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Abstract: Regardless of socioeconomic or demographic background, the prevalence of type 2 diabetes
mellitus, which affects more than half a billion people worldwide, has been steadily increasing
over time. The health, emotional, sociological, and economic well-being of people would suffer
if this number is not successfully handled. The liver is one of the key organs accountable for
sustaining metabolic balance. Elevated levels of reactive oxygen species inhibit the recruitment and
activation of IRS-1, IRS-2, and PI3K-Akt downstream signaling cascade. These signaling mechanisms
reduce hepatic glucose absorption and glycogenesis while increasing hepatic glucose output and
glycogenolysis. In our work, an analysis of the molecular mechanism of Carica papaya in mitigating
hepatic insulin resistance in vivo and in silico was carried out. The gluconeogenic enzymes, glycolytic
enzymes, hepatic glycogen tissue concentration, oxidative stress markers, enzymatic antioxidants,
protein expression of IRS-2, PI3K, SREBP-1C, and GLUT-2 were evaluated in the liver tissues of high-
fat-diet streptozotocin-induced type 2 diabetic rats using q-RT-PCR as well as immunohistochemistry
and histopathology. Upon treatment, C. papaya restored the protein and gene expression in the liver.
In the docking analysis, quercetin, kaempferol, caffeic acid, and p-coumaric acid present in the extract
were found to have high binding affinities against IRS-2, PI3K, SREBP-1c, and GLUT-2, which may
have contributed much to the antidiabetic property of C. papaya. Thus, C. papaya was capable of
restoring the altered levels in the hepatic tissues of T2DM rats, reversing hepatic insulin resistance.

Keywords: liver; T2DM; insulin resistance; C. papaya; in vivo; molecular mechanism; molecular docking

1. Introduction

The chronic metabolic condition, diabetes mellitus, is a major threat to society’s health
and quality of life. Type 2 diabetes mellitus (T2DM), which affects more than half a
billion people today, has been rapidly rising year after year, irrespective of socioeconomic
or demographic status. If this number is not effectively managed, it will increase and
have detrimental repercussions on people’s health, emotional, sociological, and financial
status [1,2].

The liver is one of the primary organs in charge of maintaining metabolic homeosta-
sis. Glucose homeostasis is maintained by coordinating the production of glucose in the
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liver through the pathways of glycogenolysis and gluconeogenesis in times of fasting,
with the disposal of glucose into skeletal muscles through glycogen synthesis and glucose
metabolism, and to a much lesser extent adipose tissue during feeding [3]. The functional
duality of the liver in glucose production (glycogenolysis) and glucose storage (glyco-
genesis) helps in maintaining a fasting and fed state. This dynamic organ plays critical
roles in many physiological processes, including the regulation of systemic glucose and
lipid metabolism. Dysfunctional hepatic lipid metabolism is a cause of nonalcoholic fatty
liver disease (NAFLD), the most common chronic liver disorder worldwide, and is closely
associated with dyslipidemia, insulin resistance, and T2DM [4,5]. Hepatic insulin resistance
occurs by means of excessive postprandial hyperglycemia due to inadequate inhibition
of hepatic gluconeogenesis, decreased glycogen synthesis, and increased lipid accumu-
lation [6–8]. Adipose tissue serves as the body’s energy reserve in times of nutritional
excess by vigorously absorbing excessive blood glucose to store additional energy such
as triglycerides. Moreover, insulin is essential for controlling the activity of lipolysis in
adipose tissue, which is dysregulated in insulin resistance and results in the release of
significantly elevated amounts of FFAs, pro-inflammatory cytokines (IL-1, IL-6, and TNF-),
and glycerol into the bloodstream [8,9].

Kupffer cells, the localized macrophages of the liver, are involved in the production
of cytokines and chemokines. They draw in new macrophages or other immune cells in
response to foreign and local pro-inflammatory molecular triggers such as excess FFA and
proinflammatory cytokines. Augmented levels of reactive oxygen species (ROS) reduce
insulin receptor substrate -1 (IRS-1) and insulin receptor substrate -2 (IRS-2) recruitment
and also the subsequent activation of the PI3K-AKT cascade downstream. Although
they reduce hepatic glucose intake and glycogenesis, these signaling mechanisms also
enhance hepatic glucose output, glycogenolysis, and triglyceride (TG) synthesis [10,11].
The pro-inflammatory cytokines produce acute-phase proteins in the liver, and may cause
insulin resistance and apoptosis of pancreatic β cells [12,13]. Kupffer cells go from being
anti-inflammatory to be pro-inflammatory, and it is assumed that this interaction with
hepatocytes leads to insulin resistance [14]. This can also pave the way to the development
of hepatic inflammation during non-alcoholic steatohepatitis (NASH) [15]. NAFLD is
linked to more severe hyperinsulinemia, dyslipidemia, and insulin resistance in hepatic
and adipose tissue in obese T2DM individuals than in those without NAFLD [16].

Modern medicine has grown in relation to efforts towards the development of an-
tidiabetic medicine such as glycoside inhibitors as a way to reduce the absorption of
carbohydrates so as to lower postprandial glucose and insulin levels [17,18].

