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Abstract: Industrial wastewater often consists of toxic chemicals and pollutants, which are extremely
harmful to the environment. Heavy metals are toxic chemicals and considered one of the major
hazards to the aquatic ecosystem. Analytical techniques, such as potentiometric methods, are some of
the methods to detect heavy metals in wastewaters. In this work, the quantitative structure–property
relationship (QSPR) was applied using a range of machine learning techniques to predict the stability
constant (logβML) and potentiometric sensitivity (PSML) of 200 ligands in complexes with the heavy
metal ions Cu2+, Cd2+, and Pb2+. In result, the logβML models developed for four ions showed
good performance with square correlation coefficients (R2) ranging from 0.80 to 1.00 for the training
and 0.72 to 0.85 for the test sets. Likewise, the PSML displayed acceptable performance with an R2

of 0.87 to 1.00 for the training and 0.73 to 0.95 for the test sets. By screening a virtual database of
coumarin-like structures, several new ligands bearing the coumarin moiety were identified. Three of
them, namely NEW02, NEW03, and NEW07, showed very good sensitivity and stability in the metal
complexes. Subsequent quantum-chemical calculations, as well as physicochemical/toxicological
profiling were performed to investigate their metal-binding ability and developability of the designed
sensors. Finally, synthesis schemes are proposed to obtain these three ligands with major efficiency
from simple resources. The three coumarins designed clearly demonstrated capability to be suitable
as good florescent chemosensors towards heavy metals. Overall, the computational methods applied
in this study showed a very good performance as useful tools for designing novel fluorescent probes
and assessing their sensing abilities.

Keywords: florescent chemosensor; QSPR; quantum DFT calculation; stability constant; potentiometric
sensitivity; toxicity; coumarin

1. Introduction

The aggressive increase of industrial areas without proper waste management systems
along rivers has created a huge source of water pollution [1–3]. Industrial wastewater
normally consists of toxic chemicals and pollutants, which are extremely harmful to people
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and the environment [4]. Among all the pollutants from industry, heavy metals are con-
sidered as one of the major hazards to the aquatic ecosystem as they are poisonous and
nonbiodegradable in nature, even at very low concentrations [5]. Elements that have high
density and are less noxious are known as heavy metals. Generally, they are transition or
basic metals with a density of >5 g/m3 [6]. They can easily migrate through the water–soil
interface and the water–atmosphere interactions. There are various types of metal ions
inside effluents including those of chromium (Cr(III) or Cr(IV)), manganese (Mn(II) or
Mn(IV)), iron (Fe(II)), copper (Cu(II)), cadmium (Cd(II)), and lead (Pb(II)), among others,
which can cause serious problems to the environment and living systems [5,7]. For example,
long-term exposure to the ion Cd2+ with a higher concentration of 0.2 mg/kg through air,
water, soil, and food leads to cancer and organ system toxicity such as the skeletal, urinary,
reproductive, cardiovascular, central and peripheral nervous, and respiratory systems [8,9].
According to the World Health Organization (WHO), Pb2+ can attack the brain and central
nervous system, causing coma, convulsions, and even death, at concentrations as low as
3.5 µg/dL [9]. Excessive intake of ion Cu2+ can cause liver or kidney damage [10]. A very
recent report by Cao et al. showed a very alarming situation of water acidification and
Cu2+ toxicity against estuarine ecosystems [11]. The above-mentioned examples clearly
demonstrate an urgent demand for novel methods to detect and quantify heavy metals in
the aqueous medium.

The analytical field has achieved significant advances over the last few decades in
exploring the qualitative and quantitative information of pollutant elements [12,13]. Up to
now, many techniques including ion-selective electrodes, reversed-phase high-performance
liquid chromatography (HPLC), voltammetry, inductively coupled plasma mass spec-
troscopy (ICP-MS), plasma-atomic emission spectrometry (AES), and chemosensors (col-
orimetric, fluorometric, or fluorescent chemosensors) have been widely used in heavy
metal ion detection [13]. Among them, fluorescent chemosensors have shown suitable
detection specifications because of their visual simplicity, low cost, high sensitivity, good
selectivity, and rapid response [14,15]. The first fluorescent chemosensor was introduced
by Goppelsroder in 1867 for the determination of aluminum ions by forming a morin
chelate with fluorescence-quenching effects. Since then, many fluorescent chemosensors
have been developed for the detection of numerous different metal ions, which served
as the precursors of analytical chemistry as widely known today [14]. In general, these
sensors act as molecule receptors, which can sense and precisely interact with heavy met-
als and produce detectable signs due to the fluorescence intensity and/or fluorescence
band shift. Designing such molecular systems for sensing metal ions through naked-
eye detection is of high interest [15]. Different sensing mechanisms take place during
sensing [12], such as fluorescence resonance energy transfer (FRET), intramolecular charge
transfer (CT), chelation-enhanced fluorescence (CHEF), photoelectron transfer (PET), ex-
cimer formation, etc.

However, the conventional protocols for developing potential ligands able to selec-
tively bind to the target ions require chemical synthesis and sensor membrane prepara-
tion and typically rely on the “trial and error” pathways by varying the compositions
such as different solvent–plasticizers and different ratios between a ligand and an ion
exchanger [16,17]. In addition, the sensitivity and selectivity parameters of the novel
membranes must be examined by an appropriate potentiometric method. All these exper-
iments require expensive, specialized, and cumbersome sample preparations and bulky
laboratory equipment; thus, it is difficult to adapt them for multiple-metal-directed sensing
applications or high-throughput screening of novel sensors [14,17–19].

In this sense, the quantitative structure–property relationship (QSPR) method [20–28],
which is a computational approach composed by statistical models relating the structural
features of ligands and their sensing properties, such as the stability constant or potentio-
metric sensitivity, have been employed to assist in the design and screening of fluorescence
sensors [16,29–32]. Several achievements have been reported in this area, as summarized
in Table 1. In 2019, Soloviev and colleagues developed several QSPR models able to predict
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the potentiometric sensitivity of sensors based on a variety of nitrogen-containing ligands
(mainly diamides of pyridine and bipyridine acids) towards heavy metal ions (Cu2+, Zn2+,
Cd2+, and Pb2+) with root-mean-squared errors of around 5 mV/dec based on the set of
descriptors derived from substructural molecular fragments [29]. Later, Martynko et al. de-
veloped this concept further and aimed at Mg2+/Ca2+ potentiometric selectivity prediction
using the QSPR based on the literature data [33]. While the attained precision of the model
in prediction was not very high (±0.5 logKsel), the model was able to distinguish reliably
between the ligands with high-, medium-, and low-Mg2+ concentration selectivity. Recently,
Vladimirova and colleagues explored the potential of QSPR modeling in the prediction
of potentiometric selectivity for plasticized polymeric membrane sensors based on newly
synthesized ligands [30]. Attempts to develop novel QSPR models effectively applied
for chemical sensors are ongoing and are needed to address the main issues currently
posed in the field: (i) the limited number of data to be used for training together with
the weak performance of the developed models and (ii) the lack of models to predict the
multiple sensing properties of fluorescent probes and application for the virtual design of
potential chemosensors.

Table 1. Summary of relevant reports of QSPR models for heavy metal chemosensor property prediction.

