an even more severe impact.
Moreover, certain subpopulations including unmarried individuals, those engaged in
indoor occupations, and those with low educational attainment were identified to be more
vulnerable to O3. Significantly, a synergistic interaction between PM2.5 and O3 regarding
the impact of respiratory death was discovered, with an SI of 2.372.

4.1. O3 Exposure and Respiratory Diseases

Previous animal research has demonstrated that O3 exposure can increase the pro-
duction of Th2 cytokines, eosinophilic airway inflammation [42], and IL-33 airway hy-
perresponsiveness in a dose-dependent manner [43]. Additionally, inhalation of O3 leads
to oxidative damage due to the generation of reactive oxygen species (ROS), resulting in
excessive mitochondrial oxidative stress [44]. O3 can also activate adrenergic and glucocor-
ticoid receptors, causing the release of epinephrine and corticosterone into the circulation,
thereby exacerbating O3-induced pulmonary damage and inflammation [45]. Transcrip-
tomics studies also suggest the dysregulation of numerous pathways after O3 exposure,
such as mitochondrial dysfunction and glucocorticoid receptor signaling [46]. Furthermore,
several epidemiological studies have shown that long-term exposure to ambient O3 sig-
nificantly contributes to respiratory mortality [14,47], particularly in areas with high O3
concentrations [39]. The above evidence suggests that O3 exposure can induce respiratory
dysfunction, reinforcing our conclusions.

There has been no conclusive evidence regarding the safe threshold for acute O3
damage to human health [48]. A nationwide epidemiological study in China suggested that
the safety threshold for O3’s effect on total mortality may range between 60 and 100 µg/m3,
depending on the cause of death [15]. In a London study, a threshold O3 concentration of
50 µg/m3 was found for respiratory mortality [49], which closely aligns with our results.
Another nationwide study involving 53 million U.S. Medicare beneficiaries found no
evidence of a safety threshold for the effect of PM2.5 on respiratory mortality risk [50].

Moreover, previous studies have extensively examined the delayed effects of ambient
pollutants on public health. The highest elevated risk of respiratory death from O3 exposure
was reported as 0.78% (95% CI: 0.33%–1.24%) at lag 3 in Guangzhou, China [33], and 1.04%
(95% CI: 0.04%–1.68%) at lag 0 in Nanchang, China [35]. However, our study revealed that the
greatest elevated risk of respiratory death from O3 exposure was 1.50% (95% CI: 0.98%–2.02%)
at lag 2 in Shenyang, China, calculated using an RR of 1.0150 (95% CI: 1.0098–1.0202). This
suggests that the effect of O3 on respiratory death in Shenyang may be slightly higher
than in the two southern cities of China (Guangzhou and Nanchang). Nonetheless, these
variations are reasonable because population-weighted average O3 concentrations are
different, and attributable per capita respiratory mortality rates vary across regions in
China [14]. Furthermore, a few studies have confirmed our hypothesis that the cumulative
effect of O3 on respiratory health increases over time [28,35]. In comparison to PM2.5,
studies in mice have shown that O3 has a stronger potency in causing respiratory changes,
possibly due to its nature as an irritant gas [51]. This observation may explain why, in our
study, the optimal lag time for PM2.5 effects is significantly longer than for O3.

Our study found that influenza and pneumonia (RR = 1.0365, 95% CI: 1.0195–1.0538),
as well as lower respiratory tract infection disease (RR = 1.0384, 95% CI: 1.0214–1.0556),
could be more sensitive to O3 compared to total respiratory disease (RR = 1.0272, 95% CI:
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1.0162–1.0384) at lag 07. Mice exposed to O3 are more susceptible to respiratory bacterial
infections, partially due to toxicological interactions between bacterial lipopolysaccharide
and O3 [52]. Additionally, O3 causes an increase in susceptibility to influenza A viruses by
regulating the airway balance of protease/antiprotease [53]. O3, being a gas with the ability
to deeply infiltrate the lower respiratory tract, effectively penetrates deep into the lungs [54].
A study conducted in Guangzhou showed that chronic lower respiratory diseases are more
sensitive to O3 exposure [33]. However, our study had too few deaths from chronic lower
respiratory diseases to draw definitive conclusions. The discrepancies in estimates of
O3 effects may be attributed to variations in ambient O3 pollution, regional differences,
population susceptibility, and levels of healthcare available.

4.2. Subgroups More Sensitive to O3

Age-related changes in the innate immune system coincide with age-related deficien-
cies in T-cell and B-cell function [55]. Furthermore, older individuals, often with underlying
health conditions, experience prolonged exposure to ambient pollutants compared to
younger individuals. These findings indicate that ambient pollutants pose greater risks to
the health of the elderly population. A study conducted on healthy older adults revealed
that exposure to near-ambient O3 can lead to impaired pulmonary function, airway damage,
and inflammation [56].

Asthma emergency room visits among females aged 40–64 were more strongly associ-
ated with O3 exposure compared to males of the same age group, showing a higher RR of
1.21 (95% CI = 1.05–1.39) [57]. This suggests that females are more susceptible to inhaled
O3, possibly due to estrogen levels and varying regulation of pulmonary immune func-
tion [58]. Moreover, gender-specific miRNA regulation of inflammatory gene expression
may mediate different effects of pollution on health based on gender [59].

