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Abstract: Pharmaceuticals are widely recognized as potentially hazardous to aquatic ecosystems. In
the last two decades, the constant intake of biologically active chemicals used in human healthcare
has been related to the growing release of these agents into natural environments. As reported
by several studies, various pharmaceuticals have been detected, mainly in surface water (seas,
lakes, and rivers), but also in groundwater and drinking water. Moreover, these contaminants
and their metabolites can show biological activity even at very low concentrations. This study
aimed to evaluate the developmental toxicity of exposure to the chemotherapy drugs gemcitabine
and paclitaxel in aquatic environments. Zebrafish (Danio rerio) embryos were exposed to doses of
gemcitabine 15 µM in combination with paclitaxel 1 µM from 0 to 96 h post-fertilization (hpf) using a
fish embryo toxicity test (FET). This study highlights that both gemcitabine and paclitaxel exposure
at single non-toxic concentrations affected survival and hatching rate, morphology score, and body
length after exposure in combination. Additionally, exposure significantly disturbed the antioxidant
defense system and increased ROS in zebrafish larvae. Gemcitabine and paclitaxel exposure caused
changes in the expression of inflammation-related, endoplasmic reticulum stress-related (ERS), and
autophagy-related genes. Taken together, our findings underline that gemcitabine and paclitaxel
increase developmental toxicity in zebrafish embryos in a time-dependent manner.

Keywords: gemcitabine; paclitaxel; zebrafish; chemical mixture; ROS

1. Introduction

Gemcitabine (29,29-difluoro 29-deoxycytidine) is an analog of cytosine arabinoside
(Ara-C) with many pharmacological properties and distinctive antitumor activity [1]. Gemc-
itabine’s (GEM) ability to slow the growth of human tumors has been demonstrated in a va-
riety of hematological and solid cancer cell lines. Additionally, its in vivo activity has been
demonstrated in murine solid tumors and human xenografts in nude mice [2]. In line with
these preclinical studies, gemcitabine has shown important clinical activity. Currently, it is
reported as a single compound in therapy for metastatic pancreatic cancer [3] and as associa-
tion therapy in bladder cancer [4], non-small cell lung cancer [5], and breast cancer [6]. GEM
has also been proven to be effective in other tumors, such as mesothelioma, ovarian cancer,
and head and neck cancers [7]. Although GEM’s chemotherapic activities have been widely
characterized, its effects on developmental-induced toxicity have not been elucidated.
Paclitaxel, (1S,2S,3R,4S,7R,9S,10S,12R,15S)-4,12-diacetoxy-15-{[(2R,3S)-(benzoilammine)-2-
hydroxy-3-fenilpropanoil]oxy}-1,9-diidroxy-10,14,17,17-tetrametil-11-oxy-6-oxatetracycle
eptadec-13-en-2-il benzoate) dissolved in cremophor EL and ethanol, is an antineoplastic
medication that is commonly used to treat ovarian, breast, lung, and cervical cancers, as
well as a variety of other head and neck neoplasms [8–11]. Paclitaxel (PAX) inhibits tumor
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cell proliferation by inducing tubulin polymerization, which prevents the formation of the
mitotic spindle, causing proliferating cells to enter the G2/M phase of the cell cycle, even-
tually leading to tumor cell death via apoptosis or phagocytosis [12,13]. Numerous studies
have shown therapeutic advantages in the use of GEM and PAX combinations in treating
certain types of carcinomas [14,15]. The massive consumption of chemotherapic drugs is
the main cause of the release of these compounds into aquatic environments. Wastewater
treatment plants, hospital and industrial discharges, animal farming, and aquaculture
facilities are the most significant pathways. In addition to freshwater locations such as
lakes, rivers, groundwaters, and estuaries, recent studies also showed these substances in
coastal areas [16]. Crustaceans, mollusks, and fishes were shown to accumulate pharma-
ceuticals under measured laboratory conditions [17], and various substances have been
shown in wild marine and freshwater species, including mollusks (Cassostrea spp., Mytilus
spp., Elliptio spp., Dreissena spp.), crustaceans (Gammarus spp.), macroalgae (Laminaria spp.,
Saccharina spp.), and fishes in different ecological categories (Platichthys flesus, Liza aurata,
Hemiculter leucisculus, Pleuronichthys verticalis, Carassius auratus) [18,19]. These results high-
light the emergent threat of pharmaceuticals to aquatic ecosystems and the importance of
investigating their potentially harmful effects on aquatic species.

