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Abstract: Toxicokinetic (TK) models have been used for decades to estimate concentrations of per-
and polyfluoroalkyl substances (PFAS) in serum. However, model complexity has varied across
studies depending on the application and the state of the science. This scoping effort seeks to
systematically map the current landscape of PFAS TK models by categorizing different trends and
similarities across model type, PFAS, and use scenario. A literature review using Web of Science and
SWIFT-Review was used to identify TK models used for PFAS. The assessment covered publications
from 2005–2020. PFOA, the PFAS for which most models were designed, was included in 69 of the
92 papers, followed by PFOS with 60, PFHxS with 22, and PFNA with 15. Only 4 of the 92 papers
did not include analysis of PFOA, PFOS, PFNA, or PFHxS. Within the corpus, 50 papers contained
a one-compartment model, 17 two-compartment models were found, and 33 used physiologically
based pharmacokinetic (PBTK) models. The scoping assessment suggests that scientific interest has
centered around two chemicals—PFOA and PFOS—and most analyses use one-compartment models
in human exposure scenarios.

Keywords: PFAS; toxicokinetics; scoping assessment

1. Introduction

Poly- and perfluoroalkyl substances (PFAS) are a family of more than 4730 highly
fluorinated aliphatic compounds manufactured for a variety of diverse applications [1]. The
list continues to expand in part due to advancements in non-targeted screening analytical
techniques which have enabled identification of many previously unknown substances
in environmental samples and consumer products (OECD 2021). Since the 1950s, these
compounds have been widely used in consumer products such as water-repellent clothing,
stain-resistant carpets, non-stick cookware, and oil resistant paper food packaging and for
industrial products such as firefighting foams to extinguish fuel fires [2–4]. The carbon–
fluorine bond is the strongest bond in organic chemistry, thus providing chemical and
thermal stability to the perfluoroalkyl moiety [5]. The properties which make PFAS suitable
for high temperature applications and corrosive environments also make them resistant
to environmental and metabolic degradation [3,6]. Consequently, a broad range of these
substances have been detected in the environment, wildlife, and humans [7,8]. As such,
many PFAS have been detected with high frequencies in human serum in populations in
the U.S. [9,10], Germany [11,12], Sweden [13], and China [14].

Currently, much of the human health effect data available for PFAS are for a handful of
chemicals, primarily legacy PFAS such as perfluorooctanoic acid (PFOA, DTXSID8031865)
and perfluorooctane sulfonate (PFOS, DTXSID3031864). As of this writing, the most up to
date list of PFAS with peer reviewed health information on the EPA CompTox Dashboard

Toxics 2023, 11, 163. https://doi.org/10.3390/toxics11020163 https://www.mdpi.com/journal/toxics

https://doi.org/10.3390/toxics11020163
https://doi.org/10.3390/toxics11020163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0001-9622-4495
https://orcid.org/0000-0003-4680-4605
https://doi.org/10.3390/toxics11020163
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics11020163?type=check_update&version=2


Toxics 2023, 11, 163 2 of 20

is the PFAS-Tox Database, containing 44 different chemicals, only 29 of which are unique
(i.e., some are salts) (https://pfastoxdatabase.org/, accessed on 15 December 2022). Epi-
demiological studies suggest an association between these legacy PFAS chemicals and
immune suppression, thyroid disease, high cholesterol, ulcerative colitis, kidney cancer,
testicular cancer, breast cancer, hypertension during pregnancy, decreased weight at birth,
and increased risk of miscarriage [15,16].

The regulatory community has specifically recognized long-chain perfluoroalkyl sul-
fonic acids and perfluoroalkyl carboxylic acids as contaminants of high concern because
they have been shown to be more bioaccumulative than their short-chain analogues [1].
PFOS and PFOA are the long chain perfluoroalkyl acids most often reported in the scien-
tific literature [5,17]. Current half-life estimates of PFOA for humans vary from 1.2 and
1.7 years for males and females [18], respectively, to 3.9 years [19]. For PFOS, current
half-life estimates vary from 2.91 years [20] to 6.3 and 22 years [18] for females and males,
respectively. A compilation of half-lives for these and other PFAS for multiple species is
recently provided by Dawson et al. [21]. Some short chain perfluoroalkyl acids have short
elimination half-lives in humans and thus lower potential for bioaccumulation; for example,
perfluorobutanoic acid (PFBA, DTXSID4059916) is eliminated with an estimated half-life of
72 days [22] and perfluorobutane sulfonate (PFBS, DTXSID5030030) is eliminated with an
estimated half-life ranging from 0.12 days to 26 days for females and 28 days for males [23].
Accordingly, potential for bioaccumulation has been proposed as a grouping strategy for
PFAS [15]. Others argue that their persistence in the environment provides sufficient basis
for regulating PFAS as a class [6,8]. The EPA has proposed two approaches for initially
grouping PFAS, one based on toxicity and toxicokinetic data, and another based on removal
and remediation strategies [24].

