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Abstract: Since, in many routine analytical laboratories, a stereomicroscope coupled with a digital
camera is not equipped with advanced software enabling automatic detection of features of observed
objects, in the present study, a procedure of feature detection using open-source software was
proposed and validated. Within the framework of applying microscopic expertise coupled with
image analysis, a set of digital images of microplastic (MP) items identified in organs of fish was used
to determine shape descriptors (such as length, width, item area, etc.). The edge points required to
compute shape characteristics were set manually in digital images acquired by the camera coupled
with a binocular, and respective values were computed via the use of built-in MotiConnect software.
As an alternative, a new approach consisting of digital image thresholding, binarization, the use of
connected-component labeling, and the computation of shape descriptors on a pixel level via using
the functions available in an OpenCV library or self-written in C++ was proposed. Overall, 74.4%
of the images were suitable for thresholding without any additional pretreatment. A significant
correlation was obtained between the shape descriptors computed by the software and computed
using the proposed approach. The range of correlation coefficients at a very high level of significance,
according to the pair of correlated measures, was higher than 0.69. The length of fibers can be
satisfactorily approximated using a value of half the length of the outer perimeter (r higher than 0.75).
Compactness and circularity significantly differ for particles and fibers.

Keywords: microplastics; binary image; OpenCV; Union-Find algorithm; contour tracking; shape
descriptors

1. Introduction

In recent years, small pieces of plastic called microplastics have attracted public
attention. Due to the misuse and segregation of plastic waste, plastic is released into
the environment, and after fragmentation, it spreads across compartments and living
organisms. Most plastic wastes can persist in the environment for hundreds of years [1].
MPs are usually considered to be contaminants of synthetic origin with a size of less than
5 mm [2]. However, according to the latest reports, plastic items are classified as nanoplastic
(<1 pm), microplastic (1 pm-5 mm), and macroplastic (>5 mm) [3]. Plastic items can be of
primary or secondary origin. Primary MPs are directly released from industrial production,
while secondary MPs are larger plastic items that break down into smaller pieces, mainly
due to the weathering effect [4].

Microplastics have been reported in freshwater [5,6], groundwater [7,8], soil [9,10],
sediment [11,12], snow [13,14], ice [15,16], and air [17,18]. Many studies have shown that mi-
croplastics are ingested by various organisms [19-21], invertebrates [22,23], mammals [24,25],
and birds [26,27].

An increasing quantity of MPs present in the environment makes the control of
microplastic pollution crucial for environmental and animal protection. Once ingested
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by aquatic organisms, MPs can trigger physical and toxic effects [28]. A false feeling of
fullness [29], damage or blockage of the digestive tract [30], suffocation, and starvation [31]
comprise a few of the physical effects. The toxic effect of MPs on aquatic organisms is
mainly due to chemicals added to the plastic during manufacturing or absorbed from the
environment [32]. The high surface area to volume ratio, as well as the hydrophobic nature
of MPs, support the sorption of xenobiotics [33]. Consequently, MPs can cause oxidative
stress, neurological damage, endocrine disruption, and immune injury [34].

Large incoherency concerning the identification and quantification of MPs leads to
difficulties in comparing MP abundance through various research studies. Generally, an
analysis of MPs consists of two phases, namely, the physical characterization of items,
followed by chemical characterization, which confirms the chemical nature of the items
found. To fulfill the first phase, some initial steps such as extraction from environmental
or biological samples, isolation, identification, and rough characterization have to be
carried out [35,36]. All the above-mentioned steps are a potential source of analytical
uncertainty. For example, to adequately quantify MPs, restrictive procedures to avoid
airborne contamination have to be secured [37,38]. Various approaches are commonly
used to fulfill the second phase concerning the detection and quantification of MPs in
environmental and biological matrices: microscopy [39,40], pyrolysis combined with gas
chromatography [41,42], Fourier-transform infrared (FTIR) spectroscopy [43,44], micro-
FTIR [5,45], and scanning electron microscopy [41,46]. Both phases require the highest
levels of experience since methodological issues challenge data produced by researchers.
Usually, inexperienced students or researchers overestimate the abundance of MP items
compared to expert researchers [47].

While MPs research has advanced, standard operation protocol concerning the prepa-
ration and analysis of samples for the identification of MPs is still not available [48]. Due
to the variety of different protocols used and the generation of results of doubtful quality,
the comparison of data concerning MP abundance, morphometric features, coloration, and
chemical composition is highly ambiguous. Even if contamination prevention is satisfac-
tory, substantial doubts could be related to methodologies of MP size estimation based on
digital images acquired through microscopic analysis. The microscopic identification of
MPs with dimensions of 0.1-1 mm is one of the easiest and least expensive methods of
analysis; however, a false positive or negative interpretation may occur [48]. Moreover,
the isolated particles are often incoherently classified since only some microscopes have a
camera and software that allows for a detailed approximation of MPs’ shape descriptors.
Rarely, MPs are classified according to their shapes (i.e., fibers, fragments, films, granules,
foams) and color (mainly transparent, white, red, blue, black, brown, and green), while
their largest cross-section is sometimes estimated using calipers [49] or sieve meshes of 2.0,
1.0, 0.5, and 0.25 mm [50]. More often, MPs are classified according to their shapes, color,
and arbitrarily selected sets of shape descriptors (morphological features). In addition to
shape class and color, morphological features that are usually defined consist of size [51-53],
size ranges [54-56], maximum or undefined length [57-59], length and width [60], longest
and shortest axes [61], length and diameter [62], longest dimension [63-71], length and
thickness [72], and the length of fibers and cross-section of other particles [73]. Unfortu-
nately, according to size and other shape descriptors, usually, authors do not specify if the
size was measured via the use of functionalities of the built-in software coupled with the
microscope, software dedicated to pattern recognition, digital image analysis, or by any
other software that allows for working with images. Moreover, very often, it is unknown if
morphological features are measured manually (i.e., by putting a dimension line along an
estimated height of an item) or automatically (i.e., by creating a bounding box around a
measured item). Additionally, as summarized above, a variety of terms and definitions of
shape descriptors can be used.

Since many questions concerning the methodology of shape descriptors determination
have arisen, the main objective of this study was to propose a procedure based on an
application of pattern recognition and computer vision tools that can significantly improve
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the morphological analysis of microplastic items found in various environmental matrices
(including biological ones) via the analysis of digital images taken by using any digital
camera coupled with a microscope, even without any dedicated software.

2. Materials and Methods
2.1. Fish Samples

Five fish species were analyzed: Baltic herring (Clupea harengus), Baltic cod (Gadus
morhua), flounder (Platichthys flesus), long-spinded bullhead (Taurulus Bubalis), and lumpfish
(Cyclopterus lumpus). Microplastic items were sought in the gills, digestive tract, and liver.
Specimen collection details, the steps of microplastic extraction, and the contamination
prevention procedure used can be found elsewhere [74].

2.2. Microplastic Identification via the Use of Microscopic Analysis

A Motic Zoom SMZ-161-BLED (Motic, Cabrera de Mar, Spain) stereoscope binocular
was employed. It was equipped with 3W LED illumination and the Greenough optical
system and connected to a tablet Moticam BTW8 (Xiamen, China) running under the control
of the Android 5.0 operating system. Additionally, 24-bit RGB (2048 x 1536 square pixels)
images were acquired using 0.75x—4.5 x magnification. The edge points used to calculate
shape descriptors through the use of built-in software were set manually. The morphometric
features of the MP items were measured and archived using MotiConnect 1.5.9.10-build-
171215 software, which is a dedicated image processing Android app for Motic cameras. It
includes image preview, capture, recording, editing, and basic measuring functions. Some
examples of images of MP items acquired by a stereomicroscope coupled with a digital
camera are presented in Figure 1. Suspected plastic items were assessed following the
protocols recommended by Hidalgo-Ruz et al. [75], Crawford and Quinn [76], and Zobkov
and Esiukova [77]. Items with no visible tissue or cell structure of relatively uniform color
distribution along the particle and fibers with homogenous diameters along their length
were counted as MPs. The other objects were counted as minerals. An analogical procedure
for the microscopic determination of MPs was applied by Wang et al. [63].