Zebrafish (Danio rerio) is a sensitive, reliable, and economic model extensively em-
ployed to determine the level of toxicity of various substances [20]. Zebrafish are easy to
handle and are small in size, with visible embryological phases and high fecundity, and
undergo rapid organogenesis and embryogenesis in vitro [21]. In fact, they show simi-
larities at the molecular and physiological levels with humans in the respiratory system,
cardiovascular system, and immune system [22–24]. Therefore, good correspondence with
mammalian toxicity has been shown [25]. Zebrafish is employed as a universal model
to evaluate the mechanism of action and toxicity during the early stages of embryonic
development [26]. A previously published study demonstrated that GEM exposure at
25 µM is associated with congenital malformations and decreased survival rate [27] in
zebrafish larvae. Additionally, several papers showed that GEM induced oxidative stress,
skin cell senescence, cardiovascular, neuro- and hepatotoxicity, and embryonic toxicity [28].
However, the cellular effects of GEM and its mechanism of developmental toxicity are
still poorly understood. Previous studies confirmed that ROS, the release of inflammatory
cytokines, and gene toxicity are associated with developmental toxicity [27].

Inflammation is an adaptive response to guarantee that excessive stimuli are removed
from the body and a healing process for rebuilding damaged tissue. However, chronic
and persistent inflammation is detrimental [29]. Indeed, endoplasmic reticulum stress
(ERS) and increasing ROS amounts are responsible for inflammation and autophagic cell
death, which lead to the pathogenesis of a variety of diseases [30]. PAX’s capacity to
trigger toxic events in various experimental models has been widely elucidated [31–33].
According to a recent study, the PAX-induced cell death process in AGS cells includes
mitotic catastrophe, autophagy, and apoptosis. Caspase-3, Caspase-9, and PARP were all
activated by PAX, which caused apoptosis. Additionally, the fact that PAX administration
resulted in a large rise in the autophagy marker LC3B-II, along with Atg5, class III PI3K,
and beclin-1, and a decrease in p62 levels, confirmed that this anti-cancer medication
triggered autophagy [34]. Moreover, previous studies demonstrated that PAX is able to
cause neurotoxicity in zebrafish [35]. Exposure to PAX has also been shown to induce
sensory axon degeneration and loss of touch response in a zebrafish model [36]. In the
present study, we evaluated the detrimental effects of exposure to GEM in combination
with PAX on malformation, oxidative stress, inflammatory response, and autophagy in
zebrafish embryos. The regulation of expression of genes related to inflammation (tgfb and
cox2), ERS (hspa5, chop, ire1, xbp1s, and atf6), and autophagy (lc3, beclin1, and atg3) pathways
were explored.
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2. Materials and Methods
2.1. Selection of Concentrations

We based our choice of non-toxic concentrations of GEM and PAX on environmental
concentrations shown in the literature. GEM was reported to be detected in water at a
range of 39.3 ng/ L−1 to 52 ng L−1 and PAX at a concentration between 1.40 mg L−1 and
2.19 mg L−1 [37]. Based on these ranges, we decided to use concentrations slightly lower
than the environmental ones in order to have individually harmless doses of the drugs.
A preliminary experiment was conducted in which three concentrations of GEM (15 µM,
25 µM, 35 µM) and three of PAX (0.5 µM, 1 µM, 2 µM) were selected. FET was then
performed, and zebrafish embryos were exposed to these concentrations up to 96 hpf.
From the results obtained on mortality and hatching rates, the highest single non-toxic
concentrations were identified and were subsequently used for this study (Figure S1).

