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Abstract: Urban industrialization has caused a ubiquity of microplastics in the environment. A large
percentage of plastic waste originated from Southeast Asian countries. Microplastics arising from the
primary sources of personal care items and industrial uses and the fragmentation of larger plastics
have recently garnered attention due to their ubiquity. Due to the rising level of plastic waste in
the environment, the bioaccumulation and biomagnification of plastics threaten aquatic and human
life. Wastewater treatment plant (WWTP) effluents are one of the major sources of these plastic
fragments. WWTPs in Southeast Asia contribute largely to microplastic pollution in the marine
environment, and thus, further technological improvements are required to ensure the complete and
efficient removal of microplastics. Coagulation is a significant process in removing microplastics,
and natural coagulants are far superior to their chemical equivalents due to their non-toxicity and
cost-effectiveness. A focused literature search was conducted on journal repository platforms, mainly
ScienceDirect and Elsevier, and on scientific databases such as Google Scholar using the keywords
Wastewater Treatment Plant, Coagulation, Microplastics, Marine Environment and Southeast Asia.
The contents and results of numerous papers and research articles were reviewed, and the relevant
papers were selected. The relevant findings and research data are summarized in this paper. The
paper reviews (1) natural coagulants for microplastic removal and their effectiveness in removing
microplastics and (2) the potential use of natural coagulants in Southeast Asian wastewater treatment
plants as the abundance of natural materials readily available in the region makes it a feasible option
for microplastic removal.

Keywords: wastewater treatment plant; coagulation; microplastics; marine environment;
Southeast Asia

1. Introduction

The commercial use of plastics began to rise in the 1950s. The world began relying
on plastic products due to their versatility, durability, degradation resistance and low
cost [1]. The increasing demand for plastics, however, came with the consequence of plastic
pollution in the environment, which could have undesirable effects on nature and the living
beings in it [2]. According to the Organisation for Economic Co-operation and Development
(OECD), plastic consumption has quadrupled over the past 30 years, with global production
reaching 460 million tons in 2019. The plastic waste generated by consumption has also
doubled to 353 million tons between 2000 and 2019 [3]. Microplastics are synthetic plastic
materials with a diameter of less than 5 mm [4]. Even though microplastics were first
mentioned in the 1970s [5], it was not until 2004 that these substances gained public and
scientific awareness. Microplastics are generally classified into two categories: (1) primary
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microplastics and (2) secondary microplastics [6]. Currently, microplastic pollution in the
environment is ubiquitous and found in oceans, coral reefs and polar regions; it mostly
originates from land, with wastewater treatment plant effluents being a significant source of
this pollutant [7]. The small size of microplastics is hazardous to marine organisms as they
can be mistaken for food and consumed by these organisms [8]. The microplastics from
marine organisms can be transferred to human beings through consumption. Furthermore,
microplastics have been found in sea salt and drinking water, which could also adversely
affect public health [9]. Asia is the largest continent in the world and, thus, the largest
contributor to marine plastic pollution. Approximately 81% of marine plastic is from Asian
countries. Southeast Asian countries such as Indonesia and the Philippines were found to
be the prominent contenders responsible for marine plastic pollution [10]. This scenario
is mainly due to the incompetence of wastewater treatment plants in Southeast Asia in
removing microplastics [10]. One of the significant barriers to wastewater management in
Southeast Asian countries is the cost.

It is crucial to mitigate the plastic pollution from wastewater treatment plants as they
release a large percentage to the environment. An estimated 3.85 × 1016 microplastics per
year are released from wastewater effluents [11]. Existing primary and secondary treatment
processes can remove approximately 66% of the microplastics in the influent [12,13]. Coag-
ulation is the process of removing contamination in suspended particle and colloidal forms
by destabilizing and aggregating the particles into large flocs. The aggregates then settle
and can be removed from water using a solid–liquid separation method [14]. Coagulation
is a simple and cost-effective technology used in water treatment plants. In the wake of
sustainable development, research on natural coagulants as replacements for chemical
coagulants has increased. Natural coagulants are renewable, biodegradable, non-toxic
and cheap, making them more attractive than chemical coagulants [15]. In recent studies,
chemical and natural coagulants could effectively remove microplastics in wastewater
streams. However, the research on natural coagulants for microplastic removal is limited,
and most research focuses on turbidity and COD removal. Despite the limited research,
natural coagulants have proven efficient and can help mitigate the microplastic problem.
Coagulation using natural coagulants is a sustainable and suitable solution for the mi-
croplastic problem in wastewater effluent. The mechanism involved in natural coagulation
is assumed to be a combination of two or more mechanisms. Charge neutralization and
bridging are the most probable mechanisms of action of natural coagulants. Southeast Asia
is abundant in natural resources such as bananas and Moringa oleifera, which have proven
to be efficient in removing plastics [16,17]. Improving the extraction and purification of
these coagulants can enhance the removal efficiency, but further studies are required for
these improvements. There is limited research on microplastics in wastewater effluent
and natural coagulation in Southeast Asian countries. Filling these research gaps will help
mitigate the microplastic problem in this region.