To understand the mechanisms by which PFOA, PFOS, and other PFAS accumulate in
humans, their toxicokinetics have been studied in several experimental animals. However,
in rats, mice, monkeys and other animals, their half-lives are on the order of hours to days
whereas in humans their half-lives may extend to several years [25,26]. This indicates
substantial differences in toxicokinetic behavior between humans and other species. For
decades, the mechanism of sex-, species-, and chain-length dependent renal elimination of
PFAS has been an important area of research [27,28]. It is recognized that organic anion
transport proteins play a key role in renal tubular reabsorption of certain PFAS [27,29,30].
However, the parameterization of mechanistic models of PFAS toxicokinetics (e.g., physio-
logically based toxicokinetic models (PBTK)) remains a challenge due to the relative lack
of experimental toxicokinetic data for many PFAS and the large number of species-, sex-,
and age-specific differences that have been observed [21]. Use of parsimonious models
(i.e., one-compartment) is common in the literature for both commonly studied PFAS [31]
and data poor scenarios, for which data is not readily available for model parameteriza-
tion [15]. Given the wide diversity of PFAS and differences in TK, it is helpful moving
forward to inventory the developed approaches and the relative focus paid to particular
PFAS and model structures.

Using a systematic evidence-mapping approach [32], we conduct a scoping assessment
of published studies that characterize the use of TK models of PFAS across multiple
species. Following a general breakdown of major classes of models (e.g., one-compartment,
two-compartment, PBTK), we focus on describing the canonical development of one-
compartment models for PFAS using bibliometric techniques. From this analysis, we
identify and describe key methodological developments of characterizing PFAS TK. Finally,
we extract key model features, and discuss their application in future modeling work.

2. Materials and Methods
2.1. Literature Search and Screening

Papers for the systematic mapping were collected using the Web of Science (WOS)
search tool with a search string based on a systematic review protocol developed by
DeLuca et al. [33] and provided in the Supplemental Figure S1. The search query was
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inclusive of all PFAS and pharmacokinetic model types from 2000–2019 in December 2019.
The body of papers returned from this search (n = 692) were imported into an EndNote li-
brary, screened for duplicates, and then imported into the SWIFT Review tool (n = 688) [34].
Machine learning tools in SWIFT Review were used to reduce the corpus to a more man-
ageable subset. SWIFT-Review applies a bag-of-words model to characterize a document’s
features [34]. In the bag-of-words model, unique terms (e.g., ‘toxicokinetic’) are identified in
the title, abstract, and MESH headings; these include individual words and 2- and 3-g terms
(e.g., ‘toxicokinetic modeling’, ‘physiologically based pharmacokinetic’). Given a train-
ing set of manually identified “relevant” and “non-relevant” documents, SWIFT-Review
applies a log-linear model using the frequencies of the terms to compute the conditional
probability (i.e., score) that a document is relevant [34]. We employed initial scores, prior to
training, to help create the training set. First, the corpus was divided into upper, middle,
and lower thirds based on their scores, representing high, medium, and low relevance to
keywords. From this, a training set of 69 papers (approximately 10% of the entire corpus)
was compiled by randomly selecting 23 papers selected from each bin. This training set of
studies underwent a manual abstract screening by 2 independent reviewers to determine if
the study met inclusion criteria. Inclusion criteria in this stage of screening was only that the
abstract indicated use of a TK model for PFAS within the study. Discrepancies between the
two reviewers’ inclusion or exclusion decisions were settled through discussion to produce
a final list of studies to be used in the training set. The list of included/excluded training
papers was then used to inform SWIFT Review’s machine learning model to predict the
probability of inclusion of papers in the rest of the corpus without the reviewers having to
manually screen all abstracts.

Based on the behavior of our training set, we estimate that by setting the required
inclusion probability to 0.5 we captured about 95% of relevant papers (Figure S2). This
reduced the corpus to a subset of 174 papers, which was a reduction of approximately 75%
of the original number of studies. When using a machine learning classifier there is a classic
trade-off between precision and recall depending on the required inclusion probability [35].
A better quality of papers (i.e., higher proportion of relevant papers) may be screened
by increasing the required inclusion probability, but only at the expense of missing some
relevant papers (lower recall). Thus, we chose to set the bar low (0.5) on the classifier and
follow up with a second manual abstract review using the same inclusion criteria as above;
i.e., the abstract indicted the inclusion of a TK model involving PFAS within the study. This
further reduced the number of included studies to 86.