- -
- -
Figure 1. Images of MPs, which were acquired using the Motic Zoom SMZ-161-BLED stereomicro-
scope coupled with a digital camera ((A—C)—particles; (D-F)—fibers).
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2.3. Software and Hardware

Microsoft Visual Studio Community 2022 ver. 17.1.4 was used to build a project written
in C++ with the OpenCV library included. The OpenCV computer vision library [78,79] was
chosen as the most popular open-source library that contains a variety of useful algorithms
to analyze features in digital images. The visual Studio programming environment was
coupled with a default compiler and controlled by the 64-bit Windows 10 home operating
system running on an Intel® Core™ i5-8250U CPU 1.6 GHz personal computer with
16.0 GB RAM.

Statistical testing was carried out using the non-parametric U Mann—-Whitney test
for two-group comparison (particles vs. fibers) since an assumption concerning normal
data distribution (tested for circularity and compactness) was not fulfilled. Correlations
were assessed using the Pearson correlation coefficient value. All tests were analyzed
and considered significant at a p-value < 0.001. Statistical analyses were carried out using
TIBCO Statistica 13.3 software (TIBCO, Palo Alto, CA, USA).

2.4. Image Pretreatment

In total, 125 images were acquired and analyzed. A subset of them was further
analyzed according to the procedure described below. It is worth emphasizing that the
expectation of better results was not based on the better resolution of the input images,
which were of the same resolution as those treated manually; instead, our expectation
was based on pixel-level accuracy. Moreover, the use of deep learning algorithms was not
intended at the current stage since, in our opinion, a rough number of a hundred images
is not sufficient to make learning accurate. Despite this decision, the use of deep learning
algorithms in the analysis of digital images of MPs seems to be an interesting and promising
direction for future research.

The purpose of the digital image pretreatment was to obtain, from its initial RGB
form, a binary image containing the item silhouette. Although an RGB image could be
useful for feature analysis, such as MP color, it was discarded since the determination
of the morphological shape descriptors was prioritized. In specialized automatic pattern
recognition and computer vision software, some initial pretreatment steps, such as seg-
mentation, border killing, hole filling, and debris removal, are usually triggered before
the analysis of morphometric features; however, we decided to minimize the number
of pretreatment steps since no item individualization was required because an image of
a single item present in an observation field was acquired in each case. Unfortunately,
discarding several additional advanced pretreatment steps, the proposed method in its
actual form cannot be generalized to different image conditions without compromising
performance, however it can be applied directly to images presenting items of the color at
least slightly different in comparison with the color of the filter.

Figure 2 presents a schematic diagram of the MP extraction and identification protocol
used, along with the pretreatment steps executed for the digital images of MP items,
characterized by a color that is darker or lighter in comparison with the color of the filter.
The applied steps consisted of (i) RGB to grayscale transformation, (ii) cutting out of
a redundant background, (iii) thresholding based on analysis of the distribution of the
pixel’s intensities.

The cutting out of a redundant background step was carried out to minimize the size of
the images that were to be analyzed by the algorithms and hence minimize computational
time; however, the performance improvement concerning the computational time of the
C++ app itself was not a priority in this study. It could be further achieved by creating
a data store container using histogram-derived thresholding based on the Otsu method,
using loops, efficiently allocating memory, etc.; however, every improvement in the code
should be further benchmarked. Thresholding produced a binary image, where all pixels
with intensities above (or below) a given threshold value are denoted as 1, while all other
pixels are denoted as 0.
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Figure 2. Schematic diagram of microplastic extraction, identification protocol, and digital image
pretreatment steps.

According to the specific color of the MP items, a threshold value in the range between
52 and 127 was used for items darker than the background. Some examples of greyscale
images and MP item shapes obtained via thresholding are presented in Figure 3, while
examples of images of transparent MPs that were unsuitable for treatment via background
thresholding are shown in Figure 4.

2.5. Union—Find Algorithm

Once the pretreatment steps were carried out, the detection of regions was performed
using the Union-Find algorithm [80], which is one of the current state-of-the-art algorithms
used in so-called connected-component labeling (CCL) tasks. Although there are many
other state-of-the-art algorithms used in CCL for which detailed pros and cons discussion
can be found elsewhere [81], the Union-Find algorithm was selected since it is available
via an OpenCV and easy to self-code. The Union-Find algorithm requires a binary image
as an input, with ones and zeros denoting the region (object) and background pixels,
respectively. In its basic version, it completes the detection and labeling of regions by
forward scanning a given image and using the Union-Find—tree strategy [81]. The detailed
theoretical background of the Union-Find algorithm, as well as a variety of references
concerning its performance optimization, can be found elsewhere [82], and this is why
only a general idea of it is presented in Figure 5 and briefly described below. In the binary
image, scanning begins from the top-left pixel coordinates and continues downwards for
each pixel from left to right (Figure 5A). When the first pixel of the region is found, a new
label is given to it (Figure 5B), and its right-located neighbor is consecutively examined.
When a right-located pixel also belongs to a region, the same label is used (Figure 5D). To
detect if a new label (Figure 5C) or a label already used should be applied (Figure 5D,E), a
mask for the eight-connected connectivity [83] of the currently examined pixel is tested.
In the last case, when criteria to initiate a new label for the same region are met several
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times (Figure 5E), an algorithm finds a union of labels and applies a minority of them to
the currently examined pixel, simultaneously creating and storing a tree of dependencies
between unified labels. Once image scanning and labeling are complete, an input image
with various labels applied to the pixels of regions is scanned again, and a unique label
value per region is set according to a tree of dependencies between already unified labels.

Th =100

value.

Figure 4. RGB images of MPs that were characterized by the similarity between their color and that
of the background ((A,C)—fibers; (B,D)—particles).
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Figure 5. Schematic diagram of applying a label to pixel B according to the eight-connected mask used
in the Union-Find algorithm: (A) row-wise scanning; (B) initiation of the region labeling triggered
by the pixel that fulfills the starting criteria; (C) cases when a new label is applied; (D) cases when
already used label is applied to the pixel; (E) cases when two separate labels belong to the same
region.

2.6. Basic Descriptors

Once regions were labeled, they were sorted in descending order according to the sum
of pixels (area) belonging to each region. Consecutively, a single region with the highest
number of pixels was selected, and then a set of morphometric (shape) descriptors was
computed using functions available in an OpenCV library. When an appropriate function
was not included in a library, a self-written C++ code was used instead. A set of shape
descriptors consisting of an area, outer perimeter length, circularity, minimal and maximal
ferret, smallest rectangle, elongatedness, ellipse axes, and compactness were computed
using the CCL-based approach. Using the resolution of the image, information concerning
the magnification used and the linear dimensions of single-pixel-based shape descriptors
were recalculated to obtain values in SI units. Since the computation of an area based on
the smallest rectangle and ellipse characteristics seems to be senseless for fibers, in this case,
only pixel-based area was calculated.

2.6.1. Area

The area is defined as the number of pixels of a region. Through knowing the size of
an image in pixels, it is possible to compute both the width and height of the pixel and,
as a result, its area (expressed in the International System of Units (SI)). The advantage of
calculating area using pixel coordinates is that it is much more precise and less prone to
overestimation as in the case of area computed using the multiplication of the width and
length of a given object measured manually.