2.2. Solutions Preparation

GEM (Gemcitabine) 100 mg/mL and PAX (Paclitaxel) 6 mg/mL (30 mg/5 mL) were
purchased (Accord Healthcare Italia S.r.l, city, Milan, Italy). The solutions were diluted
in embryo medium, obtaining two different concentrations (GEM 15 µM, PAX 1 µM) and
one concentration containing the mixture (GEM 15 µM + PAX 1 µM) in 24 wells (2 mL
each) (Labsolute, Th. Geyer GmbH & Co. KG, 4–6 71272 Renningen, Germany), 1 for each
solution and 1 plate with negative control (untreated), as previously shown [38].

2.3. Zebrafish Maintenance and Breeding

For the production of embryos, wild-type (WT) adult zebrafish (6 months old) were
employed. Zebrafish were raised in the fish facility of the Department of Veterinary
Sciences, University of Messina, Italy’s Center for Experimental Fish Pathology (Centro
di Ittiopatologia Sperimentale della Sicilia, CISS). The fish were fed 3% of body weight
(BW) of both dry and live food twice daily. Mature males and females were mated in a
2:1 ratio for successful reproduction. The following day, eggs were gathered and bleached,
and non-fertilized eggs were discarded. Only blastula-stage embryos were used for
this study.

2.4. Zebrafish Embryo Toxicity (ZFET) Assay

In accordance with OECD guidelines (OECD, Test No. 236: Fish Embryo Acute Toxicity
(FET) test), the toxicity of GEM and PAX solutions was determined [39]. GEM (15 µM) and
PAX (1 µM) were prepared using embryo medium (15 mM NaCl, 0.5 mM KCl, 1 mM CaCl2,
1 mM MgSO4, 0.15 mM KH2PO4, 0.05 mM Na2HPO4, 0.7 mM NaHCO3, pH 7.3) and placed
into a 24-well plate (1 embryo per well). Fertilized eggs were transferred into 24-well plates
with test solutions (n = 24 in each plate for each replicate of an experimental group) and
incubated at 26 ◦C at a 14:10 h day/night light regime. The experimental groups were
divided as follows. One group was exposed to a solution of GEM 15 µM, one was exposed
to a solution of PAX 1 µM, one was exposed to the mixture of GEM 15 µM + PAX 1 µM,
and one was the control group (untreated). The experiment was repeated four times. The
entire mortality and developmental abnormalities of embryos and larvae were observed
and recorded at 24, 48, 72, and 96 hpf [40]. Coagulation, lack of somites, non-detachment of
the tail, and no heartbeat were considered the lethal endpoint. Furthermore, the occurrence
of defects in embryos during development was evaluated as a teratogenic endpoint. In
addition, the percentage of hatchability and mortality were estimated. A stereo microscope
was used to capture images and movies (Leica M205 C). Every 24 h, four separate endpoints
were checked for any malformations.
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(a) Embryo coagulation—This can occur within a few hours after exposure and indicates
a generic acute toxic effect.

(b) Lack of somite formation—Twelve hours after fertilization, the somite should be
visible; if not, the embryo will not continue to develop.

(c) Non-detachment of the tail—At 24 h after fertilization, the tail of the yolk sac can be
seen detaching, indicating that the embryo is growing normally.

(d) Absence of heartbeat—The heartbeat can be easily felt 30 h after fertilization; its ab-
sence denotes the death of the embryo. Embryo coagulation and absence of heartbeat
were focused on, both as endpoints of mortality.

2.5. Morphology Score and Body Lengths

The degree of the developmental toxicity effects observed in numerous organ systems
(body shape, head, brain, somites, notochord, swim bladder, yolk sac, tail, fins, and
pharyngeal arches/jaws) of zebrafish larvae (n = 20 for each group) after exposure to
GEM + PAX was assessed at 96 hpf. Our study’s morphological scoring standards were
previously described [41]. Using Image-Pro Plus software (Media Cybernetics, Bethesda,
MD, USA), the length of each zebrafish larva was measured at 96 hpf WE along the body
axis from the anterior-most region of the head to the tip of the tail.

2.6. Measurement of ROS Generation

Using 20, 70 di-chlorodihydrofluoresceindiacetate DCF-DA (Thermo Fisher Scientific
Inc., Rome, Italy, ROS production in zebrafish larvae was assessed at 96 hpf. The larvae
(n = 20 for each group) were incubated for 1 h in the dark at 28 ◦C in a solution of
20 mg/mL−1 DCF-DA. The larvae were then rinsed in new fish water. Finally, the larvae
were observed using a fluorescent microscope (Olympus, Tokyo, Japan), and the fluores-
cence intensity was measured using the ImageJ program.