Year Chemometric Methods Metal Ions Modeling Property Chemical Structures

Kiani-Anbouhi et al. (2014) [31]

Genetic algorithm-multiple linear
regression (GA-MLR); R2

LOO = 0.86;
R2

LGO = 0.86;
N = 29 ligands;

La3+ Stability constant
(logβL) Diverse

Kiani-Anbouhi et al. (2015) [34] GA-MLR; R2
LOO = 0.91; Q2

Test = 0.94;
N = 24 ligands; Sm3+ Stability constant

(logβL) Diverse

Soloviev et al. (2019) [29]

Consensus MLR models;
Cu2+: Q2

Det = 0.64; RMSE = 8.3;
Zn2+: Q2

Det = 0.78; RMSE = 4.5;
Cd2+: Q2

Det = 0.77; RMSE = 4.8;
Pb2+: Q2

Det = 0.76; RMSE = 5.9;
N = 35 ligands;

Cu2+, Zn2+,
Cd2+, and
Pb2+

Potentiometric
sensitivity
(PSML)

Nitrogen-containing
ligands (mainly
diamides of pyridine
and bipyridine acids)

Martynko et al. (2020) [33]

MLR models;
Q2

Det = 0.4; RMSE = 8.8; N = 67 ligands;
Q2

Det = 0.66; RMSE = 5.3; N = 56
ligands (refined data);

Mg2+/Ca2+ Selectivity coefficient
logK(Mg2+/Ca2+) Amide ionophores

Vladimirova et al. (2022) [30]

Partial least-squares regression (PLS);
Cu2+: Q2

Test = 0.66; RMSE = 6.9;
Cd2+: Q2

Test = 0.81; RMSE = 4.2;
Pb2+: Q2

Test = 0.64; RMSE = 7.5;
N = 35 ligands;

Cu2+, Cd2+,
and Pb2+

Potentiometric
sensitivity
(PSML)

Nitrogen-containing
ligands (mainly
diamides of pyridine
and bipyridine acids)

Kanahashi et al. (2022) [35]

Gaussian process regression;
Best model (8 cations, 49 ligands,
2 experimental conditions):
MAE = 1.31; R2

Training = 0.84;
N = 2706 ligands (unpublished data)

57 cations Stability constant
(logβL) Diverse

In this work, for the first time, several QSPR models were developed in order to predict
both the stability constant (β) and the potentiometric sensitivity (PS) of heterogeneous
ionophores towards Cu2+, Cd2+, and Pb2+ ions simultaneously. The structure–property
relationships (SPRs) extracted from the mathematical models were employed for designing
novel coumarin fluorescent probes and assessing their sensing abilities. Finally, the newly
designed ligands were evaluated for stability in complex by using quantum chemical
calculations. The developability of the proposed chemosensors was also assessed by
analyzing their toxicological profiles and effective organic synthesis routes.

2. Materials and Methods
2.1. Data Pre-Processing

The stability constant and potentiometric sensitivity database (Tables S1–S4 in the Sup-
plementary Material) was compiled from numerous papers, which performed experiments
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to quantify these parameters for the three ions—cadmium, copper, and lead: Cd2+, Cu2+,
and Pb2+. In fact, research manuscripts reporting large datasets that are deposited in a
publicly available database should specify where the data were deposited and provide the
relevant accession numbers. Importantly, only data obtained from the same experimental
condition, such as temperature and pressure, were considered as having excluded external
factors affecting the model. In this study, the data of two sensors’ properties were collected,
including the stability constant (logβ) for Cd2+ [36–39], Cu2+ [40–57], and Pb2+ [40,58,59]
and the potentiometric sensitivity (PSML) [29,30].

The stability constant (β) shows how stable the complex formed between the metal
and ligand is. The complex is more stable when this index rises [60]. The equation shown
below is for the calculation of β when the ratio of the metal (M): ligand (L) is equal to 1:1.

M + L ⇔ ML then βML =
[ML]

[M]× [L]
(1)

In this regard, M and L are also considered as Lewis acids and bases, and the complex
stability could be explained using the hard/soft acids/bases (HSABs) principle by Pearson.

Potentiometric sensitivity (PSML) is determined by the potential difference between
reference and indicator electrodes, which are embedded in the individual aqueous solutions
of metals in a range of concentrations [40]. It was calculated from the linear parts of the
calibration curves obtained from the voltage values following each concentration of ion
metal. The higher this index is, the larger the range of voltage potential exhibited. Defining
this value will enable us to design more-accurate ion-selective membranes in the future.
Each constant was also converted to the logarithm format for developing predictive models.

The ChemDraw 20.1.1 software was used to create the compound structures, which
were then translated to the SMILES code so that the Dragon 6.0 software could calculate
the molecular descriptors [61]. The data were preprocessed following the same protocols
previously published [62,63]. Highly correlated descriptors (Rij > 0.95), constant and
near constant (Std. < 0.1), were removed. The data were normalized to avoid bias while
training the models. The standard scale normalization of the data was carried out using
the Scikit-learn package based on the mean and standard deviation as follows [64]:

xij =
Xij − X j√
∑n

1 (Xij−X j)
2

n−1

(2)

in which n is the number of compounds, Xj is the mean values of the jth descriptor, and xij
and Xij are the normalized and original values of the jth descriptor of the ith compound.
After cleaning the data, they were randomly divided into a training set and a test set for
model construction or validation following the protocol implemented in the QSARINS
Version 2.2.4 software [65].

2.2. Construction of QSPR Models Using Statistical and Machine Learning Techniques

The quantitative structure–properties relationship (QSPR) models in this study were
built based on multi-linear regression (MLR) algorithms to predict the value of the logβ and
PSML of the new compounds. In general, MLR can be represented as a linear combination
of a subset of X variables (selected descriptor) that best describes the property Y with the
regression coefficients αi and the intercept α0: Y = α0 + α1X1 + . . . + αnXn. The optimiza-
tion approach based on the genetic algorithm (GA) was used for descriptor selection and
to calculate the linear parameters of the MLR models [66]. The GA-MLR is based on the
principles of evolution in biology, which seeks optimal models by iteratively modifying
a set of randomly generated variable combinations using genetic operators, i.e., crossover,
mutation, etc. The Q2 under the influence of K (QUIK) rule in this algorithm enabled us to
reduce the dimension of the model by setting a minimum threshold. If (KXY − KXX) < δK,
this model will be excluded. KXY is the correlation between the independent variables
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and the dependent variable; KXX is total of correlation among the descriptors; δK is the
threshold that the model trainer selects. This approach helped avoid multicollinearity. This
entire procedure was carried out by using the QSARINS v2.2.4 software [65].

In the next steps, machine learning (ML) techniques were applied to examine the
non-linear structure–property relationships (SPRs) of the chemical data. To do so, different
ML algorithms implemented in the Scikit-learn library were employed using the same
variable pools selected by the MLR models for each metal complex. Herein, ten algorithms,
including non-linear regression (NR), the Gaussian process (GP), the decision tree (DT),
support vector regression (SVR), multilayer perceptron (MLP), the k neighbors regressor
(KNR), random forest (FR), the AdaBoost regressor MLR, the AdaBoost regressor DT, and
the gradient boosting regressor were used to obtain ML models and then compared to
the performance of the GA-MLR model [64]. At this stage, only the best model showing
the highest performance in both the cross-validation and external validation was chosen
for further screening assays. The runtime parameters corresponding to the ML models
developed for each property are provided in Tables S5–S10 (Supplementary Materials). The
correlation coefficient (R2) was calculated from the experimental values on the ordinate
axis, and models with R2 < 0.6 were not included in this analysis [67].

2.2.1. Performance Assessment

QSPR models were evaluated through some statistical parameters. The first one is
R2, which determines the proportion of variance in the dependent variable that can be
explained by the independent variable [68] and is calculated by this equation:

R2 = 1− ∑ (yi − ŷi)
2

∑ (yi − yi)
2 =

∑ (ŷi − yi)
2

∑ (yi − yi)
2 (3)

yi and ŷi are the experimental and predictive values of the dependent variable, respec-
tively; yi is the average value of yi (all of them are in the training set).

However, it should be noted that the MLR model’s R2 increased as the number of
variables increased, which gradually resulted in overfitting. Therefore, the quality of the
model was assessed using this adjusted parameter [68]:

R2
adj = 1− (1− R2)× (

n− 1
n− p− 1

) (4)

where the n and p parameters are the number of compounds and independent variables in
the training set, respectively.