In order to surpass the adverse effects of conventional diabetic treatments, seeking
natural remedies is a definitive target. Our research focuses on finding therapeutic and
preventive approaches that could slow the processes that lead to T2DM and enhance the
treatment of issues related to diabetes. Thus, we intended to identify a natural plant-
based product as a therapeutic approach to the effective management of diabetes mellitus.
Several pieces of scientific literature have recorded the antidiabetic, immunomodulatory,
and hepatoprotective outcomes of Carica papaya (C. papaya) [19–22]. In our previous work,
we displayed the molecular action of the antihyperglycemic property of C. papaya in the
skeletal muscle of T2DM animal models that reinstated glucose homeostasis via in vivo and
in silico analysis. Our current study concentrates on the molecular mechanism of C. papaya
in mitigating insulin resistance in the liver.

2. Materials and Methods
2.1. Chemicals

Eurofins Genomics India Pvt Ltd., Bangalore, India, and Sisco Research Laboratories,
Mumbai, India, as well as other suppliers, provided all the chemicals, primers, reagents,
and ELISA kits used in this work. The other suppliers were MP Biomedicals (Santa Ana,
CA, USA); Sigma Aldrich (St. Louis, MO, USA); Spin React, Spain; Ray Biotech (Peachtree
Corners, GA, USA); and Abbkine Scientific Co, Ltd. (Wuhan, China).
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2.2. Collection of C. papaya Leaves

The leaves of C. papaya were gathered in Kerala and were desiccated in the shade, then
pulverized. The National Institute of Siddha, Chennai, validated the content: -Certificate
No: NISMB4392020.

2.3. Animals

At the Central Animal House of Saveetha Dental College and Hospital in Chennai,
Tamil Nadu, male Wistar albino rats of 8–10 weeks old, weighing 150–180 g, were housed
under standard environmental conditions of ambient temperature (21–2 ◦C), humidity
(65–5%), and a stable 12-hour light–12-hour dark cycle. They were given regular rat pellets
and unfettered use of water. (IAEC No: BRULAC/SDCH/SIMATS/IAEC/08-2021/071
dated 21 August 2021).

2.4. T2DM Induction

The rats were fed with high-fat diet (HFD) for 4 weeks, which included 66% conven-
tional rat feed, 30% coconut oil, 3% cholesterol, and 1% cholic acid. Streptozotocin (STZ)
(35 mg/kg) (Sigma Aldrich, St. Louis, MO, USA) was injected intraperitoneally to the ro-
dents after 28 days of high-fat diet (HFD) feeding [23]. Two days after STZ administration,
those animals with a fasting blood glucose of >120 mg/dL were taken into consideration
for the study. Therefore, T2DM rats were allowed post induction.

2.5. Experimental Design

Random selection was used to choose five groups of eight rats each.

Group 1: Control rats
Group 2: T2DM-induced rats
Group 3: T2DM rats treated with ethanolic leaf extract of C. papaya (600 mg/kg bwt for 45 days)
Group 4: Metformin-treated T2DM rats (50 mg/kg bwt for 45 days)
Group 5: Control rats with ethanolic leaf extract of C. papaya (600 mg/kg bwt for 45 days).

In this study, we wanted to compare the efficacy of C. papaya with the commercially
available oral hypoglycemic agent, metformin (50 mg/kg.b.wt). On the last day of the
experiment, the animals were sedated with sodium thiopentone (40 mg/kg body weight)
and blood was drawn through cardiac puncture. The blood was removed from the organs
by injecting 20 mL of isotonic sodium chloride solution via the left ventricle. The liver
from control and treated animals were immediately dissected and stored at −80 ◦C for
further analysis.

2.6. Liver and Renal Function Markers

Urea and creatinine (kidney function markers), as well as liver function markers such
as aspartate transaminase (AST) and alanine transaminase (ALT) were assessed using
commercial kits.

2.7. Gluconeogenic Enzymes
2.7.1. Assay for Glucose-6-Phosphatase

To assess glucose-6-phosphatase (G6P), Koide and Oda’s working protocol was
used [24]. An hour was spent incubating 0.1 mL of the homogenized tissue with 0.3 mL
of citrate buffer and 0.5 mL of substrate, and at 37 ◦C. 10 percent TCA was added to
halt the reaction, and then Fiske and Subbarow’s method was used to calculate inorganic
phosphate [25]. At 640 nm, the absorbance measurement was made.

2.7.2. Assay for Fructose-1,6 Bisphosphatase

The Gancedo & Gancedo protocol was applied [26]. About 2.3 mL of a mixture with
Tris-HCl buffer, potassium chloride, tissue homogenate, magnesium chloride, EDTA, and
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substrate was incubated for 15 min at 37 ◦C. The reaction was stopped using 10 percent
TCA, and Fiske and Subbarow’s approach was used to estimate the endpoint [25].

2.8. Determination of Glycolytic Enzymes

The method described by Brandstrup et al. [27] was used to measure the activity of
hexokinase (HK). HK converted ATP and D-glucose into glucose 6-phosphate and ADP,
respectively. The residual glucose reacts with the o-toluidine reagent and emits a green
color that can be observed at 640 nm spectomorphometrically. In terms of the mol of
glucose phosphorylated per hour and mg of protein, the enzyme’s activity was calculated.
Pyruvate kinase (PK) tissue activity was assessed by means of Valentine and Tanaka’s
method [28]. Pyruvate generation from phosphoenolpyruvate was employed as a starting
point. In order to determine how much pyruvate was released, dinitrophenyl hydrazine
was supplemented, and the color formed was measured at 520 nm. The mol of pyruvate
formed/min/mg protein was used to represent the values.