2.7. Total RNA Extraction and RT-PCR

First, a 4 ◦C pre-chill was applied to the centrifuge machine. Following several rounds
of washing with sterile embryo medium (n = 20 per experimental group), embryos were
carefully dried without harming them. After that, 500 µL of trizol was extracted and
uniformly homogenized. Then, an additional 500 µL of trizol was added and thoroughly
mixed. The samples were incubated for 15 min at 4 ◦C. Then, 200 µL of chloroform was
added, vortexed vigorously for 15 s, and incubated for 2 to 3 min at room temperature.
The samples underwent a 15 min, 12,000× g centrifugation at 4 ◦C. Next, the top aqueous
phase was carefully transferred into a new tube, the same volume of 2-propanol was added,
and it was incubated for 10 min on ice in order to precipitate the RNA. Samples were
once more centrifuged for 30 min at 4 ◦C at a 12,000× g speed. The final steps included
completely removing the supernatant, washing the RNA pellet on the side or bottom
of the tube with 75% ethanol, and centrifuging it at 12,000× g for 5 min at 4 ◦C. The
pellet underwent complete air-drying at room temperature. Following that, the pellet was
resuspended in 50 µL of nuclease-free water and kept at −80 ◦C. Nanodrop was used to
quantify the RNA (260/280), and a 1% agarose gel was used to verify the integrity of the
isolated RNA. A Thermo Scientific cDNA synthesis kit (#K1622) was used to create the
cDNA, and the instructions included with the kit were followed exactly. Then, after being
normalized to the reference gene -actin, relative gene transcription levels were ascertained.
The primer oligomers for the target genes are indicated in Table 1. The Design and Analysis
software (v1.5.2, Applied Biosystems, Thermo Fischer Scientific) was used to analyze the
melt curve and calculate the relative fold change using ∆∆ct method in comparison to the
control group.
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Table 1. Primers for real-time PCR.

Gene Primer Orientation Nucleotide Sequence

β-actin forward 5′-AGAGCTATGAGCTGCCTGACG-3′

reverse 5′-CCGCAAGATTCCATACCCA-3′

tgfβ forward 5′-GAACTCGCTTTGTCTCCA-3′

reverse 5′-TACAGTCGCAGTATAACCTCA-3′

cox2
forward 5′-ATCCTGTTGTCAAGGTCCCA-3′

reverse 5′-CAAGGGTGCGGGTGTAAT-3′

hspa5 forward 5′-CAGATCTGGCCAAAATGCGG-3′

reverse 5′-GGAACAAGTCCATGTTGAGC-3′

chop forward 5′-CACAGACCCTGAATCAGAAG-3′

reverse 5′-CCACGTGTCTTTTATCTCCC-3′

ire1
forward 5′-TGACGTGGTGGAAGTTGGTA-3′

reverse 5′-ACGGATCACACATTGGGATGTT-3′

xbp1s forward 5′-CAAAGGAGCAGGTTCAGGTAC-3′

reverse 5′-GGAGATCAGACTCAGAGTCTG-3′

atf6 forward 5′-CTGTGGTGAAACCTCCACCT-3′

reverse 5′-CATGGTGACCACAGGAGATG-3′

lc3
forward 5′-AAAGGAGGACATTTGAGCAG-3′

reverse 5′-AATGTCTCCTGGGAAGCGTA-3′

beclinl
forward 5′-AGAGCATTGAGACAAAGCGTGAA-3′

reverse 5′-TCTGCCAAGGCGGAAGTTATT-3′

atg3 forward 5′-GGCTGTTTGGATATGATGAG-3′

reverse 5′-AGCAGGTGGAGGGAGATTAG-3′

2.8. Statistical Analyses

Data were presented as the mean± standard error (SE). Significant differences between
groups were determined using a two-way analysis of variance (ANOVA) and Bonferroni’s
test. Statistical differences were considered significant at *** p < 0.0001.