Finally, an additional literature search in WOS was conducted in July 2021 for studies
published in the first half of 2020–2021 to identify any recently published studies that were
not included in the previous literature search (n = 58). Due to the relatively small size of this
additional search, it was subjected to only a manual abstract review and in the inclusion of
6 additional relevant papers. Combined, these search and screening activities resulted in a
total corpus of 92 papers. The total literature search and screening effort is described in
Figure 1. This corpus was then subjected to the full-text review and the model extraction
described below.

2.2. Data Extraction and Curation

From each included paper at the full-text level, a suite of data was extracted and
stored in an Excel spreadsheet. This data included: (1) basic bibliographic details such as
title, authors, journal, publication year, location of publication, and number of references;
(2) the type of model (one compartment, two compartment, or PBTK model), (3) the source
of model (novel model or from a previously published source), (4) organism (animal or
human), (5) the chemical(s) included, and (6) the analytical instrumentation used. Papers
were subset by implementation of a one compartment model. Included papers develop new
toxicokinetic models for PFAS, calibrate parameters, or leverage toxicokinetics to estimate
dose or exposure (reverse dosimetry).
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Figure 1. Identification, screening, eligibility, and inclusion of 2000–2019 and 2020–August 2021 PFAS
TK WOS searches.

Model type is determined by the number of compartments. A one compartment
model will consider the body as a single ‘compartment’, whereas a two-compartment
model typically consists of a central and peripheral compartment, or it depicts the re-
lationship between two organisms (i.e mother-child). Both one and two compartment
models employ the concept of volume of distribution (VD), a theoretical volume needed to
contain the total mass of drug administered (or total intake of toxicant) at the concentration
observed in the plasma. A value of VD comparable to the blood volume suggests that the
drug/toxicant is confined to the blood, whereas a value comparable to the body volume
indicates that the drug/toxicant distributes throughout the body. In contrast, PBTK models
consider physiological volumes (e.g., kidney volume) explicitly and comprise more than
two compartments. Additional information is available in the Supplemental Information
(Table S2).

Equation (1) describes a simple one-compartment toxicokinetic model. This model
was used by East et al. [36] to predict the concentration of a PFOA and PFOS in blood
serum as a function of dose, elimination rate, and volume of distribution:

d(Cs)

dt
=

D
VD

− ke × Cs (1)

where Cs is concentration in the serum (ng/mL), D is the daily intake dose (ng/kg-bw/day),
VD is the volume of distribution (mL/kg), and ke is the elimination rate (1/day). At steady-
state d(Cs)/dt = 0, giving the following:

Cs =
D

keVD
(2)

In Equation (2), a lower value of VD would result in an increase in the steady state
concentration, other parameters held constant. Since the drug/toxicant has less theoretical



Toxics 2023, 11, 163 5 of 20

volume within which to distribute, it is more concentrated. Similarly, a lower elimination
rate constant signifies less substance is eliminated over time, resulting in a higher steady
state concentration. Equation (1) is specified with zero-order input D which is often
practical for modeling human exposure scenarios. Alternatively, Equation (1) can also be
specified with first order absorption to interpret animal studies by gavage as described by
Wambaugh et al. [37]. Additionally, Wambaugh et al. [37] describe the differential equations
for the central and peripheral concentrations of a two-compartment model which was used
to describe the bi-phasic elimination of PFOA in male rats.

2.3. Analyses

Extracted data from the included studies were then analyzed using the systematic
mapping methodology outlined in James et al. [32], which defines a ‘systematic map’
as a collation, description, and catalog of available evidence. This methodology shares
similarities to a systematic review, with the primary difference being that it does not involve
the evaluation of a hypothesis. A general comparison between a systematic review and
a systematic mapping is provided in the Supplemental Information (Table S1). While the
search strategy and article screening used here were adapted from DeLuca et al. [33], and
were consistent with systematic review protocols, this entire effort most closely represents
a systematic mapping.

A summary analysis regarding similarities in model structure, the prevalence of
animal versus human studies, and frequency of the most common PFAS species studied
are presented in the results. These descriptions of the corpus provide some description of
the field. Model structures are classified as one compartment (OC), two compartment (TC),
or physiologically based toxicokinetic (PBTK). Because some models leverage multiple
model structures, flagging multiple structures occurs in this analysis. Two compartment
models are inclusive of both physiological compartment models (kidney to liver) and
transfers between unique receptors, such as mother to child. The most commonly modeled
PFAS across publication year is also included. Again, because some manuscripts evaluate
multiple PFAS, duplicate assignments are recorded. As such, the counts of model type and
PFAS evaluated exceed the number of papers in the corpus.

To analyze the bibliometric relationships between the authors of the included studies,
the R Package Bibliometrix [38,39] and the corresponding RShiny application Biblioshiny [38]
were used. Influential papers were identified using network analysis-based tools in Bib-
liometrix. This package allowed for the construction of networks of citations between papers
in the corpus, with papers represented by nodes and citations between papers represented
as edges between the papers. In this way, metrics such as centrality could be used to
describe the relative influence that papers and/or TK models have had on the overall field
of study.