2.6.2. Perimeter

The perimeter is defined as the total length of the contour of the region, including
the outer contour and single or multiple inner contours if the object has a hole or many
holes, respectively. In the case of MP particles and pellets, usually, only an outer contour
needs to be computed, while in the case of fibers, both outer and inner contours have
to be computed since fibers can become twisted (as presented in Figure 2B). In the latter
case, through using the perimeter length, a fiber length can be estimated as well. To
compute the perimeter length of a given region, a contour tracing algorithm was primarily
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used [84]. This type of algorithm computes a set of contour points divided into outer and
inner contours, respectively, using some hierarchy of parent and child contours. Finally,
through using the coordinates of all contour points, the perimeter length is calculated. The
distance between two neighboring contour points parallel to the coordinate axes is rated as
1, while the distance in the diagonal is rated as a square root of 2. The perimeter can also
be computed using some modified equations, taking into consideration corner issues [85];
however, sub-pixel accuracy was not a priority in this case.

2.6.3. Circularity

Circularity is the measure of how closely the shape of the region approaches the shape
of the circle. It can be computed using an area of the region expressed in pixels (F) and the
maximum distance from the center of gravity of the region to all contour pixels (outer and
inner) (d), according to the following equation:

Circularity = —s——
Y= B
In general, the circularity of the perfect mathematical circle is 1, while if the region is

somehow elongated or has holes, the circularity is smaller than 1.

2.6.4. Ferret Diameters

The ferret of a region is defined as the distance between two parallel lines restricting
the object perpendicular to that direction. To determine the minimal and maximal ferret,
the convex hull of the region is identified, and the so-called rotating calipers algorithm is
used to compute the ferret diameters. An algorithm enumerates the antipodal pairs of the
convex polygon; that is, it enumerates pairs of points that can be touched at the same time
by the two caliper arms. The minimal diameter is the narrowest caliper measure possible
for the region. On the contrary, the maximal diameter is the widest caliper measure possible
for the region. Using a square as the example, the minimal ferret is the distance between
two perpendicular edges of the square, while the maximal ferret is the distance between
two square corners located along the diagonal.

2.6.5. Smallest Rectangle

The smallest rectangle of the region is defined as the rectangle with any orientation
with the smallest area of all rectangles containing the region.

2.6.6. Elongatedness

Elongatedness for a region is defined as the ratio between the length and width of the
minimum bounding rectangle of the region (smallest rectangle).

2.6.7. Ellipse Axes

Ellipse axes are the longest (Ra) and shortest (RD) ellipse axes; they share the same
orientation and the same aspect ratio as the region. Ellipse axes are computed using nor-
malized geometric moments, which can be computed according to the following formula:

1 i |
Mz] = ?Z(F,C)GR(TO — 1’) (CO — C)]

where F is the area of the region, rq is the value of the center of gravity of the region along
the rows, ¢y is the value of the center of gravity of the region along the columns, , c is the
sums of pixels along the rows and columns, respectively, and i and j represent numbers
that can be used to identify the type of normalized geometric moment.
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Consecutively, Ra and Rb are expressed as:

\/S(Mzo + Moz + \/(Mzo — Mgn)? + 4My;2

R:
4 2

\/8(M20 + Moz — \/(Mzo — Mp)? +4My;2
2

Rb =

2.6.8. Compactness

The compactness of a region is a numerical quantity representing the degree to which
a given shape is compact. It is computed using the following equation:

2
Compactness = ——

4Fm
where P stands for the perimeter of the region, and F is its area.
For a perfect circle, compactness should be equal to 1, while if the region is elongated
or has holes, compactness should be larger than 1. The higher the compactness value, the
more elongated or perforated the shape.

3. Results

Quantitative data concerning the morphological shapes and colors of the MPs found
in the fish organs are summarized in Table 1. A total of 93 thresholded images out of
125 acquired images were further analyzed.

Table 1. The number and percentage of MP items detected in fish organs according to their shape
and color, as well as the number and percentage of MP images analyzed by the use of the CCL.

MP [Items]
Color Fiber Particles Pellet D;l;()et(icled Ar:l;ol;azle d
Detected Analyzed Detected Analyzed Detected Analyzed

black 4 4 5 4 0 0 9 (7.2%) 8 (88.9%)
blue 54 49 19 14 0 0 73 (58.4%) 63 (86.3%)
green 4 0 7 7 1 1 12 (9.6%) 8 (66.7%)
pink 0 0 6 4 0 0 6 (4.8%) 4 (66.7%)
red 6 4 6 6 0 0 12 (9.6%) 10 (83.3%)
transparent 3 0 8 0 0 0 11 (8.8%) 0 (0%)
white 0 0 1 0 0 0 1 (0.8%) 0 (0%)
yellow 0 0 1 0 0 0 1 (0.8%) 0 (0%)
Total 71 (56.8%) 57 (80.2%) 53 (42.4%) 35 (66.0%) 1 (0.8%) 1 (100%) 125 93 (74.4%)

Note: The percentage of the total analyzed MP items was calculated with respect tothe total detected MP items.

The shape descriptors measured using the MotiConnect 1.5.9.10-build-171215 software
and computed based on CCL output are summarized in Table 2.
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Table 2. Basic statistics of the shape descriptors of the MP items found in the biological samples.

Shape N Mean Min Max S.D.
Length [mm] 0.644 0.070 2.150 0.561
Width [mm] 0.343 0.040 1.460 0.330
Area [mm?] 0.355 0.005 2.122 0.558
Area_pix [mm?] 0.458 0.011 3.371 0.717
Area smallest rectangle [mm?] 0.967 0.015 5.288 1.508
Area ellipse [mm?] 0.748 0.012 4.787 1.167
Maximal ferret [mm] 1.046 0.153 3.492 0.864
Minimal f.erret [mm] particles 36 0.564 0.082 1.941 0.505
Length_pix [mm] 0.784 0.085 2.902 0.690
Width_pix [mm] 0.796 0.082 3.350 0.760
Ra [mm] 0.513 0.072 1.647 0.423
Rb [mm] 0.264 0.039 0.908 0.233
Elongatedness 1.258 0.267 4.496 0.910
Outer contour [mm)] 3.920 0.435 15.919 3.904
Circularity 0.348 0.039 0.685 0.161
Compactness 4.531 1.271 25432 4.904
Length [mm] 1.266 0.120 4.190 1.005
Area_pix [mm?] 0.058 0.005 0.311 0.063
Maximal ferret [mm] 1.270 0.169 4232 0.849
Minimal ferret [mm)] 0.379 0.003 1.038 0.287
Length_pix [mm] 0.735 0.038 4.222 0.782
Width_pix [mm] 0.909 0.037 3.492 0.748
Ra [mm] fiber 57 0.754 0.089 2.864 0.539
Rb [mm] 0.212 0.017 0.620 0.168
Elongatedness 1.924 0.059 15.421 2.880
Outer contour [mm] 3.806 0.397 12.950 2.662
Fibers’ length_pix [mm] 1.903 0.199 6.475 1.331
Circularity 0.051 0.009 0.225 0.049
Compactness 24931 1.120 107.607 19.638

Note: S.D.—standard deviation; area_pix, area smallest rectangle, area ellipse maximal and minimal ferret,
length and width_pix, Ra (longer axis of the ellipse), Rb (shorter axis of the ellipse), elongatedness, outer contour,
circularity, and compactness are shape characteristics computed from CCL-based output.

4. Discussion
4.1. General Physical Characterization

Among the morphological types, fibers were the most dominant (56.8%), followed by
particles (42.4%) and pellets (0.8%) (Table 1). The average length and width of all identified
particles (determined via the use of MotiConnect 1.5.9.10-build-171215 software) were
0.644 mm and 0.343 mm, respectively, while the mean length of the fibers was 1.266 mm
(Table 2). The identified plastic items were divided into five size ranges according to their
length. The dominant size range for the entire set of MPs (125 items) was 1-5 mm (44%),
then 0.1-0.5 mm (32%), and 0.5-1 mm (17%). Among the fibers, particles, and pellets,
the dominant size ranges were 1-5 mm (52%), 0.1-0.5 (45%), and 0.1 (100%), respectively.
Regarding the MPs used for algorithmic assessment, the dominant size range was 1-5 mm
(44%), then 0.1-0.5 mm (36%), and 0.5-1 mm (17%). Among the fibers, particles, and pellets,
the dominant size ranges were 1-5 mm (53%), 0.1-0.5 (53%), and 0.1 (100%), respectively.