In our study, the unmarried status predominantly referred to divorced or widowed
individuals, with a mean age of 75.97 years. This indicates that they have experienced
the loss of a partner, creating significant psychosocial stressors. Psychosocial stressors,
particularly social isolation, impact the neurological and endocrine systems and trigger
detrimental metabolic and inflammatory responses. These responses are further exacer-
bated by O3 exposure, leading to increased neutrophils and IL-6 levels in lavage fluid [60].
Additionally, inhalation of O3 might have implications for mental health [61]. Consequently,
there may be a harmful cycle involving O3 exposure, heightened psychological tension,
and respiratory injury. There is no direct data in our study to support these speculations
and further research is required.

In our investigation, the majority of outdoor workers were farmers or laborers en-
gaged in manual labor in open-air environments for prolonged periods. Exercise-induced
transition from nasal to oral respiration can render the distal lung more susceptible to O3
damage due to increased O3 exposure [62]. Surprisingly, our findings suggest that indoor
employees are more sensitive to O3. Although most indoor O3 originates from outdoor
sources through ventilation air, indoor emission sources can significantly elevate indoor
O3 levels [63]. Furthermore, the work recorded in our research data refers to participants’
occupations at the time of their mortality. Since most individuals were retired and engaged
in indoor work during this period, it becomes difficult to accurately determine their lifetime
occupational history. Consequently, the unexpected finding of an increased risk among
indoor workers may be attributed not only to indoor sources of O3 but also to potential
misclassification of differential exposure.

In China, a 10 µg/m3 increase in PM2.5 was associated with a higher prevalence of
major cardiovascular disease in participants with lower education levels but not in the
well-educated population [64]. Another epidemiological study similarly demonstrated
that the association between O3 and years of life lost was more pronounced in individuals
with less education [65]. These two studies align with our findings and can be attributed
to several reasons. Individuals with lower education levels tend to have poorer economic
conditions in China, often residing in areas with severe air pollution [66,67]. As a result,
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individuals with limited education may experience higher levels of O3 exposure and greater
susceptibility to respiratory diseases.

4.3. Combined Effects between PM2.5 and O3

Our results revealed an SI value of 2.372, indicating that PM2.5 and O3 have combined
effects on respiratory mortality that exceed the sum of their individual impacts. However,
the precise latent cellular molecular pathway responsible for these effects remains largely
unidentified. Nevertheless, our results can be explained by several studies that focus on
the biological mechanisms underlying the interaction between PM2.5 and O3 in relation
to other health outcomes. It is plausible that similar pathogenic mechanisms, such as
inflammation, oxidative stress, and cytokine induction, contribute to the observed impacts
of both substances [68]. Additionally, the chemical reactions occurring on the particle
surface promote interactions between O3 and PM2.5 [69]. For instance, a study investigating
the interaction between O3 and ultrafine carbon demonstrated that combined exposure led
to a greater decline in respiratory function compared to individual exposure. This finding
was associated with the induction of the IL-13 pathway, increased mucin production,
and interferon gene expression [70]. Moreover, higher levels of O3 may enhance particle
reactivity [71], reduce the removal of PM2.5, and increase its accumulation and retention [72],
thereby exacerbating its negative impact on the respiratory system.

4.4. Strengths and Limitations

There were several strengths in this time-series epidemiological research. Firstly, the
underreporting or duplication of data was minimal due to the utilization of official sources
for meteorological elements, air quality measurements, and respiratory mortality data.
These sources include the Department of Ecology and Environment of Liaoning Province
and the death registration system of the Liaoning Provincial Center for Disease Control
and Prevention. Secondly, our study focused on subgroups particularly sensitive to O3,
who were more likely to develop and die from respiratory illnesses. Thus, our findings
offer novel perspectives on strategies to manage the global burden of respiratory illnesses
in the future. Lastly, our research contributed to the emerging focus on the interaction
between O3 and other air pollutants, highlighting a synergistic relationship between PM2.5
and O3 in terms of their impact on respiratory diseases, an aspect that has received limited
attention in previous studies.

However, there were also some limitations in this study. Firstly, the ambient O3 concen-
trations were derived from fixed-site monitors rather than individual measurements, which
may result in non-differential exposure misclassification errors and an underestimation of
the impact of air pollutants. Secondly, the findings of this research may lack generalizability
due to the methodology of cluster sampling and the specific research region (Shenyang
City). Thirdly, the model did not include several unavailable confounding factors such as
smoking status and medication usage. Finally, because of the nature of the ecological study
design, it is not possible to establish a causal link.

5. Conclusions

This study confirmed a positive association between O3 exposure and respiratory
mortality. Furthermore, we observed combined effects between O3 and PM2.5 on respi-
ratory mortality. Our findings complemented limited previous studies by identifying
subpopulations that exhibited increased sensitivity to O3. These findings will assist policy-
makers in improving the management of air pollution in the future. Moving forward, it is
crucial to prioritize research on the combined effects of multiple ambient pollutants and
the protection of sensitive groups in order to improve public health.
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