Bibliometrix network plots were used in two ways. First, after having gathered basic
information on TK structures from the corpus, a co-citation network was leveraged to iden-
tify important papers outside the corpus. For this we examined the network of references
co-cited by the corpus [40]. Articles not included in our corpus may have included data
articles and review articles that provided a foundation for the TK models in the corpus but
were not captured by the inclusion criteria. Additionally, missed implementations of TK
models could potentially be identified that were inadvertently dis-included. The co-citation
network was produced using the Bibliometrix function networkPlot(), with clustering set to
“louvain”, and n = 20 nodes for interpretability [38]. The Louvain clustering algorithm [41]
has been shown to be an optimal algorithm for community detection [42]. A ‘betweenness’
centrality score is produced for each node (publication), and nodes with high betweenness
centrality serve as important connectors between other nodes [43,44]. In this case, such
papers are commonly cited by other authors in the network, suggesting they are influential.
Thus, articles may be identified which appear outside of the extracted corpus but which
influenced PFAS TK modeling [45].
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Secondly, given our focus on one compartment models for humans (OCH), we gener-
ated a visualization of publication activity over the years. This was accomplished with a
‘historiograph’, a chronological network map of the most relevant direct citations resulting
from a bibliographic collection [38,46]. The visualization of OCH models was further
augmented to show dynamical and steady state assignments with different colors and
node size based on the ratio of local citations (LCS) to global citations (GCS). The LCS
comprises citations within the corpus, and GCS comprises the total citations that an article
in the corpus has received from documents indexed on a bibliographic database (Web of
Science) [38]. Spacing between nodes was determined by Fruchterman–Reingold force
direction within Bibliometrix [47].

In addition to the graphical summaries, manuscripts employing OCH models with
over 50 global citations were pulled from Bibliometrix for further extraction to characterize
the important applications of OCH models. The GSC, the basis for determining which
models were selected, was recorded in the initial WOS search performed in December
2019, and several commonly cited publications have exceeded this threshold since the WOS
search. The purpose of this subset is to evaluate OCH PFAS TK models that have greater
influence on other research communities.

3. Results
3.1. Corpus of Extracted Texts

Descriptive statistics on the corpus generated by the Bibliometrix package are shown in
Table 1, The body of included publications from the WOS search and subsequent screening
processes contained 92 articles with 358 unique authors, and a combined set of 2670 refer-
ences which were mined for co-citation analysis. Of the 92 articles, there are 50 studies with
one-compartment models, 17 with two compartment models, and 33 with PBTK models.
Some articles contained more than one model structure and were double counted, so the
total count of models exceeds the number of papers within the corpus.

Table 1. Summary of corpus of extracted texts.

Description Results

Range of years published 2005–2020
Unique Sources (Journals, Books, etc) 31

Documents 92
Average years from publication 7.45

Average citations per study 41.02
Average citations per year per document 4.406

Total number of references 2670
Unique Authors 358

Authors per study 3.89

The most common chemical modeled was PFOA, which was included in 69 of the
92 analyses, followed by PFOS being included in 60 analyses. Perfluorohexanesulfonic
acid (PFHxS, DTXSID7040150) was reported in 22 manuscripts and perfluorononanoic
acid (PFNA, DTXSID8031863)) was present in 15. Only 4 of the 92 papers did not include
analysis of PFOA, PFOS, PFNA, or PFHxS (Figure 2a). Most publications with a PFAS TK
model are from the U.S. (41), followed by Sweden (8), China (6), Germany (6), and Korea
(5). Although the WOS searches spanned from 2000–2021, the earliest detected PFAS TK
model was in 2005. Figure 2b shows model type across year for all included papers in the
scoping assessment.
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Figure 2. Descriptive statistics on the corpus for years 2005 through 2020: (a) Chemical and PFAS
analyzed in pharmacokinetic models across publication year; (b) Model type and PFAS used in
pharmacokinetic models across publication year.