4.2. Length and Width of Particles

The average length and width of particles (determined via the use of the MotiConnect
software) were 0.644 mm and 0.343 mm, respectively, while the average length and width
of the MP items computed from binary images ranged between 0.513 mm (the longest
ellipse axis) and 1.046 mm (maximal ferret) and between 0.264 mm (the shortest ellipse
axis) and 0.796 (width of the smallest rectangle), respectively (Table 2). Although all
algorithmic approaches compute linear measures that are significantly correlated with
dimensions determined via manual assessment (p < 0.001, r in the range between 0.69
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and 0.88, Figure 6), it seems that the best approximation of the length of the particle can
be algorithmically achieved via the computation of the maximal ferret (r = 0.8785) or the
longest ellipse axis (r = 0.8443), while the shortest ellipse axis, to the best extent, corresponds
with the width of the MP items (r = 0.8311). As follows from Figure 6, through using ferret
diameters or ellipse axes, the optimal mapping of linear measures of MP particles can be
obtained since the majority of measured (width) and algorithmically computed values
(ferrets, ellipse axes) are in the range of confidence interval of linear regression.
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Figure 6. Linear regressions with confidence intervals expressing a directly proportional relationship
between the length and width of particles (determined in MotiConnect 1.5.9.10-build-171215 software)
and length (A), Ra (B), maximal ferret (B), width (C), Rb (D), and minimal ferret (D) (all determined
algorithmically), respectively.

4.3. Area of Particles and Fibers

The average area of the plastic particles, determined using their length and width
set manually in the MotiConnect 1.5.9.10-build-171215 software, was 0.355 mm?, while
the average area of the particles (computed based on thresholded images) was 0.458 mm?,
which is 29% higher. The average area of the particles computed algorithmically using the
approach of the smallest rectangle or ellipse axes was 0.967 mm? and 0.748 mm?, respec-
tively (Table 2). For fibers, the average area computed using the pixels” counting method
was 0.058 mm?, while the MotiConnect software seems to be unsuitable for determining
the area of fibers since it does not enable the precise computing of the width of the fiber

along its length. As presented in Figure 7, the computed area (using the approach of the
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Area_pix [mm:]

smallest rectangle or ellipse of the area analogous to an area of the region) of MP particles
is significantly correlated (p < 0.001) with values derived from the MotiConnect software.
According to the type of correlated areas, the Pearson correlation coefficient was around
0.75. The presented results indicate that MP pictures taken using any digital camera, after
thresholding, can be successfully used to precisely determine the area of a variety of mor-
phological shapes of plastic items (including shapes with slotted holes or even fibers), even
when dedicated image processing software is not available or existing programs do not
allow for the computation of such shape descriptors.

4.0 ¢ _
Area_pix = 0.1117 + 0.9748 Area A) ?-\ Area smallest rectangle [mm] (left Y) N . B)’.
35} T 0.7591; p < 0.001; r=05762 W Area ellipse [mm] (right Y) _ .
. 5 .
4
3.0

Area ellipse [mm:]

Area smallest rectangle [mm:]
w

Area smallest rectangle =0.2542 + 2 0073 Area
r=07428; p < 0.001; ¥ = 0.5517
Area ellipse = 0.1947 + 1.558%" Area

: 0 J d = 07457; p 0,007, = 05561 0
00 02 04 06 08 10 12 14 16 18 20 22 24 00 02 04 06 08 10 12 14 1 18 20 22 24
Area [ﬂ'l-mz] Area [rerz]

Figure 7. Linear regressions with confidence intervals expressing a directly proportional relationship
between the area of particles calculated using the length and width of the MP items determined in
MotiConnect 1.5.9.10-build-171215 software and the area calculated based on pixels (A), smallest
rectangle (B), and the ellipse axes (B), respectively.

4.4. Fiber Length

To approximate the length of the fiber, the outer perimeter of the region expressing
the fiber’s shape was divided by two since the contour tracing algorithm starts from the
given pixel and ends when the same pixel is reached again under certain conditions. The
mean manually measured length of fibers was 1.266 mm. However, manually determining
fiber length is problematic and highly time-consuming since it requires an operator to
create the curve along the fiber. The average fiber length computed from the thresholded
image was around 50% higher and equal to 1.903 mm. As presented in Figure 8, the length
of the fibers computed using the value of the outer perimeter length fits satisfactorily
(p < 0.001) to the length assessed by using the manually created curve method. Even if
we take into consideration that the length computed from the thresholded image could
somehow be overestimated due to the calculation approach, it is much faster and much
more operator-independent. The overestimation is because the fiber itself is characterized
by its width, while the outer perimeter calculation computes the output value as a distance
around all outer contour pixels. When the outer perimeter length is simply divided by two,
the overestimation caused by curvature at the end of the fiber could take place. Moreover,
it needs to be emphasized that the presented approach could not be used to compute the
length of the fibers that contain internal spirals. However, in our opinion, the advantages of
computing fiber length from the thresholded image surpasses the disadvantages connected
with the fiber length overestimation or spiral shapes.
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Figure 8. Linear regression with confidence interval expressing a directly proportional relationship
between the length of fibers determined using MotiConnect 1.5.9.10-build-171215 software and the
length of fibers computed using the length of the outer perimeter.

4.5. Compactness and Circularity

As mentioned above, compactness and circularity are shape descriptors that should be
inversely correlated, measuring how closely the shape of the region approaches the shape
of the circle and somehow quantifying elongatedness and the degree of perforation. The
average circularity and compactness of particles computed from the thresholded image
were 0.348 and 4.531, respectively, while the same set of shape descriptors for fibers con-
sisted of a mean circularity equal to 0.051 and mean compactness equal to 24.931 (Table 2).
Pearson’s correlation coefficient was used to quantify the relation between both shape
descriptors for particles and fibers and generated values of —0.6162 (p < 0.001) and —0.6085
(p < 0.001), respectively. The U Mann-Whitney test (used for two independent group com-
parisons) confirmed the statistical difference in median circularity (U = 46.0, p < 0.001) and
compactness (U = 205.0, p < 0.001) between the particles (median circularity = 0.31; median
compactness = 2.97) and fibers (median circularity = 0.03; median compactness = 22.23).
In Figures 9 and 10, circularity and compactness computed for a set of 93 MPs shapes
according to the particles and fibers are presented. Some additional images of MPs with
maximal values of computed shape descriptors are also presented.
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Figure 9. The circularity of MP items (the numbering shown on the X-axis corresponds to the
numbering of images taken using the digital camera (125); after thresholding, images possessed their
original numeration).
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Figure 10. The compactness of MP items (the numbering shown on the X-axis corresponds to the
numbering of images taken by the digital camera (125); after thresholding, images possessed their
original numeration).

5. Conclusions

The results obtained in this study confirm that images of MPs taken by any digital
camera in concert with a microscope can be successfully used to quantify shape descriptors
of plastic items via a procedure consisting of digital image thresholding, binarization, the
determination of connected components, and the computation of shape descriptors on
a pixel level. Although no new image processing techniques have been proposed, the
novelty of this study lies within the use of an open computer vision library and self-written
C++ code to unify the determination of morphological features of MPs detected in various
environmental or biological matrices, which, nowadays, is of high public interest. As a
result, studies on MPs can be initiated worldwide in less equipped facilities.