3. Results
3.1. Mortality, Hatching Rate, and Malformations

The mortality rates of zebrafish embryos exposed to GEM 15 µM, PAX 1 µM, and
a combination of GEM 15 µM and PAX 1 µM for 24–96 hpf are shown in Figure 1A.
Single concentrations of GEM and PAX showed no significant difference in mortality from
24 hpf to 96 hpf. However, a high mortality rate was found in the GEM 15 µM + PAX 1 µM
exposure group at 72 hpf and 96 hpf, respectively. The hatching rates are shown in Figure 1B.
Significantly decreased hatching rates were observed at 48–96 hpf for the combined dose of
GEM 15 µM and PAX 1 µM. These data indicated a remarkable decrease in the hatching
rate induced by GEM and PAX (Figure 1B). The phenotypic defects caused by GEM and
PAX from 24 hpf to 96 hpf are shown in Figures 1A and 2A. An apparent delay in hatching
was also found in the combination dose of GEM and PAX. In the GEM 15 µM and PAX
1 µM single exposure groups, no statistically relevant malformation was observed (Table 2).
When GEM was combined with PAX, severe developmental abnormalities became very
noticeable, including severe yolk sac edema, spinal cord teratogenesis, and pericardial
edema. These growth defects may be caused by abnormal cell death.
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Figure 2. Effects of GEM and PAX on morphological changes in zebrafish larvae at 96 hpf.
(A) Representative lateral views, body length (B), and morphological scoring (C) of zebrafish larvae
treated with GEM 15 µM andPAX 1 µM. *** p < 0.001 versus CTRL. (NSA) no showed abnormalities;
(YSE) yolk sac edema; (SC) spinal cord teratogenesis; (PE) pericardial edema; scalebar 500 µm.
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Table 2. GEM and PAX effects on zebrafish larvae at 96 hpf.

Malformations Incidence
(hpf)

SC PE YSE 24 h 48 h 72 h 96 h

CTRL 0 0 0 0 0 0 0
GEM 15 µM <2% 0 0 0 0 0 <2%
PAX 1 µM 0 0 <3% 0 0 <3% <3%

GEM 15 µM +
PAX 1 µM 35% 40% 75% 3% 3% 70% 70%

Spinal cord teratogenesis (SC); Pericardial edema (PE); Yolk sac edema (YE).

3.2. Body Length in GEM-PAX Exposed Zebrafish

The degree of development was determined by measuring changes in the larvae
body lengths. The body lengths of the larvae in the GEM 15 µM and PAX 1 µM treated
group were noticeably smaller compared to the control group. (Figure 2B). Our results
showed that GEM and PAX together significantly inhibited larval growth and development
(Figure 2C).

3.3. ROS Measurement

As shown in Figure 3A, GEM + PAX exposure increased the generation of ROS in the
treated zebrafish larvae group compared with the control group.
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3.4. Gene Expression

An RT-PCR experiment was performed at 96 hpf to evaluate the probable mecha-
nism underlying the developmental toxicity of GEM + PAX exposure. When exposed by
96 hpf, the GEM + PAX-treated group demonstrated up-regulation of two inflammation-
related genes (tgfb and cox2), five ERS-related genes (hspa5, chop, ire1, xbp1s, and atf6), and
three autophagy-related genes (lc3, beclin1, and atg3), as compared to the control group.
(Figure 4).
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4. Discussion