This review aims to (1) understand and evaluate the process of coagulation using
natural coagulants to remove microplastics in wastewater effluents, (2) identify the feasibil-
ity of natural coagulants in Southeast Asian countries and (3) identify the future research
pathways regarding microplastic removal using coagulation.

2. Microplastics from Wastewater Treatment Plants (WWTPs)

Almost 98% of the microplastics in the marine environment are generated from land
activities, with road runoff being the primary source, followed by treated effluents from
wastewater treatment plants (WWTPs) [18]. Primary microplastics are directly introduced
in wastewater effluent streams, and the washing process of synthetic textiles is considered
the major source of these primary microplastics in the oceans. The minute size of the
plastic particles allows them to traverse wastewater treatment plants (WWTPs) and enter
marine environments [19]. Wastewater treatment plants (WWTPs) are a significant source
of microplastics in the environment. Microplastics can enter WWTPs in a variety of
ways, such as sewage and stormwater runoff, and are discharged into the environment
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along with the treated wastewater. Primary microplastics from personal care items, the
fibers from textiles during washing in domestic wastewater [20], and industrial effluents
containing plastic fragments used in molding and other processes are major microplastics
in plants. The wet sedimentation process washes off the tiny microplastic dust particles in
the atmosphere resulting mainly from the wear and tear of tires, and road markings are
carried to the treatment plants through stormwater runoff [21]. Plastic wastes undergo
mechanical degradation, leading to fragmentation due to extreme environmental conditions
in landfills. The leachate discharge carries the plastic debris to WWTPs [22]. In a study by
He et al., it was found that all 12 leachate samples investigated showed the presence of
microplastics [22].

Identifying the shapes of the microplastics present in the wastewater is necessary as
this helps with the implementation of removal technology in a WWTP. The most common
shapes in wastewater are fibers, pellets, fragments and films [23]. Fibers are the most domi-
nant shape, accounting for nearly 52.7% of the microplastics present in wastewater. This can
be due to the enormous quantity of fibers discharged in domestic washing discharges [24].

Although it is challenging to come up with an actual amount of microplastics released
by WWTPs, it is well established that most of the microplastics in the marine environment
come from wastewater [25]. Murphy et al. estimated that a WWTP serving a population of
650,000 could release up to 65 million microplastics into the marine environment daily [26].
It was shown statistically that approximately 8 trillion were entering the marine environ-
ment daily through wastewater systems [27]. Treated and untreated wastewater effluent
can contribute possibly 3.85 × 1016 microplastics per year [11]. Europe alone was estimated
to release 520,000 tons of plastic in wastewater effluent streams [28]. In a study conducted in
Australian WWTPs, it was found that approximately 22.1 × 106 to 133 × 106 microplastics
enter the environment per day through wastewater effluents [29].

In Asia, most WWTPs are unable to completely remove the microplastics in the
influent, with a high percentage of microplastics remaining in the effluent streams even
after the treatment process; thus, wastewater streams are one of the largest contributors
of microplastic pollution in the environment. Even though Asia is the largest contender
in the microplastic problem, no cumulative data on the amount of microplastics entering
the marine environment through WWTPs could be found [30,31]. Despite Southeast Asian
countries being among the top contributors of microplastics in the oceans, there are limited
data available on the microplastics from wastewater. In a WWTP in Thailand, the final
effluent, on average, contained 10.67 particles of microplastics per liter of wastewater [32].
In another study conducted in Thailand on three WWTPs, it was found that, on average,
two pieces of microplastics were present per liter of wastewater effluent [33]. In Malaysia,
a study conducted on the Semenyih River showed that approximately 7.47 microplastic
particles are released per liter of wastewater from WWTPs [34]. In Vietnam, the density
of microplastics in wastewater effluent was between 0.684 and 2.107 g/L [35]. In another
study conducted in Vietnam, the effluent contained between 140 and 813 microplastic items
per m3 [36]. In Surabaya, Indonesia, treated water contained an average of 10.4 plastic
particles/L [37]. Few studies have proven the persistence of microplastics in wastewater
even after being treated.