The proposed approach can be used without the initial preparation of images that
present items that are darker or lighter than the background; however, some additional
steps, such as dilution, erosion, or the application of some histogram-derived thresholding
methods, could further improve it. The best approximation of the length of the particle
can be simply achieved by computing the maximal ferret (r = 0.8785) or the longest ellipse
axis (r = 0.8443), while the shortest ellipse axis adequately correlates with the width of
the MP items (r = 0.8311). An area of items computed via the use of the pixel counting
method significantly (p < 0.001) correlates with the area computed via the multiplication
of the approximated length and width of items; however, an approach that involves
using thresholded image analysis enables one to also precisely compute the area of fibers
or shapes possessing slotted holes. The problematic computation of fiber length can
be overcome by estimating it using the item’s outer perimeter length. Circularity and
compactness are inversely correlated shape descriptors that diversify particles and fibers.
To the best of our knowledge, the proposed methodology has not been used to determine
the morphological features of MPs as an alternative to more or less user-friendly commercial
software. Moreover, as successfully shown, a wider range of useful shape characteristics,
such as outer perimeter length, ferret diameters, or ellipse axes, can be used to qualify MPs
of various shapes.

Author Contributions: Conceptualization, A.M.A.; methodology, A.M.A; software, AM.A; vali-
dation, A.M.A.; formal analysis, P.P; investigation, A.M.A.; resources, A.M.A.; writing—original
draft preparation, PP. and A.M.A.; writing—review and editing, A.M.A., visualization, AM.A;
supervision, A.M.A.; project administration, A.M.A ; funding acquisition, A.M.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research study was funded by the POMERANIAN UNIVERSITY IN SLUPSK (Grant
no 7-4-3).



Toxics 2023, 11,779 15 of 18

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study will be available on request from the
corresponding author after Paulina Piskufa Ph.D. thesis defense.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Eubeler, ].P; Bernhard, M.; Knepper, T.P. Environmental biodegradation of synthetic polymers II. Biodegradation of different
polymer groups. TrAC 2010, 29, 84-100. [CrossRef]

2. Weinstein, J.E.; Crocker, B.K.; Gray, A.D. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropy-
lene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 2016, 35, 1632-1640. [CrossRef] [PubMed]

3.  Science Advice for Policy by European Academies (SAPEA). A Scientific Perspective on Microplastics in Nature and Society; SAPEA:
Berlin, Germany, 2019. [CrossRef]

4.  Toussaint, B.; Raffael, B.; Angers-Loustau, A.; Gilliland, D.; Kestens, V.; Petrillo, M.; Rio-Echevarria, .M.; Van den Eede, G. Review
of micro- and nanoplastic contamination in the food chain. Food Addit. Contam. 2019, 36, 639—-673. [CrossRef] [PubMed]

5. Chen, G, Li, Y,; Wang, J. Occurrence and ecological impact of microplastics in aquaculture ecosystems. Chemosphere 2021, 274,
129989. [CrossRef] [PubMed]

6. Silva, C.J.M.; Machado, A.L.; Campos, D.; Rodrigues, A.C.M.; Silva, A.L.P.; Soares, A.M.V.M.; Pestana, ].L.T. Microplastics in
freshwater sediments: Effects on benthic invertebrate communities and ecosystem functioning assessed in artificial streams. Sci.
Total Environ. 2022, 804, 150118. [CrossRef]

7. Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the soil-groundwater environment: Aging, migration, and
co-transport of contaminants—A critical review. |. Hazard. Mater. 2021, 419, 126455. [CrossRef]

8. Chia, RW,; Lee, ].Y,; Kim, H.; Jang, J. Microplastic pollution in soil and groundwater: A review. Environ. Chem. Lett. 2021, 19,
4211-4224. [CrossRef]

9. Sajjad, M.; Huang, Q.; Khan, S.; Khan, M.A; Liu, Y.; Wang, J.; Lian, F.; Wang, Q.; Guo, G. Microplastics in the soil environment: A
critical review. Environ. Technol. Innov. 2022, 27, 102408. [CrossRef]

10. Guo, J.-J.; Huang, X.-P; Xiang, L.; Wang, Y.-Z.; Li, Y.-W,; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, migration and
toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [CrossRef]

11.  Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in freshwater sediment: A review on methods, occurrence, and
sources. Sci. Total Environ. 2021, 754, 141948. [CrossRef]

12.  Scherer, C.; Weber, A.; Stock, F.; Vurusic, S.; Egerci, H.; Kochleus, C.; Arendt, N.; Foeldi, C.; Dierkes, G.; Wagner, M.; et al.
Comparative assessment of microplastics in water and sediment of a large European river. Sci. Total Environ. 2020, 738, 139866.
[CrossRef] [PubMed]

13.  Aves, AR; Revell, L.E.; Gaw, S.; Ruffell, H.; Schuddeboom, A.; Wotherspoon, N.E.; LaRue, M.; McDonald, A.J. First evidence of
microplastics in Antarctic snow. Cryosphere 2022, 16, 2127-2145. [CrossRef]

14. Abbeasi, S.; Alirezazadeh, M.; Razeghi, N.; Rezaei, M.; Pourmahmood, H.; Dehbandi, R.; Mehr, M.R.; Ashayeri, S.Y.; Oleszczuk, P;
Turner, A. Microplastics captured by snowfall: A study in Northern Iran. Sci. Total Environ. 2022, 822, 153451. [CrossRef]

15. Kanhai, L.D.K,; Gardfeldt, K.; Krumpen, T.; Thompson, R.C.; O’Connor, I. Microplastics in sea ice and seawater beneath ice floes
from the Arctic Ocean. Sci. Rep. 2020, 10, 5004. [CrossRef] [PubMed]

16. Stefansson, H.; Peternell, M.; Konrad-Schmolke, M.; Hannesdottir, H.; Asbjé’)rnsson, E.]J.; Sturkell, E. Microplastics in Glaciers:
First Results from the Vatnajokull Ice Cap. Sustainability 2021, 13, 4183. [CrossRef]

17.  Sridharan, S.; Kumar, M.; Singh, L.; Bolan, N.S.; Saha, M. Microplastics as an emerging source of particulate air pollution: A
critical review. J. Hazard. Mater. 2021, 418, 126245. [CrossRef]

18.  Yao, Y,; Glamoclija, M.; Murphy, A.; Gao, Y. Characterization of microplastics in indoor and ambient air in northern New Jersey.
Environ. Res. 2022, 207, 112142. [CrossRef]

19. Thiele, C.J.; Hudson, M.D.; Russell, A.E.; Saluveer, M.; Sidaoui-Haddad, G. Microplastics in fish and fishmeal: An emerging
environmental challenge? Sci. Rep. 2021, 11, 2045. [CrossRef]

20. Mistri, M.; Sfriso, A.A.; Casoni, E.; Nicoli, M.; Vaccaro, C.; Munari, C. Microplastic accumulation in commercial fish from the
Adriatic Sea. Mar. Pollut. Bull. 2022, 174, 113279. [CrossRef]

21. Vo, H.C.; Pham, M.H. Ecotoxicological effects of microplastics on aquatic organisms: A review. Environ. Sci. Pollut. Res. 2021, 28,
44716-44725. [CrossRef]

22. Thushari, G.G.N,; Senevirathna, ].D.M.; Yakupitiyage, A.; Chavanich, S. Effects of microplastics on sessile invertebrates in the
eastern coast of Thailand: An approach to coastal zone conservation. Mar. Pollut. Bull. 2017, 124, 349-355. [CrossRef]