In the included corpus, 55 of the 92 manuscripts recorded use of PFAS TK models
for humans and 43 used models for animal studies. A breakdown of TK model types by
organism and common PFAS chemicals is presented in Figure 3. One-compartment models
using PFOA and PFOS were the most common across all organism models and human
models. Animal studies were more likely to use PBTK models for both PFOA and PFOS.
Animal species is available in the supplemental information.
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3.2. Exploring Evidence: Influential Publications Co-Citation

The co-citation network in Figure 4 is color coded: blue publications (nodes) are within
the extracted corpus of 92 papers. Yellow nodes are review or measurement publications
outside of the extracted corpus. The two red nodes are implementations of TK PFAS models
not included in the corpus.
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Measures of the network centrality of the 20 publications depicted in Figure 4 are
provided in Table 2, The table is flagged with the same color scheme used in the co-citation
network depicted in Figure 4. Manuscripts which comprise the PFAS TK modeling commu-
nity are often data publications commonly used to bound exposure estimates [9,51,54,56]
though some offer models and parameters for PBTK models [28,55,63,64]. Despite the
high proportion of publications using one-compartment models, PBTK models feature
strongly in the co-citation network. Trudel et al. [61] use a one-compartment model to
estimate consumer exposure to PFOA and PFOS, the two most modeled PFAS. Despite
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being commonly cited by authors in the network, two articles employing TK for PFAS
failed to be included in the corpus (92 articles). Both studies involve application rather
than development of TK. Kudo et al. [28] make scarce mention of the two-compartment
model used for determination of renal clearance of PFOA in rats. Bartell et al. [60] applied
a mixed-effect model to estimate the decline in serum PFOA, and adjust for covariates,
for individuals served by public water systems testing the use of granulated carbon from
2007–2008.

Table 2. Louvain betweenness of nodes in co-citation network.

Node DOI Between-Ness GCS TK
Model Class Objective

Olsen GW,
2007 [56] 10.1289/ehp.10009 19.3 760 Yes Measurement

Estimated half-life of PFOS, PFHS,
and PFOA in fluorochemical

production workers

Lau C, 2007
[58] 10.1093/toxsci/kfm128 11.9 2407 No Review

PFAS concentrations in
environment, wildlife and humans.

Toxicology and mode of action
Andersen ME,

2006 [30] 10.1016/j.tox.2006.08.004 11.0 193 Yes Dynamic PBTK
Animal

Developed a PBPK model using
renal resoprtion

Trudel D, 2008
[61]

10.1111/j.1539-
6924.2008.01017.x 5.9 472 Yes Steady State

OCH
Estimated Daily intakes of PFOA

and PFOS
Calafat AM,

2007 [50] 10.1289/ehp.10598 5.1 1012 No Measurement Shared NHANES PFAS summary
statistics

Butenhoff JL,
2004 [55] 10.1016/j.tox.2003.11.005 3.9 220 No Measurement Gestational Rat observations for

PFOA

Emmett EA,
2006 [54]

10.1097/01.jom.00002324
86.07658.74 3.6 377 No Measurement

Determined serum PFOA levels of
population living near production

facility
Kudo N, 2002

[28]
10.1016/S0009-
2797(02)00006-6 3.5 267 Yes Dynamic TC

Animal
Evaluated role of sex hormones in

renal clearance of PFOA in rats
Han X, 2003

[57] 10.1021/tx034005w 2.9 392 No Measurement Examined binding of PFOA to
serum albumin in rats and humans

Bartell SM,
2010 [60] 10.1289/ehp.0901252 2.8 340 Yes Dynamic OCH

Detemined decline of PFOA in
serum samples after filtration
intervention in water district

Karrman A,
2007 [49] 10.1289/ehp.9491 2.7 520 No Measurement

Compared occurance of PFAS in
breastmilk and primiparous women

serum

Ehresman DJ,
2007 [51] 10.1016/j.envres.2006.06.008 2.5 310 No Measurement

Evaluated PFAS concentration
across human blood-based matrices

(blood, plasma, serum)
Prevedouros K,

2006 [4] 10.1021/es0512475 2.5 2374 No Review Reviewed fate and transport of
PFAS in the environment

Fromme H,
2009 [59] 10.1016/j.ijheh.2008.04.007 2.5 228 No Review

Reviewed enviromental and
biomonitoring data for PFOS, PFOA

and precursors

Seacat AM,
2002 [48] 10.1093/toxsci/68.1.249 2.4 618 No Measurement

Identified lowest measurable
responses for PFOS in humans

using monkeys
Lou IC, 2009

[64] 10.1093/toxsci/kfn234 2.0 97 Yes Dynamic OCH,
TCH, PBTK

Characterize pharmacokinetics of
PFOA in mice to estimate exposure

Tan YM, 2008
[62]

10.1016/j.toxlet.2007.12.
007 1.9 70 Yes PBTK Animal

Evaluated determinants of
disposition of PFOA and PFOS in

rats, monkeys

Loccisano AE,
2011 [63] 10.1016/j.yrtph.2010.12.004 1.7 94 Yes PBTK Ani-

mal/Human

Predicts/evaluates PFOA/PFOS
pharmacokinetics for monkeys and

humans
Vandenheuvel

JP, 1991 [53] 10.1002/jbt.2570060202 1.5 278 No Measurement Exploration of sex differences in
elimination of PFOA in rats