2.1. Microplastic Removal in WWTPs

Current wastewater treatment plants are not intended to remove the microplastics
that appear with the waste. As microplastics are an emerging pollutant, specific treatment
plants have yet to be created to eliminate them. A removal efficiency of more than 88%
could be reached with secondary treatment [24] with the efficiency increasing to 99.9% with
tertiary treatment [21]. The fundamental design of municipal WWTPs around the world is
relatively the same, with Figure 1 showing the standard processes included in the primary,
secondary and tertiary treatment steps.
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Figure 1. Classification and technologies in different steps of a wastewater treatment plant.

In the primary treatment, microplastics larger than 1000 µm can be removed [38].
Primary treatment can also remove fiber microplastics as the fibers are trapped due to
flocculation and settling [24]. Conventional primary treatment was able to remove ap-
proximately 65% of the microplastics in the influent [12]. In a study conducted by Bayo
et al., a removal efficiency of 74% was achieved in the primary stage of the WWTP [39]. In
one study conducted, primary treatment including coagulation was able to remove 98%
of microplastics, and in another study, the removal efficiency reached up to 95.3% [40,41].
In a WWTP without the coagulation process, the mean removal efficiency after treatment
was found to be 72% [42]. Microplastics can become entrapped within the aeration tank
during the secondary treatment of microbial polymers or sludge flocs. The microplastic
removal efficiency was 67% in the activated sludge process [13]. Microplastics with a
particle size of more than 500 µm were found to be absent after secondary treatment [43].
Tertiary treatment can reduce the amount of microplastics in the influents to 0.2 to 2%.
Talvitie et al. conducted a study to compare the removal efficiency of different tertiary
treatment technologies and found the membrane bioreactor to be the most efficient, with
an efficiency of 99.9% [44]. Studies conducted on WWTPs have shown that the majority of
the microplastics that remain after the tertiary treatment processes are fibers. This could be
due to the fibers being able to traverse the membranes longitudinally [45].

In Wuhan, China, a WWTP could remove 65% of the microplastic present [46], and
in Sydney, Australia, the overall removal was 66% [13]. Compared to that, a wastewater
treatment plant in Vancouver, Canada, removed 91.7% of microplastics [47], while another
plant in Finland could achieve 99.9% microplastic removal [44]. The difference in the
efficiency of removing microplastics is due to the technologies implemented in WWTPs in
different regions. Most WWTPs in Asia and Australia use conventional treatment systems,
which include screening followed by primary sedimentation and secondary treatment.
WWTPs in Europe and certain North American countries have equipped advanced treatment
methods, which include membrane bioreactors and dissolved air floatation.

The size, morphology and type of polymer influence the amount of microplastic re-
moved in wastewater treatment plants. Primary treatment can remove bigger microplastics
as well as fibers efficiently. In secondary treatment, fragments have a high efficiency of
removal as they agglomerate and are ingested by the activated sludge [48]. Specific plas-
tic shapes, such as pellets, were removed easily during tertiary treatment. The tertiary
treatment process is also able to remove microplastics with tiny particle sizes [23].
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2.2. Advanced Removal Technologies

Although microplastics in wastewater can be removed during the primary, secondary,
and tertiary segments, none of the processes involved is specifically devised to remove
microplastics. This causes a significant amount of microplastics to remain in the WWTP
effluent, which releases these microplastics into the environment. Most microplastics
are contained in sewage sludge and can be distributed through sludge land application.
Advanced technologies, such as rapid sand filtration, the sol–gel method, electrocoagulation
and photocatalytic degradation, are some approaches proposed for removing microplastics
in WWTPs [49]. Most technologies are designed as add-on technologies for the existing
secondary and tertiary treatment facilities. Rapid sand filtration is proposed as a tertiary
treatment substitute to eliminate microplastics. Thus, a pre-treatment with techniques such
as sedimentation and coagulation is necessary before the application of this process [50].
The electrocoagulation process causes the separation of microplastics through flotation by
dissolving sacrificial anodes to free the coagulant precursors, which causes electrolysis to
occur at the cathode and is depicted in Figure 2 [51].
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In studies conducted on electrocoagulation, the process was able to remove 99.2% of
microbeads from wastewater at a pH of 7.5 [52] and remove more than 80% of the COD
and color from industrial wastewater [53]. The process was also able to remove 98.6% of
microplastics from wastewater in another study [54]. CuFeO2@EP photocatalysts were able
to degrade 99% of methylene blue dye [55]. Several studies were conducted to produce
photocatalysts using the sol–gel method for the treatment of wastewater. In one study,
floating Bi–N–TiO2 photocatalysts made using the sol–gel method were able to degrade
83.8% of diesel oil at a temperature of 550 ◦C [56]. Ni–N–TiO2 photocatalysts produced
using the sol–gel method also showed high efficiency in the degradation of diesel oil. At a
temperature of 550 ◦C and a degradation time of 300 min, they were able to degrade 95.9%
of oil [57], whereas in another study, only 63.0% of oil was degraded [58]. Rapid sand
filtration was also able to remove 75.49% of the microplastics present in wastewater influent
with an average microplastic concentration of 4.40 ± 1.01 MP/L [59]. A few studies show
that these technologies can be considered for the microplastic removal process in WWTPs
as they have shown excellent results. They are, however, complex, and there are substantial
research gaps in the optimization of these processes, which need to be filled before the
implementation of the techniques on large scale. Extended study and research is required
to understand the processes better as they are still at a preliminary stage, and it will be
a long time before any of the technologies can be implemented in the existing WWTPs.
Although, these technologies show excellent results, they are still in the development stage
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compared to coagulation, which is implemented by most WWTPs around the world. The
improvement of the coagulation process for microplastic removal is therefore a feasible
alternative to these specific advanced technologies for microplastic removal.