23.  Scherer, C.; Brennholt, N.; Reifferscheid, G.; Wagner, M. Feeding type and development drive the ingestion of microplastics by

freshwater invertebrates. Sci. Rep. 2017, 7, 17006. [CrossRef]


https://doi.org/10.1016/j.trac.2009.09.005
https://doi.org/10.1002/etc.3432
https://www.ncbi.nlm.nih.gov/pubmed/26992845
https://doi.org/10.26356/microplastics
https://doi.org/10.1080/19440049.2019.1583381
https://www.ncbi.nlm.nih.gov/pubmed/30985273
https://doi.org/10.1016/j.chemosphere.2021.129989
https://www.ncbi.nlm.nih.gov/pubmed/33979917
https://doi.org/10.1016/j.scitotenv.2021.150118
https://doi.org/10.1016/j.jhazmat.2021.126455
https://doi.org/10.1007/s10311-021-01297-6
https://doi.org/10.1016/j.eti.2022.102408
https://doi.org/10.1016/j.envint.2019.105263
https://doi.org/10.1016/j.scitotenv.2020.141948
https://doi.org/10.1016/j.scitotenv.2020.139866
https://www.ncbi.nlm.nih.gov/pubmed/32806375
https://doi.org/10.5194/tc-16-2127-2022
https://doi.org/10.1016/j.scitotenv.2022.153451
https://doi.org/10.1038/s41598-020-61948-6
https://www.ncbi.nlm.nih.gov/pubmed/32193433
https://doi.org/10.3390/su13084183
https://doi.org/10.1016/j.jhazmat.2021.126245
https://doi.org/10.1016/j.envres.2021.112142
https://doi.org/10.1038/s41598-021-81499-8
https://doi.org/10.1016/j.marpolbul.2021.113279
https://doi.org/10.1007/s11356-021-14982-4
https://doi.org/10.1016/j.marpolbul.2017.06.010
https://doi.org/10.1038/s41598-017-17191-7

Toxics 2023, 11,779 16 of 18

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Hernandez-Gonzalez, A.; Saavedra, C.; Gago, J.; Cocelo, P.; Santos, M.B.; Pierce, G.J. Microplastics in the stomach contents of
common dolphin (Delphinus delphis) stranded on the Galician coasts (NW Spain, 2005-2010). Mar. Pollut. Bull. 2018, 137, 526-532.
[CrossRef] [PubMed]

Lusher, A.L.; Hernandez-Milian, G.; Berrow, S.; Rogan, E.; Connor, I.O. Incidence of marine debris in cetaceans stranded and
bycaught in Ireland: Recent findings and a review of historical knowledge. Environ. Pollut. 2018, 232, 467-476. [CrossRef]
Lusher, A.L.; Provencher, J.F; Baak, ].E.; Hamilton, B.M.; Vorkamp, K.; Hallanger, I.G.; Pijogge, L.; Liboiron, M.; Bourdages, M.P.T.;
Hammer, S.; et al. Monitoring litter and microplastics in Arctic mammals and birds. Arct. Sci. 2022, 8, 1217-1235. [CrossRef]
Tokunaga, Y.; Okochi, H.; Tani, Y.; Niida, Y.; Tachibana, T.; Saigawa, K.; Katayama, K.; Moriguchi, S.; Kato, T.; Hayama, S.
Airborne microplastics detected in the lungs of wild birds in Japan. Chemosphere 2023, 321, 138032. [CrossRef] [PubMed]

Hu, K,; Yang, Y.; Zuo, J.; Tian, W.; Wang, Y.; Duan, X.; Wang, S. Emerging microplastics in the environment: Properties,
distributions, and impacts. Chemosphere 2022, 297, 134118. [CrossRef] [PubMed]

Tosetto, L.; Brown, C.; Williamson, J.E. Microplastics on beaches: Ingestion and behavioral consequences for beachhoppers. Mar.
Biol. 2016, 163, 199. [CrossRef]

Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ.
Pollut. 2013, 178, 483—-492. [CrossRef]

Wang, X.; Bolan, N.; Tsang, D.C.W,; Sarkar, B.; Bradney, L.; Li, Y. A review of microplastics aggregation in the aquatic environment:
Influence factors, analytical methods, and environmental implications. J. Hazard. Mater. 2021, 402, 123496. [CrossRef]

Pittura, L.; Avio, C.G.; Giuliani, M.E.; d’Errico, G.; Keiter, S.H.; Cormier, B.; Gorbi, S.; Regoli, F. Microplastics as Vehicles of
Environmental PAHs to Marine Organisms: Combined Chemical and Physical Hazards to the Mediterranean Mussels, Mytilus
galloprovincialis. Front. Mar. Sci. 2018, 5, 103. [CrossRef]

Prajapati, A.; Narayan Vaidya, A.; Kumar, A.R. Microplastic properties and their interaction with hydrophobic organic contami-
nants: A review. Environ. Sci. Pollut. Res. 2022, 29, 49490-49512. [CrossRef]

Mao, X.; Xu, Y.; Cheng, Z.; Yang, Y.; Guan, Z; Jiang, L.; Tang, K. The impact of microplastic pollution on ecological environment:
A review. Front. Biosci. 2022, 27, 46. [CrossRef] [PubMed]

Stock, E; Kochleus, C.; Bansch-Baltruschat, B.; Brennholt, N.; Reifferscheid, G. Sampling techniques and preparation methods for
microplastic analyses in the aquatic environment—A review. TrAC 2019, 113, 84-92. [CrossRef]

Chen, G.; Fu, Z.; Yang, H.; Wang, ]. An overview of analytical methods for detecting microplastics in the atmosphere. TrAC 2020,
130, 115981. [CrossRef]

Zhao, S.; Danley, M.; Ward, ].E; Li, D.; Mincer, T.]. An approach for extraction, characterization and quantitation of microplastic
in natural marine snow using Raman microscopy. Anal. Methods 2017, 9, 1470-1478. [CrossRef]

Naji, A.; Esmaili, Z.; Mason, S.A.; Vethaak, A.D. The occurrence of microplastic contamination in littoral sediments of the Persian
Gulf, Iran. Environ. Sci. Pollut. Res. 2017, 24, 20459-20468. [CrossRef]

Kotar, S.; McNeish, R.; Murphy-Hagan, C.; Renick, V.; Lee, C.T.; Steele, C.; Lusher, A.; Moore, C.; Minor, E.; Schroeder, J.; et al.
Quantitative assessment of visual microscopy as a tool for microplastic research: Recommendations for improving methods and
reporting. Chemosphere 2022, 308, 136449. [CrossRef]

Melo-Agustin, P.; Kozak, E.R.; de Jesus Perea-Flores, M.; Mendoza-Pérez, J.A. Identification of microplastics and associated
contaminants using ultra high resolution microscopic and spectroscopic techniques. Sci. Total Environ. 2022, 828, 154434.
[CrossRef]

Fries, E.; Dekiffab, ]. H.; Willmeyera, J.; Nuelleab, M.-T.; Ebertc, M.; Remy, D. Identification of polymer types and additives in
marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ. Sci. Process. Impacts 2013, 15,
1949-1956. [CrossRef]

Peters, C.A.; Hendrickson, E.; Minor, E.C.; Schreiner, K.; Halbur, J.; Bratton, S.P. Pyr-GC/MS analysis of microplastics extracted
from the stomach content of benthivore fish from the Texas Gulf Coast. Mar. Pollut. Bull. 2018, 137, 91-95. [CrossRef] [PubMed]
Primpke, S.; Wirth, M.; Lorenz, C.; Gerdts, G. Reference database design for the automated analysis of microplastic samples based
on Fourier transform infrared (FTIR) spectroscopy. Anal. Bioanal. Chem. 2018, 410, 5131-5141. [CrossRef] [PubMed]

Cincinelli, A.; Scopetani, C.; Chelazzi, D.; Lombardini, E.; Martellini, T.; Katsoyiannis, A.; Fossi, M.C.; Corsolini, S. Microplastic in
the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR. Chemosphere 2017, 175,
391-400. [CrossRef] [PubMed]

Corami, F;; Rosso, B.; Bravo, B.; Gambaro, A.; Barbante, C. A novel method for purification, quantitative analysis and characteri-
zation of microplastic fibers using Micro-FTIR. Chemosphere 2020, 238, 124564. [CrossRef] [PubMed]

Shi, B.; Patel, M.; Yu, D.; Yan, J.; Li, Z.; Petriw, D.; Pruyn, T.; Smyth, K.; Passeport, E.; Miller, R.].D.; et al. Automatic quantification
and classification of microplastics in scanning electron micrographs via deep learning. Sci. Total Environ. 2022, 825, 153903.
[CrossRef] [PubMed]