Weaver YM,
2010 [52] 10.1093/toxsci/kfp275 1.4 126 No Measurement

Evaluated PFAS of differing chain
length as substrates of renal

transporters
Note: blue = true positives, within the corpus; yellow = true negatives, outside corpus, red = false negatives,
outside corpus but leveraged TK model for PFAS (search missed). GCS= Global citations. Counts of citations from
Google Scholar, 9 December 2022.
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None of the yellow or red node publications depicted in Figure 4 were retrieved in the
WOS search, yet all are cataloged in WOS. In the case of yellow nodes this is good because
we sought papers applying or developing TK models of PFAS, and thus these papers could
be considered true negatives. The sole exception to this was Olsen et al. [56] which was
retrieved in the WOS search, scored high in SWIFT-Review, but pulled in manual curation
(see Table S4). The red node publications (Bartell et al. [60] and Kudo et al. [28]) were
not retrieved from WOS even though they met our inclusion criteria; thus, they are false
negatives. Papers identified as the 20 most central in the co-citation network are older
papers (<2012) and therefore the most central nodes reflect the more seminal works in the
field which have garnered citations over time. Discovering additional relevant papers in
the co-citation network could be achieved by expanding the number of nodes examined.

3.3. A Chronology of One-Compartment Models

The chronology and relationships between publications containing one-compartment
models for humans are captured in the historiography depicted in Figure 5. Node size
represents the count of LCS, or citations by other texts in the corpus, to the total number
of citations GCS. The color represents steady state or dynamic models. Lines between
publications signify a citation from the paper on the right. The line color depends on the
origin of the line, showing the influence of model types.
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With an LCS-to-GCS ratio of 25%, Thompson et al. [67] was the largest node in Figure 5.
The authors applied a one compartment approach to estimate total intakes of PFOA and
PFOS for the general population of urban areas on the east coast of Australia. The study
employed an elimination rate constant of 0.0008 day−1 for PFOA and 0.0003 day−1 for
PFOS, and values of 170 and 230 mL/kg-bw for the volume of distribution, respectively.
We note that a one-compartment TK model is fully specified with biological half-life (t1/2)
and VD. Note that the elimination rate constant (ke) is inversely related to the biological
half-life, t1/2 = ln(2)/ke. The isolated cluster at the top of the plot is a collection of papers on
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the C8 Health project, an epidemiological study with 69,030 individuals enrolled over a
13-month period from 2005–2006 [75]. We identified three other epidemiological studies
employing ‘mother-child’ models by TC, PBTK or both (see Table S2). There has been an
observable shift in the literature from steady state to dynamic models. In the period prior
to 2012, there were 3 dynamic model publications and 10 steady state (23%). After 2012,
there were 8 dynamic and 13 steady state (38%). Some models exist outside the corpus.
For example, Harada et al. [25] reference the PFAS TK model used in Harada et al. [95],
which was not captured by the scoping assessment. As such, the historiograph in Figure 5
is best interpreted as a simple chronology of influential publications which incorporate
one-compartment human TK models for PFAS rather than a total diagram of the published
literature. Furthermore, as lines between nodes are representative of manuscript citations,
the links drawn are not inherently references of model use.

Additional evaluation of influential publications of OCH PFAS TK was conducted on
a subset of models with greater than 50 global citations (Table 3). These papers represent
prevalent OCH PFAS TK publications among the fields of exposure, toxicokinetics, and risk.
Many implementations of OCH PFAS TK are to validate ‘forward’ exposure estimates, in
which assessment is performed by applying exposure factors across chemical concentrations
in media [61,66,69,70,73]. Commonly cited dynamic models are used to assess variables
such as sex [25,77], pregnancy [75], and half-lives among different PFAS [19].

Table 3. One Compartment Human Models with over 50 Global Citations.

Document DOI GCS LCS Model Structure Model Purpose
Trudel D,
2008 [61]

10.1111/j.1539-
6924.2008.01017.x 286 15 Steady State Validation of exposure estimates

Vestergren R,
2009 [66] 10.1021/es900228k 242 9 Steady State Validation of exposure estimates

Haug LS,
2011 [70] 10.1016/j.envint.2011.01.011 203 7 Steady State Validation of exposure estimates

Harada K,
2005, [25] 10.1016/j.envres.2004.12.003 171 10 Dynamic Evaluation of sex-based

differences in elimination
Fromme H,

2007 [65] 10.1021/es071244n 163 10 Steady State Validation of exposure estimates

Wong F,
2014 [77] 10.1021/es500796y 90 6 Dynamic Evaluation of sex-based

differences in elimination

Hoffman K,
2011 [72] 10.1289/ehp.1002503 90 0 Steady State

Estimate relative contributions of
contaminated drinking water to

serum concentation

Savitz DA,
2012 [75] 10.1097/EDE.0b013e31824cb93b 82 3 Dynamic

Assess association between
exposure and

pregnancy outcomes
Egeghy PP,
2011 [73] 10.1038/jes.2009.73 79 0 Steady State Validation of exposure estimates