2.3. Wastewater Management in Southeast Asia

Most WWTPs in Asia cannot remove the microplastics in wastewater influents. This is
a major issue as it has been noted that Asia is the primary source of plastic waste pollution.
The wastewater facilities in Southeast Asia are currently dominated by decentralized
wastewater technologies (DWTs), with cluster wastewater technologies (CCTs) in the urban
areas. Only a few centralized wastewater technologies (CWTs) were observed [60]. The
different systems can be defined based on the treatment capacity and the proximity to
the wastewater source. DWT systems’ approach is treating the wastewater at or near the
source. DWTs have a lower capacity of approximately 5000 person equivalents, whereas
the capacity of CWTs is twofold that of DWTs [61]. CCTs are usually classified under CWTs
as both systems treat wastewater from multiple households, whereas DWTs can only treat
a single household. The major difference between CCTs and CWTs is the size of the facility,
and CWT systems are considered large-scale CCT systems. CWTs collect wastewater from
multiple households, and the wastewater is then carried to an end-of-pipe treatment facility.
DWTs, on the other hand, treat the wastewater within the building with minimal collection.
The facilities are minimal, and the standard technologies used are aerobic and anaerobic
digestion, composting, sand/soil filtration and wetlands [62]. Both CCTs and CWTs are
formed by a vast sewer network that carries the wastewater from sources to the treatment
plant. With the growing population and urbanization in the countries considered, CWTs are
considered the preferred treatment facility. However, most CWT facilities have deteriorated
over time and cannot perform at their full capacity. A major issue with DWT systems is
that they are unable to comply with the limits of environmental discharges [63]. In many
cities such as Bangkok [64] and Kuala Lumpur in Southeast Asian countries, the CWTs
have poor effluent quality due to overcapacity.

3. Coagulation

There has been recent research on advanced technological methods to mitigate the
number of microplastics in wastewater effluent. However, the specific treatment processes
still need to be applied on a full scale to any wastewater treatment plant. Furthermore,
implementing the technologies in the existing wastewater treatment plants could increase
the plants’ capital and operational costs. An economical solution to the cost problem would
be to tune the operational parameters of the existing treatment processes to increase the
efficiency of removing microplastics. Improving the flocculation and coagulation process
could be essential in removing microplastics [24]. In a study conducted by Ma et al., it was
observed that an aluminum-based coagulant showed improved efficiency in the removal
of microplastics, which implies the possibility of improving the process of coagulation in
wastewater treatment plants [65].

The coagulation process, as shown in Figure 3, consists of merging small particles
into larger aggregates or flocs, followed by the adsorption of dissolved organic matter
into the flocs. The flocs are removed as impurities in subsequent solid–liquid separation
processes [14]. Coagulation is an important operation in wastewater treatment plants and
for sludge dewatering in industries such as the pharmaceutical, pulp and paper processing
and metalworking industries [66]. Coagulation is a commonly used treatment method due
to it being cost-friendly and easy to operate [67].
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Coagulation could be used in WWTPs to remove microplastics. The addition of a
chemical or natural coagulant neutralizes the charge on the surface of the microplastics,
causing them to clump together and form flocs. The flocs can then be removed using a
solid–liquid separation method. In studies conducted, existing coagulation had a high
removal efficiency of 47 to 82% [68]. Another study stated that the coagulation process in
the tertiary treatment sector had a higher average removal efficiency of 64.4% compared to
that in the primary (60.6%) and secondary (60.6%) treatment sectors [69]. In an investigation
conducted in Tianjin, China, coagulation removed 76.4% of the microplastics present in
wastewater [70]. In another study conducted in Hong Kong, coagulation removed 78.2% of
suspended microplastics [71]. It is worth noting that the removal efficiency of coagulation
is highly dependent on the characteristics of microplastics. In general, it is found that
coagulation can remove larger sizes of microplastics [37] and fibers more efficiently [70].
Magnetic coagulation is also more effective in removing microplastics from wastewater.