In addition, we also checked for the fitness of the MLR models during the evolution
process by calculating the Friedman lack-of-fit (LOF) measurement [69]. According to the
analysis of Bondarchuk [70,71], this parameter is more resistant to overfitting in comparison
to the commonly used least-squares error.

LOF =
SSE

N
[
1− λ

(
c+dp

N

)]2 (5)

In this form, the SSE is the sum of squares of errors; c is the number of terms in the
model; p is the total number of descriptors; N is the number of data rows in the training
set; λ is a safety factor; d is a scaled smoothing parameter [70]. Accordingly, a model
with a lower LOF value is better. However, there is no universally accepted threshold to
determine what constitutes a low LOF value, as this can depend on many factors such as
the nature of the data, the quantity of data, and the specific algorithm used. Therefore,
to determine whether this value is acceptable or not, we performed the F-test of the LOF,
taking into consideration the p-values (<0.01) as the F-statistic for the LOF. In this sense,
a p-value < 0.01 indicates that the LOF of selected model is significantly lower than the
other models, suggesting a better-fitting model.
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2.2.2. Internal Validation

R2 and R2
adj merely demonstrate the goodness-of-fit of QSPR models. Cross-validation

strategies such as leave-one-out (LOO) and leave-many-out (LMO) were applied to en-
sure the model’s stability [72]. The result from the LOO approach is the cross-validation
correlation coefficient Q2

LOO, calculated by this formula:

Q2
LOO = 1− ∑ (yi − ŷi/i)

2

∑ (yi − yi)
2 (6)

yi is the experimental property of the ith compound, and ŷi/i is the predictive one
from the model built by n − 1 remaining compounds (not including compound i).

LMO was also performed to overcome the disadvantages of the LOO method, which
might exaggerate the predictive power of the model [73]. Then, 70% of the training set
was randomly selected to construct the model for the prediction of the remaining 30%.
This process was repeated 2000 times and the Q2 value calculated each time. These values
should be close to Q2

LOO and to their mean (Q2
LMO).

Another issue might come out that the model accidentally has the accuracy of predic-
tion. To exclude this possibility, Y-randomization was applied by randomly rearranging the
values of the dependent variables. Calculate R2Y, Q2Y each time 2000 times. These values
should be far from the original value of the models.

2.2.3. External Validation

The test set was used to validate the predictive ability of the model by calculating the
indexes below [65,73]:

Q2
F1 = 1− ∑ (yi − ŷi)

2

∑ (yi − yTr)
2 (7)

Q2
F2 = 1− ∑ (yi − ŷi)

2

∑ (yi − yEXT)
2 (8)

Q2
F3 = 1− ∑ (yi − ŷi)

2/nEXT

∑ (yi − yTr)
2/nTr

(9)

where yi and ŷi/i are the experimental and predictive values of the property of the com-
pound ith, respectively; yExt is average of the experimental values of the property in
the training set; nExt and nTr are the number of compounds in the test set and training
set, respectively.

In general, if R2 > 0.6 and Q2 > 0.5, the model is considered to be a good one. The
closer R2 and Q2 are to 1, the better the obtained models are.

2.3. Applicability Domain

The QSAR/QSPR models need to determine the applicability domain (AD). AD is an
area defined by the molecular descriptors and response variables of the training set. We
calculated the leverage value to determine if a substance belonged to the AD following
this equation [74]:

hi = xT
i (XTX)

−1
xi (10)

hi is the leverage value of the ith compound; xi is the molecular descriptor of the
compound; X is matrix including k variables (k columns) of n compounds (n rows).

The AD is limited by a line of value h* = 3p’/n with p’ as the number of variables of
the model plus 1 and n as the number of compounds in the training set. If a compound has
hi > h* and the predicted value is outside of three-times the standard residual, it may not be
predicted well by the model, or the predictive value is not reliable in this circumstance [63].
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2.4. Design of Novel Coumarin-like Structures

Coumarin fluorescent probes have received significant interest in recent years due
to their favorable fluorescence properties, including a high fluorescence quantum yield,
long emission wavelengths, and photostability [75]. In this study, several coumarin deriva-
tives were designed based on the precursor probes previously reported using the Marvin
Sketch R-group attachment module, ChemAxon (http://www.chemaxon.com, accessed
on 5 November 2022). These scaffolds showed very good selectivity in the recognition of
most competing metal ions, including Cd2+, Cu2+, and Pb2+. By modifying the groups that
have a different effect on the efficiency of charge transfer and the electron configuration
of the benzene and naphthalene rings of the coumarin derivatives, it is expected that
compounds will be identified with the enhancement of the fluorescence intensity towards
all three metals.

2.5. Quantum Chemical Calculations

Density functional theory (DFT) calculations were performed for the ground-state
gas-phase geometry optimization of the metal complexes using Beck’s three-parameter
exchange functional Lee–Yang–Parr (B3LYP) methods combined with the LanL2DZ basis
set in the gas phase [76]. The consensus measurements were considered for estimating
the stability of the complexes formed. The calculations of the newly designed compounds
were performed by using the GAMESS quantum chemistry package, and the wide range
of parameters were analyzed including the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) energies, among others [77]. Besides
computing the HOMO–LUMO gap ∆E = ELUMO − EHOMO, the Mulliken electronegativity
χ and hardness η values could be extracted based on the finite difference approximation,
viz. χ = (IE + EA)/2 and η = (IE − EA)/2, where IE is the ionization energy or ionization
potential and EA is the electron affinity of the ionic states of the complex system. Based on
the semiquantitative approach proposed by Zhan et al., IE, EA, χ, and η can be estimated
based on the calculated HOMO and LUMO energies [78]. Other properties of interest
included the global softness σ = 1/η, which measures the extent of chemical reactivity,
and the chemical potential of the complex system (µ), which is the first derivative of the
total energy with respect to the number of electrons [79]. Parr and colleagues proposed
a new global chemical reactivity parameter, namely an electrophilicity index (ω), which
may be calculated via the equation ω = µ2/2η [80]. In order to take into account the diffuse
characteristics of the molecular orbitals of heavy elements with a large electron density, all
of these derived parameters were made at the B3LYP/LANL2DZ level.

2.6. Physicochemical and Toxicological Profiling

Given the broad application of the designed coumarin fluorescent probes, especially
in an aqueous medium, it is of pivotal importance to determine the possible effects of the
chemosensors for human and aquatic organism health. Important physicochemical proper-
ties mainly governing the aqueous solubility, organism permeability, and in vivo dermal
and oral bioavailability were calculated using consensus cheminformatics approaches such
as SwissADME [81] and ADMETlab 2.0 [82], among others [83–86]. To do so, chemical
SMILES codes were used as the input of the computational tools, and the results were
extracted based on more than 100 indices calculated previously. In addition, multiple
toxicological endpoints of the newly developed sensors towards aquatic organisms were
also investigated using the same tools [81,82].

2.7. Theoretical Proposal of Synthetic Accessibility for Promising Candidates

The prediction of the synthetic accessibility (SA) of the potential probe candidates
was carried out using the GASA [87], ADMETlab 2.0 [82], and SwissADME tools [81].
GASA employs a rapid graph-based molecular synthetic accessibility prediction method,
which has been demonstrated to be comparable to the existing methods, such as SYBA,
SCScore, RAscore, and SAscore, among others. Based on the probability of the predictions,

http://www.chemaxon.com
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compounds can be classified as easy- (ES) or hard-to-synthesize (HS) structures [87]. This
model was trained on 640,000 compounds and achieved an accuracy of 0.932 with an
AUC of 0.984. In ADMETlab 2.0, the SA scores can be predicted with ~90% accuracy
using the fragment-based approach developed by Ertl and Schuffenhauer [88], on the
basis of 934,046 representative molecules from the PubChem database. In addition, the
SwissADME tool allows calculating the SA scores based on a fragmental contribution
approach. This method consists of the analysis of nearly 13 million molecules with the
hypothesis that the more frequent a chemical fragment, the easier it is to synthesize that
molecule [81]. The SA scores computed by SwissADME receive a value ranging from 1
(very easy synthesis) to 10 (very difficult synthesis).