2.9. Glycogen Level

The Hassid and Abraham method [29] was used to estimate the amount of glycogen
in the livers for all five study groups.

2.10. Oxidative Stress Markers

Rat liver tissues were examined using an ELISA kit for the detection of lipid hydrogen
peroxide (H2O2) and peroxidation (LPO).

2.11. Enzymatic Antioxidants

Investigation of the expression of enzymatic antioxidants markers such as reduced
glutathione (GSH), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase
(SOD) in the liver tissue of the rats were assessed with ELISA kit.

2.12. Total RNA, cDNA Synthesis, and Real-Time PCR

Total RNA was extracted from the liver of the rats in each of the five groups using the
TRIR kit. The reverse transcriptase kit was provided by Eurogentec (Seraing, Belgium). The
cDNA was created using 2 µg of total RNA. The list of primer sequences is mentioned in
Table 1 as well as the house-keeping gene. The genes were amplified using a real-time PCR
system (Stratagene MX 3000P, Poway, CA, USA) under the following reaction conditions:
40 cycles of 95 ◦C for 30 s, 59–60 ◦C for 30 s, and 72 ◦C for 30 s. Using the melt and
amplification curves as a guide, relative quantification was created.

Table 1. Details of primer sequences.

S.No Gene Used Primers’ Sequence Ref

1. Beta actin Forward CCCGCGAGTACAACCTTCT
Reverse CGTCATCCATGGCGAACT [30]

2. IRS-2 Forward CAAGAGTTCCAGCAGTAAC
Reverse CAAGAGTTCCAGCAGTAAC [31]

3. PI3K Forward CAAAGCCGAGAACCTATTGC
Reverse GGTGGCAGTCTTGT TGATGA [32]

4. SREBP-1c Forward GGAGCCATGGATTGCACATT
Reverse AGGAAGGCTTCCAGAGAGGA [30]

5. GLUT-2 Forward GTCAGAAGACAAGATCACCGGA
Reverse AGGTGCATTGATCACACCGA [33]
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2.13. Histopathology

Hematoxylin and eosin were used to stain the liver tissue’s histopathology after it had
been cut into sections and fixed in 10% neutral buffered formalin [34]. Sections were taken
by means of microtome, and photographs at a 100-fold magnification were captured.

2.14. Immunohistochemical Analysis

Deparaffinized liver tissues from the experimental rats measuring 4 µm were then
rehydrated using xylene and ethanol, sequentially, at steadily decreasing concentrations.
The tissues were combined with sodium citrate buffer (1M, pH 6.0–6.2) and warmed for
5 min in three cycles. Thereafter, the slides were treated for 5 min with 1M PBS. Prior to
processing the sections, the primary antibodies Akt and GLUT-2 were diluted 1:100 and
peroxidase activity was performed.

2.15. Statistical Analysis

By means of Graph pad prism version 5 (computer-based software), the data were
examined using one-way analysis of variance (ANOVA) and Duncan’s multiple range test
to determine the importance of individual variance within the control and treated groups.
The data were represented as mean ± S.E.M animals (n = 8) in a group and the significance
was calculated at the levels of p < 0.05.

2.16. Molecular Docking
2.16.1. Ligand Molecule Preparation

The literature on the bioactive substances found in C. papaya was compiled, and the
PubChem database was used to download their chemical structures. Table 2 shows the
list of ligands used in the study. In Pyrx, open Babel’s conjugate gradient technique was
used to add hydrogens to the molecules while minimizing energy using the UFF force field.
For pyrx 0.8 input, all structures were saved as pdb files. The Pdbqt file format was then
used to save all of the ligand structures for later input into the AutoDock version. Later,
the Auto Dock Pdbqt format was applied to all lead molecules.

Table 2. List of ligands.

Sl.No Name of Compound

i. Transferulic acid

ii. Caffeic acid

iii. Protocatechuic acid

iv. Chlorogenic acid

v. p-coumaric acid

vi. Rutin

vii. Quercetin

viii. Kaempferol

2.16.2. Protein Macromolecule Preparation

From the protein data bank, the three-dimensional crystal structures of IRS-2 (PDB
ID: 3FQW) and P13K (PDB ID: 5XGJ) were downloaded. We eliminated all extra docking
chains after downloading. The next step involved was the elimination of ligands and
crystallized water molecules. Later, using a program developed at the Molecular Graphics
Laboratory called the Mgl Tool (also known as Auto Dock tools), polar hydrogens and
Kollmann charges were supplemented (MGL). They were added to the protein as a last
step, along with any missing amino acids, and the protein as a whole was reduced using
the Swiss PDB Viewer Software. The protein was subsequently set aside in the pdb format
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and was prepared for docking using Autodock Vina, with an estimation made using a soft
virtual screening library by the name of Pyrx.

2.16.3. Ligand–Protein Docking

Molecular docking experiments were conducted in order to comprehend the molecular
interaction between the chosen drugs and the target proteins utilizing a computer technique.
The binding mechanisms of the naturally occurring inhibitors from C. papaya were ascer-
tained using the AutoDock (PyRx) suite of tools. The PyRx was used to assess the binding
sites and the docking run of the target protein with the ligand. By selecting the Lamarckian
GA docking technique and turning on the “Run AutoGrid” and “Run AutoDock” options
in the control panel, an exhaustive search was carried out. This method involves the ligand
randomly moving around the stationary protein. The grid point was given the energy of
this one atom’s interaction with the protein. An equation based on free energy was used
to determine interaction energies and include terms for dispersion/repulsion energy and
directional hydrogen bonding.