3.1. Mechanism

The interaction of different coagulants is varied via a broad range of mechanisms and
kinetic processes. In general, the kinetics of coagulation is described as contact between
the coagulant and suspended colloids by absorption through electrostatic interactions.
The conformation of adsorbed polymers is rearranged, resulting in aggregation in the
suspended particles, which causes them to form large flocs [67]. The mechanism involved
in the coagulation process largely depends on the type of coagulant used as well as the
properties of suspended particles.

In general, the coagulation mechanisms can be sorted into four types: (1) Simple
charge neutralization is the neutralization of the charges present in the colloidal surface. A
decline in the electrostatic repulsion to a minimum value causes the particles to aggregate
and form large flocs. (2) In charge patching, heterogeneous charges on the colloids are
unevenly distributed, which generates electrostatic attraction in the particles. The non-
zero value of the zeta potential at the optimal dose forms a flocculation window. The
electrostatic attraction leads to the eventual aggregation of the particles, forming large
flocs. (3) Bridging usually occurs when the molecular weight of the coagulants is high.
The long-chain coagulants connect the finer flocs to accumulate into a large one. (4) The
sweeping mechanism is used by inorganic coagulants. Hydroxide precipitates are formed
as a fine colloidal dispersion. Further aggregation produces hydroxide flocs [67,72–74]. The
detailed mechanism method is shown in Figure 4.
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The coagulation mechanism for removing microplastics can be assumed to be a com-
bination of two or more coagulation mechanisms. The properties of the wastewater also
play a significant role in the mechanism involved in the process. Charge neutralization
plays a role as the suspended microplastic particles have a negative surface charge [75].
Adding a coagulant to the wastewater will result in the neutralization of the surface charge
of the microplastics. For coagulants with large molecular weights, the bridging mechanism
also plays a role in removing microplastics. Bridging is exerted by the coagulants as they
link with microplastics that have not reached complete destabilization through electrostatic
gravitational forces and Van der Waals’ forces [67,76].

3.2. Factors Affecting Coagulation

Several factors and operational conditions can affect the process of coagulation. It is
important to understand the general and specific factors affecting the process to help with
the optimization. The principal operating conditions that affect coagulation are pH and
temperature. Different coagulants tend to have different pH dependencies. The initial pH
level can affect the surface charge on microplastics, the hydrolysis mode of a coagulant and
other factors [77]. The pH value determines the type of hydrolysis taking place when using
inorganic coagulants [74]. An increase in the pH value causes the negative charge on the
particles’ surface to become greater [78]. pH also affects the particle size of the flocs, with
larger floc sizes for alkaline conditions than acidic conditions [79]. At low temperatures,
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the movement and collision energy of the particles are low, resulting in fewer collisions
between particles. This results in weak floc aggregation [80].

The types and dosages of coagulants also substantially influence the efficiency of coag-
ulation. The dose of the coagulant used has a substantial effect on microplastic removal.
The relation between the efficiency and dosage of coagulation depends on the primary
mechanism of coagulation. If the primary mechanism is simple charge neutralization, the
removal efficiency will generally increase with the coagulant dosage. This is because the
absolute zeta potential value of the microplastics will gradually decrease with the addition
of a coagulant. Maximum removal is achieved when the zeta potential of the microplastic
is 0 [67]. If the coagulation process occurs due to several coexisting mechanisms, then
microplastic’s relative stabilization phenomenon does not occur if the coagulant dose is
too high [68]. For the sweeping mechanism, it is assumed that a large dose of a coagulant
will cause the density and structure of the flocks to be greater with stronger adsorption
and sweeping effects [81]. The types of coagulants typically used are categorized into two:
chemical coagulants, which include inorganic coagulants, organic synthetic coagulants and
polymeric coagulants, and natural coagulants [74]. Most current research and practice on
microplastic removal coagulation processes use inorganic chemical coagulants. However,
in recent years, natural biological coagulants have gained importance. Inorganic coagulants
include small-molecule inorganic coagulants such as aluminum trichloride and aluminum
sulfate and inorganic polymeric coagulants (IPCs) such as PAC and PFS. IPCs have a higher
charge density and molecular weight compared to small-molecule inorganic coagulants [82].
Aluminum-based coagulants are largely found to be more efficient in removing microplas-
tics than other chemical coagulants. Inorganic coagulants are the most commonly used
coagulants in the industry. Organic polymer coagulants consist of long-chain polymers,
which can be classified based on their ionic disposition. These polymers, when hydrolyzed,
can stimulate particle aggregation through bridging or charge neutralization [83]. The
polymer coagulants commonly used to remove microplastics are PAM, polyamines, and
others. These coagulants can be inserted into water bodies to remove microplastics [68].
Natural coagulants have recently been studied as a substitute for chemical coagulants. Nat-
ural coagulants are cost-effective due to their abundance in nature. The dosage of natural
coagulants required is usually lower, and the coagulants are stable. Another advantage
natural coagulants have over chemical coagulants is that they pose a lower toxicological
risk due to their formation from nature [84]. These coagulants primarily originate from
organic polysaccharide materials such as chitosan and starch. The macromolecular form
and additional functional groups of the natural coagulants help with the neutralization of
the negatively charged microplastics [85].