3. Results and Discussion
3.1. Development and Selection of GA-MLR QSPR Models

A total number of six MLR models were constructed based on the experimental logβ
and PS data. Applying an extensive feature selection process of >105 iterations by the
GA, 90% of the new generations showed the same fitness results. The best MLR models
were selected from the final iteration taking into account Austin’s criteria (5 × number
of variables ≤ number of observations) to avoid the overfitting problem [66,89]. The
best models were further analyzed and compared based on the quality of the statistical
parameters, as shown in Table 2. The mathematical formulas of the six models are given
by Equations (10) to (15), and more details about the variables selected can be found in
Table S11, Supplementary Material.

LogβCdL = 9.2894− 2.6191× RBN + 6.0044× SPI + 15.7303× H_D/Dt
− 4.6761×MATS1m− 11.3909×MATS2m + 4.987×MATS6i

(11)

LogβCuL = 8.2894 + 7.1518× nHM + 5.5297× ATSC4e + 5.6081×MATS1v
+ 9.7064×MATS6p− 10.5641×MATS7p + 7.4692× GATS5p
+ 12.2912× P_VSA_MR_7− 19.6671× SM07_AEA(ed)
+ 8.5756×O− 057 + 12.5774× NssCH2− 1.8575× B06[C−O]?

(12)

LogβPbL = 4.6561− 1.1628× nR05− 6.1855× J_Dt + 6.4076× ATSC1s
+ 6.4211× GATS8m− 6.0816× SM03_EA(bo)

(13)

PSCdL = − 32.5684− 13.696× J_B(s) + 16.1241× GATS8i + 27.1608× JGI8
+ 30.3906× SpMax4_Bh(m)− 21.3087× SpMin3_Bh(s)
+ 38.7644× SpMin5_Bh(s) + 9.2121× DLS_01?

(14)

PSCuL = 35.4214− 16.7676× Ho_Dz(p)− 12.1368× GGI10
− 29.2904× P_VSA_p_2 + 23.0366× Chi1_EA(dm)
+ 17.6022× DLS_04− 42.4502× LLS_01?

(15)

PSPbL = − 53.7619 + 16.311×MATS6v + 30.6395×MATS2i
− 10.6447× GATS4i− 50.3016× GGI8 + 45.0039× JGI8
+ 71.9904× SpMin5_Bh(s) + 24.299× Eta_F_A?

(16)

In general, all six models presented a goodness-of-fit with an R2 and R2
adj of ap-

proximately 0.9, except for the logβPbL-only models, whose values were ~0.8 (Figure 1).
According to the Friedman LOF parameters, the logβ model of the Cu complex showed
the highest value of 7.05, and the lowest value corresponded to the logβ model of Pb (1.35).
As can be seen in Table 2, the F-statistics for the F-test of the LOF were highly significant
(p-value ranging from 1.095 × 10−19 to 3.087 × 10−7), suggesting an acceptable level of
the LOF. From this test, we can confirm that no overfitting existed in the models, as they
presented a good fit with a minimum number of descriptors. Considering the internal
validation, the values of Q2

LOO for almost all models were greater than 0.8 with the model
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MLR-logβPbL being the lone exception, owning an approximate Q2 value of 0.7. For the
LMO approach, the Q2

LMO values after each iteration showed a slight change, being around
the Q2

LOO of the primary model (Mod. Q2) (see Figure S1). This indicated that the Q2
LOO

index in these models does not overate their predictive ability. In addition to the above
criteria, the optimal model was chosen based on the lower level of R2 −Q2

LOO, the cor-
relation among the independent variables (as low as possible), and the high correlation
between the dependent variables and independent variable (high δK values). Alternatively,
Y randomization also demonstrated that the accuracy of these models was not an accidental
correlation. We found that R2, Q2, and KXY in each iteration were less than the original
model (Figure S2). The autocorrelation between the descriptors was checked through the
Pearson correlation matrix and the correlation among the descriptors (KXX). As the results
show in Figures S3–S8, no significant correlation between the variables was detected, as
the average values of the pairwise correlation ranged from 0.25–0.48. All the descriptor
values calculated by the Dragon software for each of the training and test set compounds
included in the six databases are provided in Tables S21–S26.

Table 2. Overview of the performance parameters of the six MLR models.

Statistical
Parameters 1 MLR-logβCdL MLR-logβCuL MLR-logβPbL MLR-PSCdL MLR-PSCuL MLR-PSPbL

Fitting criteria

KXX 0.4121 0.2649 0.2384 0.4845 0.3958 0.2546
δK 0.0698 0.0577 0.0679 0.0193 0.0679 0.0554
R2 0.9257 0.9085 0.8084 0.9160 0.8904 0.9264
R2

adj 0.9079 0.8862 0.7648 0.8957 0.8669 0.9080
LOF 2.6866 7.0495 1.3524 2.4842 3.1127 3.7405
p-value (F-test) 6.522 × 10−13 1.095 × 10−19 3.087 × 10−7 6.602 × 10−14 3.491 × 10−12 3.399 × 10−14

Internal
validation
criteria

Q2
LOO 0.8637 0.8434 0.6918 0.8760 0.8423 0.8668

R2 −Q2
LOO 0.0620 0.0651 0.1165 0.0400 0.0481 0.0596

Q2
LMO 0.8311 0.8209 0.5872 0.8556 0.8246 0.8394

YscrR2 0.1935 0.1975 0.1869 0.1938 0.1757 0.1961
YscrQ2 −0.3624 −0.3143 −0.5988 −0.3579 −0.3038 −0.4169

External
validation
criteria

Q2
F1 0.8324 0.8326 0.6357 0.8791 0.8914 0.7079

Q2
F2 0.8120 0.8276 0.6305 0.8789 0.8793 0.7054

Q2
F3 0.9283 0.8415 0.6961 0.9305 0.8080 0.7734

1 The statistical parameters correspond to the best MLR obtained based on the GA.

In the external validation, the Q2
F1, Q2

F2, and Q2
F3 of the six models were almost higher

than 0.8, except the Pb2+ models with Q2
F1 values between 0.6 and 0.7, which are still

acceptable according to our criteria (Table 2). From the results, all the MLR models were
able to predict the logβ and PSML values of the unknown structures with high accuracy.

The applicability domain of each model is shown in Figure 2. If a new chemical is to
be predicted, it must fall within the AD of the model. The outliers of the domain included
two types: Y outlier and X outlier. The Y outlier indicates that the predictive value is
not unreliable, and the X outlier shows that these compounds should not be applied to
the model. There were no Y outliers in all six plots, so the quality of these models was
ensured. Regarding the X outlier, there were a few compounds that are outside of the
domain. Therefore, we need to pay more attention to these structures [63].

3.2. Machine Learning Algorithms for Improving Model Performance

As can be revealed from the validation of the MLR models, the statistical linear
algorithm still showed weak performances; for example, the models to predict the sensing
properties of the Pb2+ complexes only had a testing Q2 of 0.64–0.71 (Table 2). To overcome
this challenge, machine learning (ML) methods were applied using the same variable subset
selected by the GA-MLR. A wide range of 10 ML algorithms were explored adopting the
Scikit-learn package in Python using the same script we developed previously [64]. To
optimize the model performance, a parameter tuning search was applied, and the entire
results are listed in Tables S5–S10, the Supplementary Materials. Note that only models
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showing an accuracy higher than 0.6 were retained for this analysis, and the models with
the highest performance were used for further virtual screening assays. Figure 3 displays
the comparison histogram of every ML model against the best MLR models obtained
previously. In general, there was a large dissimilarity among the modeling techniques,
and the ML algorithms normally outperformed the simple linear models in both k-fold
cross-validation on the training set and the external test set. A detailed comparison of all
the selected regressors is shown in Tables S12–S17, and the resulting runtime parameters of
the selected models are given in Table 3.
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Table 3. Resulting hyperparameters for the best QSPR models selected for predicting the logβ and
PSML data.