Worley RR,
2017 [19] 10.1016/j.envint.2017.06.007 68 2 Dynamic Determination of half-lifes to

characterize exposure
Gebbink WA,

2015 [78] 10.1016/j.envint.2014.10.013 66 5 Steady State Identification of relative source
contributions and precursors

Lorber M,
2011 [69] 10.1021/es103718h 60 7 Steady State Validation of exposure estimates

Thompson J,
2010 [67] 10.1016/j.envint.2010.02.008 56 14 Steady State Characterization of exposure

from serum concentrations

Derived from the manuscripts in Table 3, Figure 6 provides a visual representation
of a generic OCH model The simple, steady state one compartment model—the simplest
possible model for toxicokinetics—was the most common. As this model type was often
used to evaluate exposure estimates, it is an appropriate approximation for long-term
general population scenarios. Time-sensitive events are presented in the dynamic model;
as well as a ‘time equal to zero’ initial concentration. Worley et al. [19], Wong et al. [77], and
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Haug et al. [70] all assert the need for unique modeling scenarios for women as toxicokinetic
models differ based on sex.
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The one compartment models presented in the manuscripts listed in Figure 6 are
described by Equation (1). In Wong et al. [77], the elimination rate constant in Equation (1)
was expanded to include a loss term for menstruation in women, Gmbl/VD, where Gmbl is
rate of blood serum loss by menstruation and calculated at 6.1 mL/kg-bw/year for women
age 12.5 to 50 [77]. The model describes PFOS kinetics for which the authors cite the value
of Thompson et al. [67] for VD of PFOS (230 mL/kg-bw). Thus, units of Gmbl/VD (year−1)
are the same as the elimination rate constant, ke (year−1).

4. Discussion

We applied an evidence-mapping approach to characterize the use of TK models of
PFAS, with emphasis on simple one compartment models. In our approach to evidence-
mapping we applied methods to contextualize the papers retrieved from the scheme in
Figure 1; namely, a co-citation network [38,40] based on the 2670 references of our corpus
of 92 papers, and a ‘historiograph’ [46] depicting the temporal relationship in citations
among the OCH publications. Co-citation analysis and the resulting network provides a
mechanism to retrieve relevant papers missed. With this approach we suggest that evidence
mapping is more forgiving or tolerant of missed papers compared to systematic review
where hypothesis testing of an intervention or exposure scenario is at stake [32,96].

4.1. Search Effectiveness

As the bibliometric analysis was largely restricted to the corpus of 92 papers, inclusion
criteria of PFAS TK models within the collected body impacted the results. The WOS
searches and SWIFT review identified a set of potentially relevant papers, shown as the
circle in Figure 7. The manual extraction removed false positives, resulting in our corpus of
92 articles. It is possible that utilizations of TK models for PFAS were either not captured
in the WOS searches or were incorrectly removed in the SWIFT review tool process. As
such, the corpus of PFAS TK papers is presented not as an all-inclusive list of publications
within the research focus, but as a strong representative sample from which conclusions
and trends are drawn.
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In addition, some models leveraged for TK of PFAS may have originated from other
sources not targeted in the search strategy used here. For example, the ‘Ritter Model’ [97]
is cited by works in the corpus [77,86], but was developed for polychlorinated biphenyls,
and not PFAS. As such, global models developed for other chemicals may not be captured
by the search string used in this study. In addition, nomenclature is evolving; in 2004,
Butenhoff et al. [55] referred to PFOA by its inorganic precursor, ammonium perfluorooc-
tanoate (APFO) exclusively in the abstract. It is unclear how many documents were missed
in this search due to changes in naming conventions, as PFAS were once more commonly
known as perfluorochemicals (PFCs). Furthermore, citation of manuscripts does not in-
dicate a repeat in model structure. The links drawn between manuscripts are citations.
Some manuscripts discuss a variety of different model structures [37,64], adding to the
complexity of drawing conclusions from citations about model selection decisions and
influence. A possible application of the co-citation network in Bibliometrix is identification
of manuscripts that were missed in the initial search, as 2 of the 14 papers identified out-
side of the corpus implemented TK models. This ‘second screen’ approach may enhance
repositories of papers in future searches.

4.2. One Compartment Models: Half-Lives and PFAS as a Class

De Silva et al. [31] found that elimination half-lives are only reliably estimated for
4 PFAS: PFOS, PFOA, PFNA, and PFHxS, which were the PFAS found most often in this
study. Although other PFAS were identified during this scoping assessment, the finding in
De Silva et al. [31] corroborates that focus has largely centered on 4 long-chain PFAS. In
addition, De Silva et al. [31] asserted that exposure assessments oftentimes rely on simple
steady state one compartment TK models. This claim is supported by the findings of this
scoping assessment.