3. Results
3.1. Efficacy of C. papaya on Liver and Renal Function Markers

The liver (ALT and AST) and kidney function markers (urea and creatinine) were
significantly high (p < 0.05) in the T2DM Group 2 when matched with control rats and this
is depicted in Figures 1 and 2. The medicament with C. papaya reduced these high marker
levels. The levels were brought down close to the control group with the administration of
metformin. The control + C. papaya group showed nil changes.
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Figure 1. (a,b) Effect of C. papaya on (a) ALT and (b) AST levels. p < 0.05 was considered statistically
significant among the groups: *-control; #-diabetes; $-C. papaya-treated T2DM.

3.2. Impact of C. papaya on Gluconeogenic Enzymes and Glycolytic Enzymes

Figure 3a,b demonstrates that in diabetic Group 2 rats, there is high fructose-1,6 bis-
phosphatase (FBPase) and glucose-6-phosphatase (G6P) activity. Treatment with C. papaya
showed a reduction of these enzymes which was almost similar to the metformin group.
Control + C. papaya did not exhibit any appreciable differences. The levels of hepatic
hexokinase (HK) and pyruvate kinase (PK) in the rats of all five groups are showcased
in Figure 4a,b. The levels were lowered in diabetic Group 2 when compared to Group 1.
Furthermore, when C. papaya was administered orally, hepatic hexokinase and pyruvate
kinase significantly increased (p < 0.05), in a similar way to the metformin medicament.
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Figure 2. (a,b) Role of C. papaya on (a) urea and (b) creatinine levels. p < 0.05 was considered
statistically significant among the groups: *-control; #-diabetes; $-C. papaya-treated T2DM.
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Figure 3. (a,b) Role of C. papaya on (a) G6P and (b) FBPase levels. p < 0.05 was considered sta-
tistically significant among the groups: *-control; #-diabetes; $-C. papaya-treated T2DM; @-T2DM
rats + Metformin-treated T2DM.
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Figure 4. (a,b) Efficacy of C. papaya on (a) HK and (b) PK levels. p < 0.05 was considered sta-
tistically significant among the groups: *-control; #-diabetes; $-C. papaya-treated T2DM; @-T2DM
rats + Metformin-treated T2DM.

3.3. Outcome of C. papaya on Hepatic Glycogen Level

Figure 5 shows the levels of glycogen. Rats with T2DM in Group 2 have significantly
lower (p < 0.05) levels of glycogen in their livers than rats without the disease in Group 1.
This was largely restored by C. papaya therapy in Group 3, which is close to Group 4 with
metformin therapy. Group 5 showed no alterations.
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Figure 5. Role of C. papaya on hepatic glycogen concentration level. p < 0.05 was considered
statistically significant among the groups: *-control; #-diabetes.
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3.4. Efficacy of C. papaya on Oxidative Stress Markers

Figure 6a,b illustrates the amounts of LPO and H2O2 in control and test rats. The
levels of LPO and H2O2 in the liver of the T2DM group remained significantly greater
(p < 0.05) when analyzed with Group 1. Indicators of stress effectively decreased values in
the C. papaya-treated hepatic tissue when compared to Group 2. The levels were noticeably
reduced by the drug metformin as well. In Group 5 rats, there were no changes in the levels
of these markers of oxidative stress.
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Figure 6. Role of C. papaya on (a) LPO and (b) H2O2 levels. p < 0.05 was considered statistically
significant among the groups: *-control; #-diabetes.

3.5. Impact of C. papaya on Enzymatic Antioxidants

Figure 7a–d indicates the amounts of catalase, glutathione peroxidase, and superoxide
dismutase in control and test rats. The enzymatic levels of GPx, CAT, GSH, and SOD
were all significantly reduced (p < 0.05) in the liver of T2DM Group 2 when compared
to Group 1. When compared to Group 2, the antioxidant enzyme values in the liver with
the C. papaya treatment group were considerably improved. Additionally, their levels
significantly improved when using the drug metformin. In Group 5 rats, these enzymatic
antioxidant levels were constant.

3.6. Impact of C. papaya on mRNA Expression of IRS-2, PI3K, SREBP-1c and GLUT-2 in Liver

Figure 8a–d shows the impact of C. papaya on the mRNA expression of IRS-2, SREBP-
1c, PI3K, and GLUT-2 in the liver of each of the five test groups. The mRNA gene levels of
IRS-2 and PI3K remained significantly lowered (p < 0.05) in T2DM rats when compared
with Group 1 rats. The administration of C. papaya enhanced these levels in the hepatic
tissues in a similar way to metformin administration. Meanwhile, in diabetic rats, the levels
of the mRNA genes for GLUT2 and SREBP-1c were dramatically elevated. Similar to the
standard medication metformin, C. papaya therapy in diabetic rats decreased the levels of
mRNA for GLUT2 and SREBP-1c in the liver. C. papaya-treated control rats did not display
any discernible modifications.
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Figure 7. (a–d) Role of C. papaya on enzymatic antioxidants levels. p < 0.05 was considered statistically
significant among the groups: *-control; #-diabetes; $-C. papaya-treated T2DM.