Costa, L.L.; Arueira, V.E; Silva, T.N.; da Silva Oliveira, A.; dos Santos Nascimento, L.; Sant’Anna, M.E.A.S.; Viana, C.F,; da Silva,
K.C.; Gunner, B,; Leite, V,; et al. Quantifying microplastics in fishes: The first case study contrasting the perspective of untrained
and experienced researchers. Mar. Pollut. Bull. 2023, 189, 114736. [CrossRef]

Loder, M.G.J.; Gerdts, G. Methodology Used for the Detection and Identification of Microplastics—A Critical Appraisal. In Marine
Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Cham, Switzerland, 2015. [CrossRef]


https://doi.org/10.1016/j.marpolbul.2018.10.026
https://www.ncbi.nlm.nih.gov/pubmed/30503464
https://doi.org/10.1016/j.envpol.2017.09.070
https://doi.org/10.1139/as-2021-0058
https://doi.org/10.1016/j.chemosphere.2023.138032
https://www.ncbi.nlm.nih.gov/pubmed/36739985
https://doi.org/10.1016/j.chemosphere.2022.134118
https://www.ncbi.nlm.nih.gov/pubmed/35227746
https://doi.org/10.1007/s00227-016-2973-0
https://doi.org/10.1016/j.envpol.2013.02.031
https://doi.org/10.1016/j.jhazmat.2020.123496
https://doi.org/10.3389/fmars.2018.00103
https://doi.org/10.1007/s11356-022-20723-y
https://doi.org/10.31083/j.fbl2702046
https://www.ncbi.nlm.nih.gov/pubmed/35226989
https://doi.org/10.1016/j.trac.2019.01.014
https://doi.org/10.1016/j.trac.2020.115981
https://doi.org/10.1039/C6AY02302A
https://doi.org/10.1007/s11356-017-9587-z
https://doi.org/10.1016/j.chemosphere.2022.136449
https://doi.org/10.1016/j.scitotenv.2022.154434
https://doi.org/10.1039/c3em00214d
https://doi.org/10.1016/j.marpolbul.2018.09.049
https://www.ncbi.nlm.nih.gov/pubmed/30503493
https://doi.org/10.1007/s00216-018-1156-x
https://www.ncbi.nlm.nih.gov/pubmed/29978249
https://doi.org/10.1016/j.chemosphere.2017.02.024
https://www.ncbi.nlm.nih.gov/pubmed/28236709
https://doi.org/10.1016/j.chemosphere.2019.124564
https://www.ncbi.nlm.nih.gov/pubmed/31472348
https://doi.org/10.1016/j.scitotenv.2022.153903
https://www.ncbi.nlm.nih.gov/pubmed/35192829
https://doi.org/10.1016/j.marpolbul.2023.114736
https://doi.org/10.1007/978-3-319-16510-3_8

Toxics 2023, 11,779 17 of 18

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Munari, C.; Infantini, V.; Scoponi, M.; Rastelli, E.; Corinaldesi, C.; Mistri, M. Microplastics in the sediments of Terra Nova Bay
(Ross Sea, Antarctica). Mar. Pollut. Bull. 2017, 122, 161-165. [CrossRef]

Gimiliani, G.T.; Fornari, M.; Redigolo, M.M.; Bustillos, ].O.W.V.; de Souza Abessa, D.M.; Pires, M.A.F. Simple and cost-effective
method for microplastic quantification in estuarine sediment: A case study of the Santos and Sao Vicente Estuarine System.
CSCEE 2020, 2, 100020. [CrossRef]

Ripken, C.; Kotsifaki, D.G.; Chormaic, S.N. Analysis of small microplastics in coastal surface water samples of the subtropical
island of Okinawa, Japan. Sci. Total Environ. 2021, 760, 143927. [CrossRef]

Ghosh, G.C.; Akter, S.M,; Islam, R.M.; Habib, A.; Chakraborty, TK.; Zaman, S.; Kabir, A.H.M.E.; Shipin, O.V.; Wahid, M.A.
Microplastics contamination in commercial marine fish from the Bay of Bengal. Reg. Stud. Mar. Sci. 2021, 44, 101728. [CrossRef]
Phaksopa, J.; Sukhsangchan, R.; Keawsang, R.; Tanapivattanakul, K.; Thamrongnawasawat, T.; Worachananant, S.; Sreesamran,
P. Presence and Characterization of Microplastics in Coastal Fish around the Eastern Coast of Thailand. Sustainability 2021, 13,
13110. [CrossRef]

Cordova, M.R.; Purwiyanto, A.LS.; Suteja, Y. Abundance and characteristics of microplastics in the northern coastal waters of
Surabaya, Indonesia. Mar. Pollut. Bull. 2019, 142, 183-188. [CrossRef] [PubMed]

Xu, X.; Zhang, L.; Xue, Y; Gao, Y.; Wang, L.; Peng, M.; Jiang, S.; Zhang, Q. Microplastic pollution characteristic in surface water
and freshwater fish of Gehu Lake, China. Environ. Sci. Pollut. Res. 2021, 28, 67203-67213. [CrossRef] [PubMed]

Kumar, B.N.V,; Loschel, L.A.; Imhof, HK.; Loder, M.G.J.; Laforsch, C. Analysis of microplastics of a broad size range in
commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ. Pollut. 2021, 269, 116147.
[CrossRef] [PubMed]

Piyawardhana, N.; Weerathunga, V.; Chen, H.S.; Guo, L.; Huang, PJ.; Ranatunga, RRM.K.P; Hung, C.C. Occurrence of
microplastics in commercial marine dried fish in Asian countries. J. Hazard. Mater. 2022, 423 Pt B, 127093. [CrossRef]

Yu, X.; Ladewig, S.; Bao, S.; Toline, C.A.; Whitmire, S.; Chow, A.T. Occurrence and distribution of microplastics at selected coastal
sites along the southeastern United States. Sci. Total Environ. 2018, 613—614, 298-305. [CrossRef] [PubMed]

Soltani, N.S.; Taylor, M.P.; Wilson, S.P. Quantification and exposure assessment of microplastics in Australian indoor house dust.
Environ. Pollut. 2021, 283, 117064. [CrossRef] [PubMed]

Boskovi¢, N.; Joksimovié, D.; Perosevi¢-Bajéeta, A.; Pekovi¢, M.; Bajt, O.A. Distribution and characterization of microplastics in
marine sediments from the Montenegrin coast. J. Soils Sediments 2022, 22, 2958-2967. [CrossRef]

Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Abundance and characteristics of microplastics in market bivalves from
South Korea. Environ. Pollut. 2019, 245, 1107-1116. [CrossRef]

Napper, LE.; Baroth, A.; Barrett, A.C.; Bhola, S.; Chowdhury, G.W,; Davies, B.ER.; Duncan, E.M.; Kumar, S.; Nelms, S.E.; Niloy,
M.N.H,; et al. The abundance and characteristics of microplastics in surface water in the transboundary Ganges River. Environ.
Pollut. 2021, 274, 116348. [CrossRef]

Wang, Q.; Zhu, X.; Hou, C.; Wu, Y,; Teng, ].; Zhang, C.; Tan, H.; Shan, E.; Zhang, W.; Zhao, J. Microplastic uptake in commercial
fishes from the Bohai Sea, China. Chemosphere 2021, 263, 127962. [CrossRef] [PubMed]

Barboza, L.G.A ; Lopes, C.; Oliveira, P.; Bessa, F.; Otero, V.; Henriques, B.; Raimundo, J.; Caetano, M.; Vale, C.; Guilhermino, L.
Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage,
and human health risks associated with ingestion exposure. Sci. Total Environ. 2020, 717, 134625. [CrossRef] [PubMed]

Hurley, R.R.; Woodward, J.C.; Rothwell, J.J. Ingestion of Microplastics by Freshwater Tubifex Worms. Environ. Sci. Technol. 2017,
51,12844-12851. [CrossRef] [PubMed]