Data Selected Model and Method Optimized Parameter Settings 1

logβ (Cd2+ complex)
Model M1/AdaBoost
Regressor MLR

Base_estimator=LinearRegression; copy_X=True, fit_intercept=True,
n_jobs=None, normalize=‘deprecated’, positive=False);
learning_rate=1.0; loss=‘linear’; n_estimators=50;
random_state=None; fitting 5 folds for each of 100 candidates;
totaling 500 fits
{‘n_estimators’: 4, ‘loss’: ‘square’, ‘learning_rate’: 0.01}

PSML (Cd2+ complex)
Model M2/Gradient
Boosting Regressor

Alpha=0.9; ccp_alpha=0.0; criterion=‘friedman_mse’; init=None;
learning_rate=0.1; loss=‘squared_error’; max_depth=3;
max_features=None; max_leaf_nodes=None;
min_impurity_decrease=0.0; min_samples_leaf=1;
min_samples_split=2; min_weight_fraction_leaf=0.0;
n_estimators=100; n_iter_no_change=None;
random_state=None; subsample=1.0, tol=0.0001;
validation_fraction=0.1; verbose=0, warm_start=False
{‘n_estimators’: 91, ‘min_samples_split’: 10, ‘min_samples_leaf’: 1,
‘max_features’: ‘sqrt’, ‘max_depth’: 6, ‘learning_rate’: 0.5}

logβ (Cu2+ complex) Model M3/GA-MLR Equation (11)

PSML (Cu2+ complex)
Model M4/Gradient
Boosting Regressor

C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,
gamma=‘scale’,
kernel=‘rbf’, max_iter=−1, shrinking=True, tol=0.001,
verbose=False
{‘kernel’: ‘linear’, ‘gamma’: 10.0, ‘epsilon’: 0.5, ‘C’: 100.0}

logβ (Pb2+ complex)
Model M5/Gradient
Boosting Regressor

Alpha=0.9; ccp_alpha=0.0; criterion=‘friedman_mse’; init=None,
learning_rate=0.1, loss=‘squared_error’; max_depth=3;
max_features=None; max_leaf_nodes=None;
min_impurity_decrease=0.0; min_samples_leaf=1;
min_samples_split=2; min_weight_fraction_leaf=0.0;
n_estimators=100; n_iter_no_change=None;
random_state=None; subsample=1.0; tol=0.0001;
validation_fraction=0.1; verbose=0, warm_start=False
{‘n_estimators’: 57, ‘min_samples_split’: 2, ‘min_samples_leaf’: 1,
‘max_features’: ‘sqrt’, ‘max_depth’: 8, ‘learning_rate’: 1}

PSML (Pb2+ complex)
Model M6/AdaBoost
Regressor MLR

Base_estimator=LinearRegression; copy_X=True;
fit_intercept=True; n_jobs=None; normalize=‘deprecated’;
positive=False; learning_rate=1.0; loss=‘linear’; n_estimators=50;
random_state=None; fitting 5 folds for each of 100 candidates;
totaling 500 fits
{‘n_estimators’: 42, ‘loss’: ‘linear’, ‘learning_rate’: 0.1}

1 The best hyperparameter combinations are shown within curly brackets.

Regarding the models to predict the stability constant (logβ) values of the Cd2+–ligand
complexes, the histogram shown in Figure 3 indicated that the accuracy of the AdaBoost
regressor MLR and non-linear regression were comparable and higher than other models,
being 0.922/0.820 and 0.926/0.812 for the training/testing R2, respectively. These results
were slightly higher than the best MLR model, especially the training process, which
resulted in an R2 value of 0.908. AdaBoost has been described as an ensemble boosting
algorithm, which repeatedly combines regressors, i.e., MLR or decision trees (DTs), on
the same training set with a special focus on the error of the current prediction and the
difficult cases. Meanwhile, the non-linear regression algorithm, unlike the statistical linear
estimator, allows for a more complex relationship between the dependent and independent
variables [90]. Herein, three functions were tested, including the polynomial, logarithmic,
and exponential regressions. Given the importance of external testing, the AdaBoost
regressor MLR was selected for further use in the new case prediction.

For the potentiometric sensitivity (PSML) data of the Cd2+–ligand complexes, seven
ML models are shown, the gradient boosting, random forest, and AdaBoost DT being
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the regressors with the highest accuracy for the training set (R2 ~1.0). However, only
gradient boosting and the AdaBoost DT significantly outperformed the other models with
a testing R2 of 0.948 and 0.941, respectively. Unlike AdaBoost, gradient boosting uses the
gradient decent algorithm to add the weak learners in a stagewise manner so that the
overall prediction error significantly decreases. Consequently, the gradient boosting model
was selected for the PSML value prediction of the Cd2+–ligand complexes.

In contrast to the Cd2+ complex data, most of the ML techniques showed good per-
formance on the Cu2+ logβ and PSML data. For the logβ data, the AdaBoost regression
DT significantly outperformed the other models on the training (R2 = 0.984), but only
obtained an accuracy of 0.721 on the test set, which was much lower than the MLR model.
In this case, MLR, even having a slightly lower coefficient for the training set (R2 = 0.89)
in comparison with the other ML models (training R2 = 0.90–0.91), surprisingly exhibited
the highest accuracy on the test set. We then selected the linear model MLR for further
prediction of the Cu2+ logβ data.

The results of the ML models in predicting the PS data of the Cu2+–ligand complexes
were somewhat the same situation as the Cu2+ logβ data. However, we identified support
vector regression (SVR) as the best model, owning an accuracy of 0.884 and 0.901 for the
training and test sets. In this case, MLR was the model with the lowest performance
on both the training (training R2 = 0.867) and test sets (average testing R2 = 0.86). More
details on the SVR algorithm implemented in the Scikit-learn package can be found in the
literature [64]. This model was subsequently used in the next screening assays based on
the Cu2+ PSML data.

The accuracy results from the Pb2+ logβ and PSML data were very encouraging. We
found significant improvement when using ML techniques in comparison with the MLR
model. For the Pb2+ logβ data, the gradient boosting regressor once again showed the
highest performance, owing to the determinant coefficient for the training and test sets of
1.0 and 0.847, respectively. Another ML algorithm that also performed well on these data
was multi-layer perceptron (MLP) with a training and testing accuracy of 0.903 and 0.853,
respectively; however, the training results were lower than gradient boosting. Consequently,
the gradient boosting model was without a doubt selected for further prediction of the Pb2+

logβ data.
For the Pb2+ PSML data, the AdaBoost regressor MLR displayed high performance

with the accuracy on the training and testing sets being 0.922 and 0.816, respectively. One
these data, the MLR model also performed well on the training set with an R2 value of 0.908,
but the accuracy on the test set significantly dropped to ~0.7, resulting in the worst model
in the external validation. Thus, the AdaBoost regressor MLR was selected for predicting
the PSML values of the Pb2+–new ligand complexes.

3.3. Design of Coumarin-like Chemical Library for Screening of Novel Chemosensors

One of the main applications of QSPR/QSAR approaches is to screen novel active
ligands from a large chemical library of a determined scaffold. Bearing in mind that
coumarin fluorescence probes for heavy metal ions currently receive increasing interest
due to their highly variable size, hydrophobicity, and chelation, in this study, we focused
on the design and screening of novel fluorescent probes bearing coumarin moieties [75,91].
In addition, Schiff bases are attracting more and more attention in analytical fields as they
provide an electron-rich environment that is favorable to binding with metal ions [92].
When combined with a fluorescence moiety such as coumarin structure, the functional
groups can participate in several reactions after being in contact with metal ions so that the
Schiff base ligand provides detectable signals such as emission.