3.7. Role of C. papaya on the Liver Tissue’s Histopathological Changes

To determine histological alterations in the diabetic condition and its restoration upon
treatment with C. papaya, H&E staining was done (Figure 9a–e). The histology of the liver
in the normal group revealed a single layer of hepatocytes encircling the central vein and a
normal, distinct, and typical liver lobular architecture. However, the liver of Group 2 T2DM
rats exhibited significantly extensive lipid vacuoles and a high number of fat depositions.
The histological abnormalities and the micro-vesicular fatty alterations were seen to be
significantly reduced by the C. papaya intervention in Group 3 in a similar way to that of
the Group 4 metformin medicament, indicating that C. papaya could almost entirely restore
the liver tissues to normalcy. No considerable changes were observed in group 5.
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Figure 8. (a–d) Role of C. papaya on (a) IRS-2, (b) PI3K, (c) SREBP-1c, and (d) GLUT-2 mRNA
expression levels. p < 0.05 was considered statistically significant among the groups: *-control;
#-diabetes.

3.8. Efficacy of C. papaya on the Immunohistochemistry Alterations in Liver Tissue

Figure 10a–e depicts the immunohistochemical changes in Akt in the study group.
Akt expression in the liver was lower in Group 2 animals. As seen in Group 3, C. papaya
therapy boosted the levels of Akt. The rats in Group 4 with metformin administration also
displayed a considerable rise in Akt expression in the hepatic tissue of T2DM. Rats in Group
5 showed no discernible alterations. Figure 11a–e displays that the lessened expression of
GLUT-2 in the liver of Group 2 T2DM rats were noticed when collated with Group 1 rats.
The administration of C. papaya bettered the expression of GLUT-2 in Group 3 in a similar
way to that of metformin therapy. No alterations were viewed in group 5.
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Figure 9. Histopathology of hepatic tissue displaying the effect of C. papaya. (a) Control rats; (b) T2DM
rats presented degenerated hepatocytes (black arrow) while matched with the control; (c) C. papaya-
treated T2DM rats manifested improved hepatocytes with hepatic bands; (d) metformin-treated
T2DM rats exhibited the restored structure of hepatocytes; (e) C. papaya-treated control rats. Yellow
arrow—centrilobular inflammation; white arrow—bile duct; red arrow—blood vessels.
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Figure 10. Expression of Akt via immunohistochemistry (100×). (a) Control rats; (b) T2DM rats;
(c) C. papaya-treated T2DM rats; (d) metformin-treated T2DM rats; (e) C. papaya-treated control rats.
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Figure 11. Expression of GLUT-2 via immunohistochemistry (100×). (a) Control rats; (b) T2DM rats;
(c) C. papaya-treated T2DM rats; (d) metformin-treated T2DM rats; (e) C. papaya-treated control rats.

3.9. Molecular Docking

Protein–ligand interaction is a result of molecular docking. The result of the protein–
ligand interaction has been summarized in tabular form as the number of H-bonding and
amino acid interactions, as well as the binding affinity score. The ligand’s negative binding
energies signify a stable connection between the ligand and receptor. The binding energy
and interaction of C. papaya compounds with the protein targets were made known in
Table 3 and Figures 12–15.
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Figure 12. Lead compounds and their interaction with IRS-2 at the molecular level. (a) Quercetin;
(b) kaempferol; (c) p-coumaric acid.
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Figure 13. Lead compounds and their interaction with PI3K at the molecular level. (a) Kaempferol;
(b) quercetin; (c) caffeic acid.
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Figure 14. Lead compounds and their interaction with SREBP-1c at the molecular level. (a) Quercetin;
(b) kaempferol; (c) caffeic acid.



Toxics 2023, 11, 240 15 of 24Toxics 2023, 10, x FOR PEER REVIEW 16 of 25 
 

 

    

(a) (b) 

 
   

(c) (d) 
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Figure 15. Lead compounds and their interaction with GLUT 2 at the molecular level. (a) Quercetin;
(b) kaempferol; (c) caffeic acid; (d) p-coumaric acid.

Table 3. C. papaya’s top compounds and interactions and results with the target proteins.

S.No Compound Name Binding Energy
Kcal/mol Interacting Residues

IRS-2

1. Quercetin −6

ASN-100 (H- bond)
ASN-102 (H- bond)
ILE-101 (H- bond)
LYS-103 (H- bond)

ARG-195 (H- bond)

2. Kaempferol −5.6

MET-291 (H-bond)
ARG-246 (Pi-Sigma)
MET-243 (Pi-Alkyl)
LEU-294 (Pi-Alkyl)
LYS-295 (Pi-Alkyl)

3. p-coumaric acid −4.8 ILE-101 (Pi donor H- bond)
TYR-136 (Van der Waal)

PI3K

1. Kaempferol −7.8

ARG-683 (H-bond)
GLU-135 (H-bond)
GLN-682(H-bond)
ASN-428 (H-bond)
LEU-645 (Pi-Alkyl)
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Table 3. Cont.