The environmental effects of pharmaceuticals in aquatic ecosystems are now con-
sidered a critical problem with deleterious outcomes and global-scale distribution. The
rising trend of drug intake and release in aquatic environments highlights the necessity for
special national and international actions to address this issue. Several scientific studies
have shown the onset of significant effects on early cellular, biochemical, and molecular
responses in aquatic species exposed to environmental concentrations of pharmaceuti-
cals [42–44]. Moreover, pharmaceuticals are a class of contaminants of emerging concern,
and one of their characteristics is that they can generate a biological response even at very
low concentrations [45]. For the aquatic environment, genotoxic effects are predicted to be
a serious issue [46], but unfortunately, the literature on the genotoxicity of cytostatic drugs
is quite poor. To date, investigations have suggested that the studied cytostatic medicines’
ambient concentrations are below the levels required to generate genotoxic effects. For
example, doxorubicin has the lowest genotoxic effect (74 µg/L−1), while the maximum
concentration found in effluent wastewater (0.042 µg/L−1) was three orders of magnitude
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lower in the worst-case scenario [37]. A previous study confirmed that no apparent toxicity
was found in embryos after treatment with GEM at 15 µM, and evident developmental
toxicity was observed for exposure higher than 25 µM [27]. According to field studies over
the years, PAX also does not appear to pose an alarming threat to aquatic organisms, given
the environmental concentrations found [37]. The use of combinations of drugs in various
therapies (especially those for cancer treatment) does not exclude the possibility that these
substances, which are individually harmless at these concentrations, may lead to a clear
toxic effect in combination with each other and, therefore, be a threat to the environment.
Single doses of GEM and PAX, 15 µM and 1 µM, respectively, showed no relevant changes
in the survival rate and hatching of larvae exposed up to 96 hpf. These data appear to
be in agreement with previous studies. GEM 15 µM + PAX 1 µM exposure, on the con-
trary, showed three major types of developmental abnormalities: spinal cord teratogenesis,
pericardial edema, and yolk sac edema. Our results demonstrated that exposure to GEM
15 µM and PAX 1 µM significantly affected mortality and caused malformation, affecting
hatching rate and body length. These results were consistent with those of Benyumov et al.
2011 [27]. According to the results of previous studies [27,31,34], in order to evaluate a
possible pathway of toxicity underlying the GEM/PAX exposure, we investigated the main
pathways involved in developmental toxicity. Our data showed increased inflammation
and generation of ROS. The mRNA level of the inflammatory mediators tgfb and cox2 were
found to be significantly increased, and the antioxidant defense system was found to be
altered as well after GEM + PAX exposure. The up-regulation of the proinflammatory
mediators and the persistence of ROS can induce ER damage [47], thus, we evaluated
the ERS gene expression. ER is involved in the management of proteins functions such
as synthesis, folding, and delivery [48]. In case of unfolded proteins accumulation, ER
activates the unfolded protein response (UPR) to re-establish normal ER functions and
to help the cells to adapt to environmental changes [49]. However, UPR can also induce
cell death when ERS is prolonged and severe [50]. Three signaling pathways can activate
UPR: the inositol-requiring enzyme 1 (IRE1)-X-box binding protein 1 (XBP1) pathway, the
protein kinase RNA-activated-like ER kinase (PERK)-eukaryotic translation initiation factor
2 alpha (eIF2a) pathway, and the activating transcription factor 6 (ATF6) pathway [51].
Hspa5 is a regulator of the ER homeostasis activated in case of accumulation of misfolded
and unfolded proteins in ER [52]. Chop is a regulator of the apoptosis pathway activated by
ERS [53], while ire1 is responsible for the activation of the endoribonuclease activity that
activates the xbp1s transcription factor. The mRNA expression of hspa5, chop, ire1, xbp1s,
and atf6 was found to be increased in zebrafish embryos, indicating that GEM 15 µM and
PAX 1 µM co-exposure probably trigger ERS through the IRE1-XBP1 and ATF6 pathways.
Several studies highlighted that autophagy is stimulated for cell survival after ERS [54].
However, persistent activation of this pathway by ERS leads to cell injury [50]. It has been
reported that atf6 indirectly regulates autophagy via chop and xbp1 [30]. Xbp1 is mediated
by ire1 and activates autophagy via beclin1 [55]. Beclin1 is involved in the initiation and
nucleation of autophagy, while lc3 and atg3 are involved in the extension and closure of
the autophagic membrane [30]. Our analysis also showed increased mRNA expressions of
autophagy genes beclin1, lc3, and atg3.

5. Conclusions

Our experiments show that exposure to GEM and PAX at 15 µM and 1 µM concentra-
tions, respectively, does not lead to statistically significant toxicity episodes in zebrafish
larvae; however, their co-exposure at the same concentrations strongly affects the survival
rate and delay in hatching and also causes growth and developmental aberrations, in-
creasing inflammation, ROS production, ERS, and autophagy. Certainly, further studies
are needed to investigate other possible biomarkers of toxicity in order to highlight the
molecular mechanisms of toxicity.
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