Adapted from East et al. [36], Figure 8 illustrates a comparison between a steady-state
and dynamic kinetics for a one-compartment PFOS model. The volume of distribution and
elimination rates, 230 mL/kg, and 0.00039 1/day were obtained from Andersen et al. [98]
and Olsen et al. [56] and used by both Lorber and Egeghy [69] and Egeghy and Lorber [73].
The time-dependent difference between the dynamic model (orange) and the steady state
(blue) suggests the impact of going with a steady-state approach when a time-dependent
approach is more appropriate. Thus, for example, a steady-state solution may not be
effective for modeling children, given their physiological changes over time. Additionally,
time-sensitive events, such as occupational exposure, menstruation, and birth are not
captured by the simple steady state equation. However, implementation of the OCH steady
state TK model is often used as a validation step for exposure estimates, as daily intake
estimates are compared against background serum concentrations (Table 3).

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
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However, modeling approaches and subsequent risk assessment may vary across
PFAS given variation in half-lives. A short-chain PFAS, PFBS, has a published half-life as
low as one month [20]. In addition, biotransformation is more common among short-chain
PFAS, meaning the modeling implications of data-rich, long chain PFAS may not apply to
short-chain scenarios [99–102].

4.3. Emerging TK Models and Methods

In citations per year (Table S3), Gomis et al. [99] (22), Trudel et al. [61] (19), and
Vestergren and Cousins [66] (17) are the most commonly cited papers in the corpus.
Trudel et al. [61] apply a one compartment model to estimate consumer exposure while
Vestergren and Cousins [66] apply a one compartment model to calculate daily intakes from
serum levels. Vestergren and Cousins are both collaborators on the Gomis et al. study [99]
which uses a dynamic one compartment model to compare toxic potency in PFAS. Despite
its versatility and simplicity, a one-compartment TK model describes first-order kinetics
and does not consider saturable processes such as protein binding. Andersen et al. [30]
is noteworthy for being first to test the hypothesis that saturable resorption capacity in
the kidney could account for the half-life properties of PFOA across species and gen-
ders. Andersen et al. [30] employs a two-compartment (central and tissue) structure with
a third filtrate compartment to describe renal resorption. Because the model describes
a physiological process, saturable renal resorption, we categorized it as a PBTK model;
however, it is unlike most PBTK models in that it lumps all non-renal tissue into a single
tissue compartment.

This scoping identified several “full” PBTK structures [63,103–109] which incorporate
saturable renal resorption based on Andersen et al. [30]. To facilitate the QA and evaluation
for several of these PBTK models, including those of Fabrega et al. [110], Kim et al. [103,104],
and Loccisano et al. [105], all of which were identified in this review, Bernstein et al. [111]
developed a template model structure capable of representing each individual model.
These include PBTK models of the disposition of PFOA, PFOS, PFHxS, PFNA, and PFDA
(perfluorodecanoic acid), in rats and humans. Of the PBTK models captured in this scoping,
that of Cheng and Ng [109] is unique in applying a diffusion-limited structure parame-
terized with transport and protein binding processes based on in vitro data. However,
more parsimonious model structures tend be used in regulatory contexts. In its proposed
approaches to set a Maximum Contaminant Level Goal (MCLG) for PFOS and PFOA, the
EPA Office of Water applied the two-compartment mother-child model of Verner et al. [112]
for human dosimetry and applied the model of Wambaugh et al. [113], adapted from
Andersen et al. [30], to interpret animal data [112–114].
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5. Conclusions

This scoping assessment identified influential models, generic one compartment model
structures, and the breadth of existing publications which apply TK models for PFAS. In
addition, a collection of 13 papers which have informed the community of research were
identified. Models were classified as one-compartment, two-compartment, PBTK, human
or animal, and steady state or dynamic for all 92 papers in the corpus. The complete corpus
of papers is available in the supplemental information.

Characterization of outside influence on model selection for each study is nearly
impossible. However, dynamics of TK models for PFAS have been evolving since modeling
began. As such, conventional models have been frequently sourced from several authors
for toxicokinetics. As modeling challenges increase in complexity, including accounting
for PFAS-specific toxicokinetics (long-chain and short-chain), and variations in human
populations (e.g., age, sex, menstruation, birthing, breast-feeding), a commensurate effort
is required in model selection and implementation.

Within the corpus, one compartment models are the most common, and feature heavily
among the most referenced articles. PFOA and PFOS feature most frequently in TK models.
However, calls and efforts to transition to more complex models are growing. This scoping
assessment has identified influential papers and has detected trends in the literature which
arc towards more granular TK modeling approaches.
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