S.No Compound Name Binding Energy
Kcal/mol Interacting Residues

2. Quercetin −7.7

MET-811 (H-bond)
LYS-271 (H-bond)
ASP-626 (H-bond)
PRO-835 (H-bond)

3. Caffeic acid −6.6

ILE-633(H-bond)
GLN-630 (H-bond)
LEU-632 (H-bond)
HIS-670 (H-bond)
PRO-835 (H-bond)

ARG-818 (Pi-Alkyl)

SREBP-1c

1. Quercetin −7.7

CYS-93 (H-bond)
GLN-62 (H-bond)
ARG-76 (H-bond)
VAL-61 (Pi-Alkyl)

2. Kaempferol −7.6

GLN-62 (H-bond)
CYS-93 (H-bond)
SER-78 (H-bond)

ARG-76 (Pi-Alkyl)
VAL-61 (Pi-Alkyl)

3. Caffeic acid −5.5
SER-72 (H-bond)
PHE-63 (H-bond)
VAL-61 (Pi-Alkyl)

GLUT-2

1. Quercetin −8.9

HIS-192 (H-bond)
SER-169 (H-bond)
ASN-320 (H-bond)
GLN-314 (H-bond)
TRP-444 (H-bond)

2. Kaempferol −8.3

GLN-314 (H-bond)
ASN-443 (H-bond)
ALA-440 (Pi-Alkyl)
ILE-28 (Pi- Sigma)

3. Caffeic acidp-coumaric
acid −6.4

ASN-447 (H-bond)
GLU-412 (H-bond)
ASN-320 (H-bond)
ASN-447 (H-bond)
GLU-412 (H-bond)

4. Discussion

The prevalence of NAFLD in obese people has increased exponentially, and it is
considered the hepatic component of metabolic syndrome [35,36]. NAFLD usually appears
before T2DM, and NAFLD individuals almost invariably have hepatic insulin resistance,
which may play a key role in the pathophysiology from NAFLD to T2DM [37]. The liver
serves as a significant site for the uptake and storage of glucose and can be responsible for
up to one-third of oral glucose load disposal [38]. Increased hepatic glucose production is
intertwined with fasting hyperglycemia in T2DM patients, suggesting that insulin resistance
in the liver may play a role in hyperglycemia progression later on [39].

In the case of hepatic insulin signaling, insulin binds to and activates the insulin
receptor tyrosine kinase (IRTK), which then facilitates the tyrosine kinase phosphorylation
of insulin receptor substrates (IRS), most significantly IRS2 in the liver [40,41]. Proteins
with Src homology 2 domains, such as phosphatidylinositol-3-OH kinase (PI3K), can bind
to IRS2 by being phosphorylated [42,43]. Phosphatidylinositol-3,4,5-trisphosphate (PIP3) is
recruited by PI3K binding to IRS2 in order to recruit Akt [43,44]. Akt activation serves four
primary functions in the liver: (1) Increasing glycogen synthase (GS) activity to stimulate
the synthesis of glycogen by inhibiting GS kinase (GSK); (2) Reduction of the expression
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of important gluconeogenic genes in part through forkhead box O1 (FoxO1) inactivation;
(3) Sterol regulatory element-binding protein 1 (SREBP1) is controlled to stimulate endoge-
nous fatty acid synthesis; and (4) Glucose transporter 2 (GLUT2) is directed to transport
glucose into cells for aerobic metabolism or anaerobic breakdown [45–49].

Obesity causes ectopic fat accumulation in the liver and under the skin, which marks in-
sulin resistance because adipocytes’ capacity to store and retain triglycerides is reduced [50].
Insulin-mediated inhibition of lipolysis in adipose tissue is weakened by insulin resistance,
which leads to a significantly increased release of FFAs and glycerol into the bloodstream.
Patients with NAFLD have higher amounts of circulating FFAs, which are the main source
of escalating oxidative stress and inflammatory signals leading to systemic inflamma-
tion [50]. In hyperglycemic conditions, hepatic glucose production and glycogen synthesis
is diminished while an increase in hepatic lipogenesis takes place [51,52]. Thus, hyperinsu-
linemia, hyperglycemia, and hypertriglyceridemia are common in T2DM patients [53].

Recent research has made significant efforts to completely understand the nature that
bestows many medicinal benefits, and as a result, the quest for innovative approaches
is conducted to effectively treat and defeat the growing epidemic of obesity and T2DM.
As one of them, C. papaya is on the list of medicinal plants for the treatment of diabetes.
C. papaya possess a rich source of phytochemicals with abundant anti-inflammatory and
antioxidant properties, as well as favorable effects on glucoregulatory function [54]. In
our earlier research, we found that C. papaya can restore glycemic control by exhibiting
insulinemic action in T2DM skeletal muscle by increasing the levels of IR, IRS-1, Akt, and
GLUT-4. The potential influence of C. papaya on insulin-signaling molecules in skeletal
muscle was shown in a HFD-STZ-induced T2DM model [55,56]. In light of this, we centered
on oxidative stress, gluconeogenic-glycolytic enzymes, and the expression of genes in the
hepatic tissues of diabetic rats, and assessed the effect of C. papaya on hepatic insulin
resistance using in vivo and in silico models.