Hu, L.; Chernick, M.; Hinton, D.E.; Shi, H. Microplastics in Small Waterbodies and Tadpoles from Yangtze River Delta, China.
Environ. Sci. Technol. 2018, 52, 8885-8893. [CrossRef] [PubMed]

Ibrahim, Y.S.; Anuar, S.T.; Azmi, A.A.; Khalik, WM.A.W.M.; Lehata, S.; Hamzah, S.R.; Ismail, D.; Ma, Z.F.; Dzulkarnaen, A.;
Zakaria, Z.; et al. Detection of microplastics in human colectomy specimens. JGH Open 2021, 5, 116-121. [CrossRef] [PubMed]
Naidoo, T.; Sershen; Thompson, R.C.; Rajkaran, A. Quantification and characterisation of microplastics ingested by selected
juvenile fish species associated with mangroves in KwaZulu-Natal, South Africa. Environ. Pollut. 2020, 257, 113635. [CrossRef]
[PubMed]

Nan, B,; Su, L.; Kellar, C.; Craig, N.J.; Keough, M.].; Pettigrove, V. Identification of microplastics in surface water and Australian
freshwater shrimp Paratya australiensis in Victoria, Australia. Environ. Pollut. 2020, 259, 113865. [CrossRef]

Baechler, B.R.; Granek, E.F,; Hunter, M.V.; Conn, K.E. Microplastic concentrations in two Oregon bivalve species: Spatial, temporal,
and species variability. LO Lett. 2020, 5, 54—-65. [CrossRef]

Sun, X.; Li, Q.; Shi, Y,; Zhao, Y.; Zheng, S.; Liang, J.; Liu, T,; Tian, Z. Characteristics and retention of microplastics in the digestive
tracts of fish from the Yellow Sea. Environ. Pollut. 2019, 249, 878-885. [CrossRef]

Mancuso, M.; Savoca, S.; Bottari, T. First record of microplastics ingestion by European hake MERLUCCIUS MERLUCCIUS from
the Tyrrhenian Sicilian coast (Central Mediterranean Sea). J. Fish Biol. 2019, 94, 517-519. [CrossRef]

Urban-Malinga, B.; Zalewski, M.; Jakubowska, A.; Wodzinowski, T.; Malinga, M.; Palys, B.; Dabrowska, A. Microplastics on
sandy beaches of the southern Baltic Sea. Mar. Pollut. Bull. 2020, 155, 111170. [CrossRef] [PubMed]

Piskuta, P.; Astel, A.M. Microplastics in Commercial Fishes and By-Catch from Selected FAO Major Fishing Areas of the Southern
Baltic Sea. Animals 2023, 13, 458. [CrossRef] [PubMed]


https://doi.org/10.1016/j.marpolbul.2017.06.039
https://doi.org/10.1016/j.cscee.2020.100020
https://doi.org/10.1016/j.scitotenv.2020.143927
https://doi.org/10.1016/j.rsma.2021.101728
https://doi.org/10.3390/su132313110
https://doi.org/10.1016/j.marpolbul.2019.03.040
https://www.ncbi.nlm.nih.gov/pubmed/31232293
https://doi.org/10.1007/s11356-021-15338-8
https://www.ncbi.nlm.nih.gov/pubmed/34245413
https://doi.org/10.1016/j.envpol.2020.116147
https://www.ncbi.nlm.nih.gov/pubmed/33280916
https://doi.org/10.1016/j.jhazmat.2021.127093
https://doi.org/10.1016/j.scitotenv.2017.09.100
https://www.ncbi.nlm.nih.gov/pubmed/28917168
https://doi.org/10.1016/j.envpol.2021.117064
https://www.ncbi.nlm.nih.gov/pubmed/33862344
https://doi.org/10.1007/s11368-022-03166-3
https://doi.org/10.1016/j.envpol.2018.11.091
https://doi.org/10.1016/j.envpol.2020.116348
https://doi.org/10.1016/j.chemosphere.2020.127962
https://www.ncbi.nlm.nih.gov/pubmed/32841876
https://doi.org/10.1016/j.scitotenv.2019.134625
https://www.ncbi.nlm.nih.gov/pubmed/31836230
https://doi.org/10.1021/acs.est.7b03567
https://www.ncbi.nlm.nih.gov/pubmed/29019399
https://doi.org/10.1021/acs.est.8b02279
https://www.ncbi.nlm.nih.gov/pubmed/30035533
https://doi.org/10.1002/jgh3.12457
https://www.ncbi.nlm.nih.gov/pubmed/33490620
https://doi.org/10.1016/j.envpol.2019.113635
https://www.ncbi.nlm.nih.gov/pubmed/31767237
https://doi.org/10.1016/j.envpol.2019.113865
https://doi.org/10.1002/lol2.10124
https://doi.org/10.1016/j.envpol.2019.01.110
https://doi.org/10.1111/jfb.13920
https://doi.org/10.1016/j.marpolbul.2020.111170
https://www.ncbi.nlm.nih.gov/pubmed/32469780
https://doi.org/10.3390/ani13030458
https://www.ncbi.nlm.nih.gov/pubmed/36766347

Toxics 2023, 11,779 18 of 18

75.

76.

77.

78.
79.

80.

81.

82.

83.
84.

85.

Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used
for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060-3075. [CrossRef]

Crawford, C.B.; Quinn, B. 10—Microplastic identification techniques. In Microplastic Pollutants; Crawford, C.B., Quinn, B., Eds;
Elsevier Science: Amsterdam, The Netherlands, 2017; pp. 219-267.

Zobkov, M.B.; Esiukova, E.E. Microplastics in a marine environment: Review of methods for sampling, processing, and analyzing
microplastics in water, bottom sediments, and coastal deposits. Oceanology 2018, 58, 137-143. [CrossRef]

Bradski, G. The OpenCV Library. Dr. Dobb’s ]. Softw. Tools Prof. Program. 2000, 25, 120-123.

Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’'Reilly Media, Inc.: Sebastopol, CA, USA,
2008.

Suzuki, K.; Horiba, I.; Sugie, N. Linear-time connected-component labeling based on sequential local operations. CVIU 2003, 89,
1-23. [CrossRef]

Lifeng, H.; Xiwei, R.; Qihang, G.; Xiao, Z.; Bin, Y. The connected-component labeling problem: A review of state-of-the-art
algorithms. Pat. Rec. 2017, 70, 25-43. [CrossRef]

Grana, C.; Borghesani, D.; Cucchiara, R. Optimized block-based connected components labeling with decision trees. IEEE Trans.
Image Process. 2010, 9, 1596-1609. [CrossRef]

Rosenfeld, A. Connectivity in digital pictures. ]. ACM 1970, 17, 146-160. [CrossRef]

Suzuki, S.; Abe, K. Topological structural analysis of digitized binary images by border following. Comput. Gr. Image Process.
1985, 30, 32-46. [CrossRef]

Vossepoel, A.M.; Smeulders, A.W.M. Vector code probability and metrication error in the representation of straight lines of finite
length. Comput. Graph. Image Process. 1982, 20, 347-364. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1021/es2031505
https://doi.org/10.1134/S0001437017060169
https://doi.org/10.1016/S1077-3142(02)00030-9
https://doi.org/10.1016/j.patcog.2017.04.018
https://doi.org/10.1109/TIP.2010.2044963
https://doi.org/10.1145/321556.321570
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/0146-664X(82)90057-0

	Introduction 
	Materials and Methods 
	Fish Samples 
	Microplastic Identification via the Use of Microscopic Analysis 
	Software and Hardware 
	Image Pretreatment 
	Union–Find Algorithm 
	Basic Descriptors 
	Area 
	Perimeter 
	Circularity 
	Ferret Diameters 
	Smallest Rectangle 
	Elongatedness 
	Ellipse Axes 
	Compactness 


	Results 
	Discussion 
	General Physical Characterization 
	Length and Width of Particles 
	Area of Particles and Fibers 
	Fiber Length 
	Compactness and Circularity 

	Conclusions 
	References