In 2017, Fan reported the synthesis of several coumarin-derived Schiff bases, which
showed significant fluorescence enhancement owing to inhibiting the photo-induced elec-
tron transfer (PET) process [93]. The structures were mainly based on condensing 7-amino-
4-methyl-coumarin (AMC) with salicylic aldehyde and 2-hydroxy-1-naphthaldehyde. Fan
also evaluated the selectivity of his derivatives upon the addition of several metal ions
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such as Cd2+ and Pb2+, among others (15 metals). The fluorescent property of these Schiff
bases appeared to be dependent on the charge transfer and the electron configuration of the
benzene and naphthalene rings. However, Cu2+ was not tested for the coumarins designed
in Fan’s study [93]; thus, this core structure was explored in this study.

Going through the literature, we encountered coumarin-pyridin hybrids reported by Jung
et al., which showed promising fluorescence-quenching properties in both the femtosecond time-
resolved fluorescence (TRF) upconversion technique and ab initio calculations [47]. The authors
identified that the n-picolylamide moiety (n = 1–3) allowed efficient tridentate complexation for
Cu2+ preferred over a variety of other common heavy and toxic metal ions. Of interest is also
the chemosensor bearing acetyl-7-hydroxycoumarin moiety reported by Chang and colleagues,
which exhibited a highly selective and sensitive fluorescence-sensing ability for Cu-+ over other
metal ions under physiological conditions [94]. We also consulted the most recent advances in
the field from literature reviews [75,91].

Taking all the above-mentioned findings, here, we tried to construct a small library of
coumarin derivatives by using a structure-resembling approach using the R-group attach-
ment module implemented int the Marvin Sketch package. As a result, over 129 coumarin
structures were created, as shown in Figure 4A,B. All newly designed substances were
checked to see if they lied in the range of the AD. Their calculated leverage values (ĥi) were
all smaller than the threshold value (h*) of all the models, which means that QSPR models
could work correctly on the chemical space of the designed compounds as they fell into the
AD of the models.
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Toxics 2023, 11, 595 15 of 26

3.4. Virtual Screening and Complexation Potential Predictions Using DFT Calculations

In the next step, the newly designed library was screened for identifying coumarin-like
florescent probes against each heavy metal using the QSPR models. The screening results
are presented in Table S18 (Supplementary Materials) in which the designed compounds are
denoted as NEW, and the logβ and PS values of each were estimated using the respectively
selected models. Of note, a potential probe must have a high logβ and a low PS, which in
turn can also be translated into a high PSML

−1. Figure 4 shows the trade-off of the logβ
and PSML

−1 predictions, in which compounds closer to the top-right corner indicate better
candidates. According to this criterion, we easily identified eight compounds, viz. NEW02,
NEW03, NEW07, NEW21, NEW26, NEW34, NEW51, and NEW80, as potential florescent
probes. Their logβ and PS values estimated by all the QSPR models are shown in Table 4,
and the chemical SMILES of these eight coumarins are listed in Table S19. Especially,
compounds NEW02, NEW03, and NEW07 were consistently predicted to be good ligand
candidates in complex with all three heavy metal ions.

Table 4. Overview of the performance parameters of the six machine learning models.

Compound ID
Stability Constant (logβ) Potentiometric Sensitivity (PSML, mV/dec)

Cd2+ Cu2+ Pb2+ Cd2+ Cu2+ Pb2+

NEW02 9.537 9.022 3.133 12.146 13.809 16.135
NEW03 10.263 9.610 2.935 14.901 16.194 16.947
NEW07 8.278 8.870 4.304 4.516 5.518 17.973
NEW21 6.912 5.506 4.024 4.746 22.307 16.812
NEW26 7.087 7.701 2.539 7.230 34.360 27.286
NEW34 6.550 6.607 3.435 4.236 28.975 23.507
NEW51 9.566 9.252 2.608 8.119 30.902 21.520

Resulting from the prediction of the complexing characteristics, three florescent probe
candidates were revealed, and they were subsequently examined for their interaction
with Cd2+, Cu2+, and Pb2+ using DFT calculations with B3LYP exchange functionals. To
simplify the calculations, the stoichiometry of the complexes was adopted to be in a 1:1
(M:L) metal-and-coumarin-ligand molar ratio. In accordance with the literature, given the
availability of a lone pair on the nitrogen atom, the Schiff base could form mono complexes
with many metals; meanwhile, adding other substitutions, such as OH and SH, to the
adjacent heterocycles may result in the formation of bidentate or tridentate chelates. This
fact could be revealed by observing the partial distribution of the charge on the electrostatic
potential surface (ESP) shown in Figure 5. This electrostatic potential map for all three
compounds clearly revealed hydrophilic regions, including negative (red) and positive
(blue) potentials, and hydrophobic regions, which are normally neutral (mainly the green
area). The optimized geometric structures of the coumarin compounds computed via the
B3LYP method showed that the reactive sites corresponding to the negative potentials were
mainly localized on the O and S atoms, and two compounds, NEW02 and NEW07, showed
higher polarity compared to NEW03. The total electron density of the studied derivatives
varied from −0.31 to +0.29.

The quantum chemical parameters can provide insight into the chemical nature of the
reaction mechanisms [95]. Through the DFT calculations at the B3LYP/LanL2DZ levels of
theory, numerous descriptors corresponding to six metal complexes were determined as
summarized in Table 5. Figure 6 shows the optimized structures of the metal–coumarin
complexes and the corresponding distances of the π contacts between the ligands and
metals. The molecular frontier orbitals (HOMO–LUMO) consisted of important descriptors
mainly associated with the molecular reactivity.
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Table 5. The quantum chemical parameters of three coumarin compounds calculated at
B3LYP/LanL2DZ levels.

Global Reactivity
Index

DFT Energy (eV)

Cd2+ Complexes Cu2+ Complexes Pb2+ Complexes

NEW02 NEW03 NEW07 NEW02 NEW03 NEW07 NEW02 NEW03 NEW07

HOMO–LUMO Gap, ∆E 4.004 3.839 4.328 4.586 4.419 4.439 3.983 3.839 4.300
EHOMO −6.074 −5.947 −6.305 −6.950 −6.774 −6.803 −6.225 −6.044 −6.410
ELUMO −2.070 −2.108 −1.977 −2.363 −2.354 −2.364 −2.242 −2.205 −2.109
Ionization Energy, IE 6.074 5.947 6.305 6.950 6.774 6.803 6.225 6.044 6.410
Electron Affinity, EA 2.070 2.108 1.977 2.363 2.355 2.364 2.242 2.205 2.109
Global Hardness, η 2.002 1.919 2.164 2.293 2.210 2.219 1.992 1.920 2.150
Global Softness, σ 0.500 0.521 0.462 0.436 0.453 0.451 0.502 0.521 0.465
Electronegativity, χ 4.072 4.027 4.141 4.656 4.564 4.584 4.234 4.125 4.259
Electrophilicity, ω 4.142 4.225 3.962 4.727 4.715 4.734 4.500 4.431 4.219