Individuals with NAFLD and NASH generally have elevated circulating concen-
trations of markers of liver injury, such as AST, and ALT. Both AST and ALT serve as
endoenzymes in hepatocytes for both amino acid production and catabolism and the al-
terations in the expression of ALT and AST in the serum serve as a biomarker for liver
function [57]. In this work, the levels of liver function markers were increased in T2DM rats.
The treatment with C. papaya leaf extract brought down the levels of ALT and AST in a com-
parable way to the result of metformin-treated rats, suggesting the hepatoprotective role of
C. papaya. A parallel work by Abdel-Halim et al. [58] showed that the deleterious effect of
carbon tetra chloride (CCl4) was eliminated upon the administration of C. papaya, which
restored liver function markers. Albrahim and her co-worker displayed a considerable
decline in ALT and AST levels in aged rats with the treatment of blueberry extract, thus
proving its ability to enhance liver function [59]. NAFLD and type 2 diabetes may progress
due to interactions between liver enzymes and insulin resistance. To establish the extent of
renal impairment brought on by T2DM, serum urea and creatinine levels were also exam-
ined. According to earlier research, T2DM causes the kidney to expand due to hyperplasia
and disrupts glomerular filtration [60]. Parallel to the study of Lathifi et al. [61], the renal
function markers in our work were also lessened by enhancing the filtration function of the
kidney upon the treatment of C. papaya in insulin resistance.

Due to hepatic insulin resistance in T2DM, the functionality of hepatocytes is dys-
regulated [62]. Thus, the levels of important enzymes involved in glycolysis and glu-
coneogenesis were quantified to investigate the molecular mechanism underlying the
anti-hyperglycemia impact of C. papaya leaves. In the current study, enhanced hepatic glu-
cose production and subsequent hyperglycemia in the HFD-streptozotocin-induced T2DM
model were caused by the enhanced activity of FBPase and G6Pase, the major enzymes
involved in gluconeogenesis in the liver. Further to this, the medicament of C. papaya down-
regulated the levels of these gluconeogenic enzymes close to those in the metformin-treated
group. Similarly, the administration of Scutellariae radix and Coptidis rhizome reduced the
levels of FBPase and G6Pase in a study carried out by Cui et al. [62]. Pari et al. [63] re-
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ported that when diabetic rats were given naringin in a dose-dependent manner, the altered
FBPase and G6Pase activity were considerably restored to close to normal levels. Glycol-
ysis typically has an impact on insulin output and various cell metabolisms. Deficiency
of the key glycolysis enzymes, HK and PK, can result in decreased glycolysis, as well
as decreased glucose absorption and utilization for energy output, which contributes to
insulin resistance [64]. In the current work, poor insulin signaling resulted in a decrease
in HK and PK in T2DM rats. In comparison to the metformin group, the medicament of
C. papaya increased the range of HK and PK in the liver tissues of diabetic rats. According to
Sureka et al. [65], another similar characteristic of Sesbania grandiflora augmented the levels
of glycolytic enzymes in T2DM rats when matched with the control group. The total glyco-
sides of Cistanche tubulosa were also used by Zhu et al. [66] to demonstrate higher levels of
glycolytic enzymes in diabetic hepatic tissue. The results of our investigation suggested
that the anti-hyperglycemic activities of C. papaya could be related to its phytochemical
constituents which maintain glucose homeostasis [67].

Glycogen, which is mostly found in muscles and the liver, is crucial for preserving
glucose homeostasis [68]. In a study by Luo et al., the amount of muscle and liver glycogen
increased noticeably, showing that sweet potato leaf polyphenols may help diabetic mice
produce more glycogen [68]. In a related, encouraging investigation, berry extract from
Aronia melanocarpa increased the amount of hepatic glycogen in rats with type 2 diabetes [69].
Our treatment with C. papaya in T2DM rodents boosted the levels of hepatic glycogen in a
similar way to that of the metformin administered group. The enhanced levels of hepatic
tissue glycogen alleviated oxidative-stress-incited FFA and reactive oxygen species (ROS),
thus improving the antioxidant defense status.

Increased ROS production from T2DM induced dyslipidemia and oxidative stress,
which lead to lipid peroxidation and membrane damage [70]. In our investigation, the
T2DM group was seen to have raised levels of LPO and H2O2, which increased the genera-
tion of ROS. In a related study, Phyllanthus amarus extract was shown to reduce oxidative
stress biomarkers in HFD-induced T2DM rats [71]. However, C. papaya dramatically
reduced LPO and H2O2 levels, owing to its antioxidant properties which come from its phy-
tochemical backbone, which promotes the scavenging of overproduced ROS. Free radicals
diminish enzymatic antioxidants such as CAT, SOD, GSH, and GPx in T2DM, thereby con-
tributing to oxidative stress [72]. The treatment of C. papaya markedly boosted enzymatic
antioxidant levels, which significantly decreased ROS and prevented lipid peroxidation
in diabetic rodents’ liver tissue, and displayed a similar efficacy to the metformin-treated
group. These results were pretty closely in accordance with Nain et al. study [73].