It is important to note the characteristics, such as the size and shape, of the mi-
croplastics to be removed, as they play an important role in coagulation. Although the
characteristics are not a key factor, different microplastic removal studies have observed a
considerable difference. The size of the plastic influences the rate of collision and settling
behavior [76]. It is difficult with current research to know how the particle size relates to re-
moval efficiency as there have been studies concluding that smaller and larger particle sizes
are easier to remove. As for the morphology of plastic particles, it has been consistently
found that fibers are best removed by coagulation [71,86,87].

Other factors affecting the removal efficiency of coagulation include turbidity, water
flow rate, stirring intensity, and flocculation and sedimentation time. The coagulant
dosage required is lesser at high turbidity as the collision frequency is higher [88]. Li et al.
found that shorter sedimentation and coagulation time caused the efficiency of removing
microplastics to be low. The study also concluded that there was a low efficiency at high
stirring speeds due to a reduction in the particle size in flocs [89].

3.3. Chemical Coagulants

Chemical coagulants, which include inorganic coagulants and organic synthetic poly-
mer coagulants, are efficient in removing microplastics in wastewater systems. Inorganic
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coagulants have a strong reaction with the negatively charged microplastics through the
cations produced by hydrolysis [90]. In general, aluminum-based coagulants have better
efficiency in removing microplastics than iron-based coagulants. Table 1 summarizes a few
recent studies on removing microplastics using chemical coagulants in wastewater systems.

Table 1. Results of microplastic removal using chemical coagulants.

Location Coagulant Dosage of Coagulant Sample pH Efficiency Reference

Ontario, Canada Aluminum
hydroxide 40 mg/L River water 7.8 71% [91]

Czech Republic Alum - Drinking water
treatment plant 3.5 61.65% [92]

Surabaya City,
Indonesia

Aluminum
sulfate

(Al2(SO4)3)
- River water - 17% [37]

Daegu, Republic
of Korea PAC

WWTP A—32.4 mg/L
WWTP B—30.5 mg/L
WWTP C—29.3 mg/L

Wastewater
treatment plant -

WWTP A—53.8%
WWTP B—81.6%
WWTP C—47.1%

[69]

Tianjin, China PAC, PAM, Fe3O4 - Constructed
wetland - 73.8% (sunny days)

77.9% (rainy days) [70]

Detroit, MI, USA Aluminum
sulfate 20 ppm Water

treatment plant 7.43–7.59 13.6% (particle size
45–53 µm) [93]

Australia Alum, PAM 50–250 mg/L Simulated
stormwater 3–11

Maximum: 96% at
150 mg/L alum and

15 mg/L PAM
[94]

Finland
Ferric chloride,
polyaluminum

chloride
0.017–1.4 mmol/L Wastewater 6.5

Ferric
chloride—99.4%
Polyaluminum

chloride—98.2%

[81]

China

Magnetic
magnesium
hydroxide

Mg(OH)2, iron
oxide (Fe3O4)

200 mg/L Mg(OH)2
120 mg/L Fe3O4

Simulated
wastewater 7 66.3 to 87.1% [95]

-
Iron (III) chloride

(FeCl3)
PAC

30 to 180 mg/L
(30 increments) Simulated water 7 PS—77.83%

PE—29.70% [79]

China

Aluminum
chloride (AlCl3),
calcium chloride

(CaCl2)

- Lake water 3–10 More than 80% at
pH > 6 [96]

Greece

Iron sulfate
(FeSO4), iron (III)
chloride (FeCl3),

magnesium
sulfate (MgSO4)