The EHOMO descriptor is related to the ability of the molecules to donate electrons
to empty molecular orbitals with low energy, and the ELUMO descriptor indicates the
electron-accepting affinity [96]. The interacting parts of the molecules were also identified
by looking at the HOMO and LUMO visualization (Figure 7). Their different HOMO–
LUMO ∆E represent the hard–soft, acid–base characteristics of the molecule. In such a way,
the low gap energies identified in this study reflected the high chemical reactivity, optical
polarizability, and low kinetic stability of the three metal complexes [97]. In other words,
a molecule with a higher HOMO and a lower LUMO energy level has a higher chemical
reactivity. Thus, for the Cd2+ complexes, the energy gap followed the order: NEW03 <
NEW02 < NEW07 (see Table 5), indicating that NEW03 had the lowest reactivity (the
most-chemically stable) followed by NEW03 and NEW07 (the most-reactive). Likewise, the
HOMO–LUMO gap for the Cu2+ complexes were ranked as NEW03 < NEW07 < NEW02,
and those for the Pb2+ complexes were similar to the Cd2+ complexes. In addition, the
electron affinity (EA) and electronegativity (χ) of all six complexes were quite low compared
to the ionization energy (IE). The current molecular orbital analysis also showed that the
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level of the frontier orbitals and low-energy electronic transitions were almost similar,
suggesting the low energy intra-ligand charge transfer states of the metal complexes [95,97].
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Another descriptor of pivotal interest is the chemical hardness, η, which refers to the
resistance of a chemical species to the polarization of the electron cloud. It gives information,
along with the electronegativity of the chemical reactivity and stability [79,95,96]. The
softness is the reciprocal value of hardness. Previous studies demonstrated that most hard
species have an electrostatic interaction, and soft species mainly interact through covalent
bonding, e.g., mixing of orbitals. Of note, the global softness value increased from NEW07 to
NEW03, while the chemical hardness and HOMO–LUMO gap values decreased. Evidently,
the Schiff bases gained softer characteristics from NEW03 to NEW07. It was revealed that
the stability parameters obtained in the QSPR predictions and the rankings obtained in the
quantum chemical calculations were in concordance (Tables 4 and 5). In addition, Cu2+

and Cd2+ had higher electron donor characteristics (α) compared to Pb2+, while Cu2+ and
Pb2+ showed higher basicity characteristics (β) compared to Cd2+. The softness parameter
σ can also be calculated via equation σ = α/(α + β), which follows the ranking Cd2+ > Cu2+

> Pb2+ (σ = 0.96 > 0.89 > 0.85, respectively). Thus, according to the Pearson classification
for Lewis acids, Cu2+ and Pb2+ fall within the hard/soft borderline and Cd2+ is the softest
ion. As soft acids prefer to bind to soft bases, compound NEW03, therefore, can easily
interact with the softer Cd2+ charged ions, but not with the harder Pb2+ ion. As soft metals
normally have a filled d subshell, according to Lancashire (https://chem.libretexts.org/,
assessed on 3 March 2023), the π interactions play an important role in metal-to-ligand
bonding. Complexes of three coumarins with softer metals are more stable based on the
electrostatic interactions [95,97].

3.5. Physicochemical and Toxicological Profiling

Given the broad applications in the analytic field, a well-organized chemosensor must
be non-toxic to living organisms when it is applied in aqueous environments [15]. Therefore,
in this study, the toxicological profiles of the newly designed compounds were assessed
using several cheminformatics tools, including SwissADME and ADMETlab 2.0 [81,82].

First, the physicochemical properties that may affect the interactions between chem-
icals and living organisms were computed for NEW02, NEW03, and NEW07. The radar
chart shown in Figure 8 illustrates the multivariate data of all three coumarins compared to
the physicochemical profiles of the drug-like chemical space [82]. Being small molecules
(MW range from 295.3–327.5), most of the physicochemical properties of these compounds
fell into the drug-like chemical space, except the lipophilicity indices (logP and logD).
This means that these compounds may have a drug-like behavior including appropriate
pharmacokinetic, as well as low toxicological characteristics in the human body [98]. Based
on the consensus predictions of SwissADME (Table S20), the solubility of NEW02 and
NEW03 was predicted to be low (logS < −6.0 mol/L), while NEW07 had higher solubility
(logS = −5.4 mol/L). According to the combination of the three properties (MW, PSA, and
logD7.4) as established in 3PRule [86], these coumarins may transport across the biological
membrane via passive diffusion with moderate-to-high permeability. The oral bioavail-
ability of these compounds was predicted to be <20%, and the brain disposition of these
chemicals appeared to be low due to their low BBB passage [83].

Subsequently, the toxic effects on the human body were forecasted using both chemin-
formatics and toxicophore approaches. The results shown in Table 6 suggested that all three
coumarins have no noticeable effects during exposure to the human body, especially on the skin.
The oral acute toxicity was quite low, but for eye contact, they all can cause irritation [75,82]. In
addition, biodegradability has been considered fundamental to the assessment of the environ-
mental exposure and risk of chemical products. As can be seen in Table 6, there was no alert
fragment in the structures of three coumarins, meaning that all the chemicals are biodegradable
and will have no long-term toxic effect on the environment [82].

https://chem.libretexts.org/
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Table 6. Relevant organo-kinetic and toxicological parameters of designed coumarins.

Parameters NEW02 NEW03 NEW07 Description

Oral bioavailability (F20%) 0.982 0.999 0.968
The probability of oral bioavailability of 20% (F20%+).
Category 1: F20%+ (bioavailability < 20%); Category 0:
F20%− (bioavailability ≥ 20%).

Skin permeability −5.47 −5.56 −6.39 logKp (cm/s).
Blood–brain barrier
(BBB) penetration 0.039 0.107 0.023 The output value is the probability of being permeable

(BBB+). Category 1: BBB+; Category 0: BBB−.

Acute oral toxicity 0.049 0.097 0.381 The output value is the probability of being highly toxic
(Category 0: low–toxicity; Category 1: high–toxicity).

Toxicophore predictions

Acute toxicity rule 0 alert 0 alert 0 alert Predicted as toxic towards water sources based on
99 substructures

Non-biodegradable rule 0 alert 0 alert 0 alert Predicted as non-biodegradable substances based on
19 substructures.

Skin sensitization rules 1 alert 1 alert 0 alert Predicted as skin irritants based on 155 substructures.

Eye irritation 0.991 0.978 0.917 The output value is the probability of being irritants
(Category 1: irritants; Category 0: non-irritants).

Environmental toxicity

IGC50 −5.367 −5.796 −4.465 Tetrahymena pyriformis 50% growth inhibition
concentration. The unit is log10[(mg/L)/(MW × 103)].

LC50FM −5.981 −6.466 −4.975 96 h fathead minnow 50% lethal concentration. The unit
is log10[(mg/L)/(MW × 103)].

LC50DM −6.191 −6.547 −5.153 48 h daphnia magna 50% lethal concentration. The unit is
log10[(mg/L)/(MW × 103)].

Finally, the ecotoxicological characteristics were assessed using cheminformatics tools
implemented in ADMETlab 2.0. The results indicated that they had irrelevant environmen-
tal toxicity, especially for three types of aquatic organisms, e.g., tetrahymena pyriformis (TP),
fathead minnow (FM), and daphnia magna (DM). These toxic endpoints are a mandatory
preliminary assessment of chemicals’ acute toxicity on aquatic species, according to the
European regulation on the Registration, Evaluation, Authorization and Restriction of
Chemicals (REACH) [99]. As can be seen in Table 6, the lethal concentrations 50% (log
unit) were determined to be from −4.5 to −6.6 mg/L, and NEW03 exhibited the lowest
aquatic toxicity among the three compounds. The overall results obtained herein confirmed
the appropriate organo-kinetic and biosafety level of the designed coumarins against hu-
man and environmental health, suggesting their suitability for industrial production as
florescent chemosensors.
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3.6. Theoretical Synthetic Routes Proposed for Designed Coumarins

Given the sensing characteristics’ predictions provided by the QSPR and quantum
chemical calculations, it is desirable to obtain the florescent probes with the most potential
for the experimental evaluations. Even though chemical synthesis was out of the scope
of the current study, a proposal of the theoretical synthetic routes may be very helpful to
assess the developability of the proposed structures, as well as to serve as a guidance for
further developing novel chemosensors. To this end, three coumarins, NEW02, NEW03,
and NEW07, were selected for the synthesis predictions.