Earlier studies have recorded that the deterioration of glucose homeostasis due to
IRS-2 and PI3K deficiencies led to insulin resistance in the liver [74,75]. This can result
in the dysfunction of IRS-2 and PI3K which can contribute to the pathophysiology of
T2DM [74]. In our current work, a decline in the levels of IRS-2 and PI3K was observed in
T2DM rats. Zhang et al. [76] researched the antidiabetic effects of Bifidobacterium animalis
01 and its beneficial improvement on IRS-1 and PI3K gene expression. Liu and his co-
workers demonstrated that the derivatives of Mogroside delivered hypoglycemic results on
HepG2 cells and lessened insulin resistance in T2DM rats by improving the gene expression
related to insulin signaling [77]. In the same way, in our study, the therapy of C. papaya
considerably improved the levels of IRS-2 and PI3K, in a way comparable to that of the
metformin medicament. It is well known that in T2DM, liver GLUT2 gene transcription
is elevated. This transcription factor plays a crucial role in the maintenance of glucose
homeostasis [78]. The expression of the GLUT 2 gene is mainly dependent on sterol
response element-binding protein (SREBP)-1c. SREBP-1c activates the GLUT2 promoter
reporter, whereas a dominant-negative version of SREBP-1c inhibits the activation [79]. In
the T2DM state, elevated ranges of SREBP-1c and GLUT-2 are observed. In our study, high
levels of SREBP-1c and GLUT-2 were shown in the HFD-streptozotocin-induced T2DM rats.
Similar works were reported in the earlier literature that reduced these levels to influence
insulin signaling in the liver [80,81]. The medicament of C. papaya in our present research
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displayed the restoration of these upregulated genes in the insulin-signaling cascade, aiding
in the maintenance of glucose homeostasis.

Insulin insufficiency and the dysregulation of fatty acid β-oxidation in mitochondria
are the two main factors in the fatty degeneration of hepatocytes. This causes the conver-
sion of fatty acids to numerous triglyceride droplets in the hepatocytes [82]. Kupffer cells
get activated in inflammatory states such as obesity and T2DM, to release a good deal
of inflammatory cytokines and chemokines [83]. As a result, hepatocyte injuries, cellular
inflammation, fatty deposits, and vascular congestion were observed in the histopathologi-
cal liver section of T2DM rats in our work, which was similar to Brancaccio et al. [84]. A
comparable work was done by Motshakeri et al. [85]. The C. papaya treatment gradually
reinstated the architecture of hepatocytes and consequently diminished cellular inflam-
mation. These highlight the hepatoprotective potential of C. papaya and its role in hepatic
insulin signaling.

Hepatic insulin resistance can be alleviated by activating the PI3K/Akt pathway.
In order to assess this, immunohistochemistry of Akt in hepatic tissues was done. The
T2DM group displayed less expression of Akt in the liver tissues of the experimental rats.
A similar study was done by Zhu et al. [86], in which the expression of Akt in T2DM-
induced rodents was improved by the treatment of Liubao brick tea. In our work, the
administration of C. papaya increased the levels of Akt in a comparable way to metformin
treatment (Figure 16) The administration of C. papaya lowered the high levels in diabetic
rats. A supportive work by Mathur and his team [87] found that Psidium guajava Linn. leaf
extract reduced the levels of hepatic GLUT2. The excess availability of GLUT2 protein
was decreased with the therapy of C. papaya to curb the glucose influx into hepatocytes.
Thus, C. papaya improved downstream signaling by reducing gluconeogenic enzymes and
oxidative stress markers, thus increasing glycolytic enzymes, hepatic glycogen content, and
enzymatic antioxidants [88].
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Figure 16. Summarizes the mechanisms of action of C. papaya leaf extract on IRS-2/PI3K/Akt/GLUT2.
Signaling in hepatocytes. Red arrow indicates HFD-STZ-induced insulin resistance and metabolic
dysfunction, while green arrow represents the therapeutic effects of C. papaya in the liver.

In the in silico analysis, non-covalent intermolecular interactions including hydro-
gen bonds between molecules, Van der Waal interactions, electrostatic interactions, and
hydrophobic interactions all have an impact on binding affinity. The presence of several
additional molecules may also affect the binding affinity of a ligand to the active site of a
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receptor. The outcomes showed that each of the ligands under investigation has a similar
orientation and location within the putative binding site of the aforementioned proteins,
which acts as a conduit intended for the substrate to reach the active site [89]. The strength
of the relationship between the ligand’s affinity for the protein and the binding free energy
can help interpret and comprehend the activity of the ligand through a variety of potential
pathways. Additionally, the shape of the ligand–receptor complex plays a critical role in
the development of pharmacological activity.

With regard to binding energy, hydrogen bond interaction, and hydrophobic interac-
tion, quercetin, kaempferol, caffeic acid and p-coumaric acid demonstrated robust binding
with every receptor in the current study. The researchers hunting for new drugs with
anti-diabetic effects will benefit greatly from this in silico study. The possibility that the
abovementioned proteins are intimately involved with C. papaya’s bioactive compounds
needs to be confirmed in order to forward research.

5. Conclusions

The current study clearly demonstrates that C. papaya improves glycemic control in
liver of HFD–STZ-induced T2DM rats through the regulation of IRS-2, PI3K, SREBP-1c,
and GLUT-2 signaling molecules by facilitating glycolysis and inhibiting gluconeogenesis.
This eventually encouraged the synthesis of hepatic glycogen by normalizing oxidative
stress and antioxidant enzymes. In addition, the evidence from molecular docking analysis
displayed that the compounds of C. papaya such as quercetin, kaempferol, caffeic acid and
p-coumaric acid exhibited the best binding affinity against the targets IRS-2, SREBP-1c,
PI3K, and GLUT-2. This study provides the foremost experimental evidence that C. papaya
helps in maintaining glucose homeostasis in the liver against HFD-STZ-induced T2DM.
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