496–993 mg/L FeSO4
483–964 mg/L FeCl3

1025–2050 mg/L
MgSO4

Tap water 8 92.4% for Fe2+ ion
89.1–90.4 for Mg2+ ion

[97]

Al-based and Fe-based inorganic coagulants are the most commonly used coagulants
in the research conducted on microplastic removal in wastewater. In recent years, Mg-based
coagulants have been used in certain studies and have shown promising potential. Factors
such as pH, the dosage of water and the presence of other substances in the sample water
affect the efficiency of these coagulants. In summary, Fe-based coagulants are more effective
in removing microplastics than others. However, the size and type of microplastics present
in the water also play a major role in the coagulation process, and further research needs to
be conducted. An increase in the coagulant dosage does not necessitate higher removal
efficiency. It can be observed that increasing the coagulant dosage past the optimum value
tends to decrease the removal efficiency. It is difficult to determine the effect of pH on the
efficiency as it depends on the microplastic present and the coagulant used.
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3.4. Natural Coagulants

Natural coagulants have a cost and environmental benefit over chemical coagulants. In
recent years, natural coagulants have gained much importance in scientific communities
as chemical coagulants are found to be toxic to the environment. Chemical coagulants are
not biodegradable and tend to persist in water unless treated specifically [98]. The presence
of aluminum, one of the most commonly used chemical coagulants, in drinking water has
been linked to contributing to Alzheimer’s and related diseases in humans [99]. Natural
coagulants derived from plant sources can overcome these health concerns. In addition to
the health issues, chemical coagulants pose a threat to the environment as they produce
hazardous sludge. Natural coagulants, on the other hand, do not increase the metal load,
and they produce minimal waste sludge, making them a sustainable alternative [98]. The
dosage of natural coagulants required is also lower than that of their chemical counterparts,
making them cost-effective. Considering all these advantages, natural coagulants are a far
superior and sustainable alternative to chemical coagulants. Limited research is found on the
efficiency of natural coagulants, with most research focusing on turbidity and COD removal.
However, limited studies have proven natural coagulants as a worthwhile substance for
removing microplastics. Although the number of studies is limited, green coagulants have
exhibited a promising future in the wastewater industry by effectively removing turbidity,
COD, BOD and TSS from wastewater. There is a lack of research on the industrial-scale
application of natural coagulants. In addition, there is a need for more research on the
optimization of parameters for natural coagulants. With proper scale-up and optimization,
natural coagulants can replace chemical ones in WWTPs. Table 2 summarizes the recent
research conducted on the removal of microplastics using natural coagulants.

Table 2. Water treatment using natural coagulants.

Coagulant Dosage of
Coagulant Sample pH Efficiency Reference

Pinecone extract 0.5 mL/L Synthetic
turbid water 2 and 12 Maximum turbidity

removal: 82% [100]

Salvia hispanica (chia) 40 g/L Landfill leachate 7 Turbidity: 62.4%
COD: 39.76% [101]

Strychnos potatorum 40.0 mg/L Artificial water 7 Kaolinite turbidity:
93% [102]

Leucaena leucocephala 10 mL/L Synthetic
wastewater 3 Congo red dye:

99.9% [103]

Cactus (Opuntia ficus-indica) 1500 mg/L
Oil sand

process-affected
water

7–8 Turbidity: 98% [104]

Rice husk ash 6.0 g Palm oil
mill effluent 3.6 COD: 52.38%

TS: 83.88% [105]

Moringa oleifera 50 mg/L Surface water 7.03–7.70 Turbidity: 85% [17]

Phaseolus vulgaris 0.5 M Synthetic
turbid water 7.4 Turbidity: 85% [106]

Fava bean seeds (Vicia fava L.) 0.125–0.25 mL/L Synthetic water 10 Turbidity:
51.5 to 54% [107]

Musa paradisica (banana) peels 0.6 mL/L Simulated
turbid water 11 Turbidity: 98.14% [108]

Dolichos lablab (Indian beans) 0.6 mL/L Simulated
turbid water 11 Turbidity: 98.84% [108]

Soybean 120 mg/L Surface water -
Turbidity: 23.2%
Color removal:

30.4%
[109]
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Natural coagulants play a substantial role in removal efficiency when used in water
treatment. Most natural coagulants used and summarized in the table above exhibit high
removal efficiency. The studies summarized in the table above show that a higher coagulant
dosage was directly related to a higher removal efficiency. However, this varies with the
coagulant used, and further research needs to be conducted before a conclusion can be made.
The active coagulant agents, polysaccharides, proteins and polypeptides also need to be
studied as they play an essential role in the efficiency of these coagulants. It is observed from
most studies that natural coagulants work best at an optimum pH of 7 with slight variations.