The synthetic probability and SA scores of NEW02, NEW03, and NEW07 were first
determined using the chemoinformatic tools GASA, ADMETlab, and SwissADME [81,82,87].
The results are summarized in Table 7, suggesting that all three chemicals belong to the easy-to-
synthesize class.

Table 7. Synthetic accessibility prediction for selected coumarins.

Cpd. ID Synthetic Probability 1 SwissADME SA Score 2 ADMETlab 2.0 SA Score 3 Consensus Classification

NEW02 0.879 3.14 2.62 ES (easy-to-synthesize)
NEW03 0.900 3.17 3.01 ES (easy-to-synthesize)
NEW07 0.899 3.36 2.63 ES (easy-to-synthesize)

Synthetic accessibility: 1 GASA synthetic probability ranges from 0 (hard-to-synthesize) to 1 (easy-to-synthesize);
2 SwissADME SA scores range from 1 (very easy) to 10 (very difficult); 3 ADMETlab 2.0 SA score classification:
SA score ≥ 6, difficult-to-synthesize; SA score < 6, easy-to-synthesize.

Based on the synthetic accessibility predictions, we proposed in this study two theo-
retical synthetic routes: the first one for NEW02 and NEW03 and the other for NEW07. The
first proposal, as depicted in Scheme 1, generates 7-amino-4-methyl coumarin (AMC) as
a key intermediate, while the second one (Scheme 2) goes through another intermediate
species, 7-amino-8-hydroxy-4-methylcoumarin (AHMC).
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Scheme 1. Reagents and conditions: (a) Methyl chloroformate, KHCO3, EtOAc, 4 h, r.t. (b) Ethyl
3-oxobutanoate, H2SO4 (70%), 18 h, r.t.. (c) H2SO4 (98%) and glacial acetic acid (1:1), reflux, 5 h.
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The theoretical synthetic routes proposed for NEW02 and NEW03 start with the
preparation of methyl (3-hydroxyphenyl)carbamate (I) by acylation of the amino group in
m-aminophenol with methyl chloroformate in the presence of a base (e.g., potassium bicar-
bonate). Subsequently, 7-carbethoxyamino-4-methylcoumarin (II) can be synthesized via
Pechmann condensation with acetoacetic ester in sulfuric acid. Accordingly, the synthesis
of AMC from II can be performed by heating II at reflux in H2SO4 (98%) and glacial acetic
acid for around 5 h. After adjusting to a low temperature and to pH ~ 7, the precipitate
is then dissolved in the ethanol solvent. The resulting ethanol solution can be used to
obtain the target compounds (NEW02 or NEW03) by adding to other ethanol solutions
containing 2-mercaptobenzaldehyde (IIIa) or 2,4-mercaptobenzaldehyde (IIIb), then the
mixture must be refluxed for 10–12 h under stirring. Once finished, the end product is
cooled to room temperature, and after that, it can be collected by filtration, dried, and
purified by recrystallization from DMF and ethanol. Considering the previous reports [91],
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the intermediate AMC can be formed in good yield (~90%); thus, the recrystallized form of
NEW02 and NEW03 can be produced in an overall yield greater than 50%.
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The preparation of the remaining coumarin NEW07 based on the AHMC derivative is
described by Scheme 2. The theoretical synthetic route is composed of four steps, starting
with the formation of 8-hydroxy-4-methylcoumarin (IV) via a Pechmann condensation
by reacting pyrocatechol and ethyl 3-oxobutanoate. Subsequently, nitration of IV with
a mixture of nitric acid and sulfuric acid can lead to a separable mixture of both 7- and
8-nitrocoumarin derivatives. There are several methods proposed in the literature to reduce
o-nitrohydroxy-4-methylcoumarins using different reducing agents [91,94]. In this study, 7-
amino-8-hydroxy-4-methylcoumarin (AHMC) was obtained by the reduction of 8-hydroxy-
4-methyl-7-nitrocoumarin (V) using zinc chloride in hydrochloric acid and ethyl acetate to
achieve a better yield. Finally, the target compound NEW07 can be obtained by reductive
amination of AHMC with 2-hydroxybenzaldehyde using sodium cyanoborohydride in
methanol and acetic acid (Scheme 2).

4. Conclusions

Heavy metal contamination in wastewater from industrial activities is escalating at
alarming levels, and it has now become a major global problem. There has been a great
necessity to effectively develop analytical methods for the identification and quantification
of heavy metals in the aquatic medium. Florescent chemosensors have attracted major
attention of researchers in this field due to their significant advantages related to visual
simplicity, low cost, high sensitivity, good selectivity, and rapid response compared to the
other methods. In assisting the rational design of potential chemosensors, computational
approaches, e.g., the QSPR and DFT, have been widely developed and applied for a variety
of heavy metals over the last few decades. In this study, a number of QSPR models were
developed using the GA-MLR statistical and 10 machine learning techniques on a large
database of ~200 florescent chemosensor structures in complexes with three heavy metals
(Cu2+, Cd2+, and Pb2+) previously reported. The modeling process clearly confirmed the
ability of ML algorithms to improve the predictive performance of computational models.
Six models based on GA-MLR, the AdaBoost regressor MLR, gradient boosting, and
support vector regression, were selected and showed a good goodness-of-fit, robustness,
and predictivity with the cross-validation accuracy ranging from >0.9 to 1.0, and those for
external validation ranged from >0.8 to 0.95. It is worth noting that, so far, ML techniques
have not been commonly used, then the predictive ability of the previously published
studies appeared to be limited.

Subsequently, the developed computational models were applied for screening a
virtual database of 129 coumarin-like structures, which were automatically generated based
on seven potential florescent probes formerly reported in the literature. Interestingly, three
novel simple compounds, namely NEW02, NEW03, and NEW07 were discovered with
simultaneously high values of the stability constant and potentiometric sensitivity against
three metal ions, Cu2+, Cd2+, and Pb2+. The QSPR predictions were then in good agreement
with the quantum calculations using DFT/B3LYP approaches. All the HOMO–LUMO
levels and other reactivity descriptors were in the same rankings as the QSPR approaches.
To go further with the developability of the newly designed coumarin derivatives as
chemosensors, their organo-kinetic and toxicological profiles were examined by computing
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numerous physicochemical and several toxic endpoints against human and environmental
health using several cheminformatics tools. The results once again confirmed their safety
characteristics for both humans and other species in aquatic ecosystems. Finally, based on
retrosynthesis analysis with computational tools, the theoretical synthetic proposal for the
three coumarins designed was successfully provided. The compounds can be synthesized
by an inexpensive and simple method with good yield. Based on the aforementioned
findings, the newly designed coumarins could be considered for further development
stages as potential candidates as chemosensors against three metal ions, Cu2+, Cd2+, and
Pb2+. The general workflow presented herein is promising, and we believe it can be applied
to assist the development of novel chemosensors for screening multiple heavy metals’
contamination, which is one of the major environmental problems facing our planet today.

Supplementary Materials: The following Supporting Information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11070595/s1, Figure S1: Scatter plots of LMO validation
approach; Figure S2: Y randomization test compared to the original QSPR model; Figures S3–S8:
Correlation matrix of molecular descriptors selected in the six QSPR models; Table S1: Database
of experimental potentiometric sensitivity (PS) of complexes between Cu2+, Cd2+, and Pb2+ ions
and compounds; Tables S2–S4: Experimental stability constant (logβ) of the complex between three
metals (Cd2+, Cu2+, Pb2+) towards compounds in the database; Tables S5–S10: Runtime parameters
optimized for the ML algorithm predicting the logβ and PSML of the complex between three metals
(Cd2+, Cu2+, Pb2+) and compounds in the database; Table S11: Molecular descriptors using in
the GA-MLR models; Tables S12–S17: Performance comparison between the GA-MLR and ML
models; Table S18: logβ and PSML parameter predictions for virtual the chemical library based on
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absorption, distribution, metabolism, and excretion (ADME) properties of three candidates based on
the SwissADME tool.
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