3.5. Use of Natural Coagulants in Southeast Asia

Coagulation is a common process involved in most wastewater treatment plants. Most
plants use chemical coagulants, which have toxic effects on the environment and are also
expensive. As cost is one of the major barriers to wastewater management in Southeast
Asia, the coagulation process with the use of natural coagulants is a suitable alternative.
There currently needs to be more research available on the removal of microplastics by
coagulation in WWTPs in Southeast Asia. Furthermore, no studies have been conducted
on natural coagulants in this region. However, in numerous studies conducted worldwide,
coagulation achieved excellent results in microplastic removal. The natural coagulants
researched also showed the potential to replace chemical coagulants in the industry for
treating wastewater.

Diascora hispida is a plant found in the tropic and subtropic regions of the world,
especially in West Africa, the Caribbean, and Southeast Asia [110]. Diascora hispida was used
as a natural coagulant to treat textile wastewater effluent and could achieve an efficiency of
28%, 94% and 64% at an optimum pH [111]. Banana has the highest production amount in
Southeast Asia [112], and a study conducted on banana peels as a natural coagulant showed
the removal of 88% of turbidity under optimum conditions [16]. One study conducted in
Malaysia used the local plants A. indica, S. palustris, D. linearis, S. polyanthum, M. esculenta,
P. sarmentosum and M. malabathricum to effectively remove turbidity, with P. sarmentosum
having the highest efficiency of 24.2% removal at a small dose of 5 g/L [113].

Moringa, a natural coagulant, has been extensively researched by scientists and has
shown promising coagulation properties. Improving the extraction method for this coagu-
lant can immensely enhance its coagulant activity. In one study, extraction of the moringa
plant using salt solutions had a removal efficiency of 91%, which was significantly higher
than that when the coagulant was extracted with water [114]. In addition to improving the
extraction, purifying the natural coagulants has also been linked with greater efficiency.
One of the ways of purifying the coagulants is by lipid removal [115]. The coagulant
activity depends on the active compounds, polysaccharides and proteins; thus, maximizing
the extraction of these compounds will ensure higher removal efficiency. Other plant-based
coagulants such as Ocimum basilicum and hibiscus, which are native to the Southeast Asian
regions, have shown great potential [116]. O. basilicum reduced COD by 61.6% and dye
by 68.5% at a low dosage of 1.6 mg/L [117]. These natural coagulants show promising
effectiveness and can be further studied by enhancing their extraction and purification
methods so they can be used in WWTPs. Furthermore, strategies such as hybrid processes
and modifications to the natural coagulants are also worth mentioning when improving
efficiency. Hybridizing involves composite coagulants, where the natural coagulants are
chemically modified with inorganic coagulants. This process not only enhances the effi-
ciency of the coagulation process, but also reduces the harmful impacts of the chemical
coagulants due to the presence of the natural substances [118].

The removal efficiency of natural coagulants shows promising effects for removing
microplastics from WWTPs. Even though the efficiency of chemical coagulants is also high,
the substantial impact of chemical coagulants on the environment and living beings is a
major drawback. Natural coagulants are cheap and non-toxic, making them a suitable
alternative for mitigating microplastics released into the environment from WWTPs. Many
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natural coagulants that can be used to remove microplastics from wastewater influents are
abundant in Southeast Asia.

4. Future Perspectives

Further research on the characteristics of microplastics present in wastewater treatment
plants in Southeast Asia is required. The relation between the characteristics of microplastics
and coagulation efficiency needs to be studied in further detail. Experiments conducted
using natural coagulants to remove microplastics will also help with the implementation of
these techniques in the future. It is also worth looking into the extraction and purification
of natural coagulants to ensure they are able to operate at the maximum possible capacity.

5. Conclusions

The key findings of this review include the following: (i) Billions of tons of microplas-
tic are present in the marine environment, with the majority coming from land sources.
Wastewater treatment plants in Asia, particularly Southeast Asia, are ineffective in remov-
ing microplastics. The discharge amounts to more than half of the marine plastic waste.
(ii) Wastewater treatment plants can remove a certain amount of microplastics during
treatment. However, the plants need to be equipped with specific treatment technologies.
Implementing new technologies is costly; thus, the optimization of current processes is a
better alternative. (iii) The optimization of the coagulation process could help mitigate the
microplastic problem in WWTPs. Natural coagulants are cheaper and more sustainable
than chemical coagulants. (iv) The abundance of natural materials in Southeast Asia repre-
sents a potential for the region to implement natural coagulation in WWTPs to diminish
the microplastic problem.
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