
Citation: Zeng, X.; Zhan, Y.; Zhou, W.;

Qiu, Z.; Wang, T.; Chen, Q.; Qu, D.;

Huang, Q.; Cao, J.; Zhou, N. The

Influence of Airborne Particulate

Matter on the Risk of Gestational

Diabetes Mellitus: A Large

Retrospective Study in Chongqing,

China. Toxics 2024, 12, 19. https://

doi.org/10.3390/toxics12010019

Academic Editors: Doug Brugge and

Mei Chung

Received: 13 November 2023

Revised: 17 December 2023

Accepted: 21 December 2023

Published: 24 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

The Influence of Airborne Particulate Matter on the Risk of
Gestational Diabetes Mellitus: A Large Retrospective Study in
Chongqing, China
Xiaoling Zeng 1,2,†, Yu Zhan 3,† , Wei Zhou 4,†, Zhimei Qiu 3, Tong Wang 1 , Qing Chen 1 , Dandan Qu 5,6,
Qiao Huang 4, Jia Cao 1,* and Niya Zhou 5,6,*

1 Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military
Medical University), Chongqing 400038, China; zxl19961104@163.com (X.Z.); wtyc112@163.com (T.W.);
chenqingforward@gmail.com (Q.C.)

2 School of Public Health, China Medical University, Shenyang 110122, China
3 Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China;

yzhan@scu.edu.cn (Y.Z.); 2020223055131@stu.scu.edu.cn (Z.Q.)
4 Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and

Children’s Hospital of Chongqing Medical University), Chongqing 401147, China;
dr.zhouwei@163.com (W.Z.); hq99202311@163.com (Q.H.)

5 Clinical Research Centre, Women and Children’s Hospital of Chongqing Medical University,
Chongqing 401147, China; mangata1995@163.com

6 Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health,
Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China

* Correspondence: caojia1962@126.com (J.C.); zhouniya428@163.com (N.Z.)
† These authors contributed equally to this article.

Abstract: Emerging research findings suggest that airborne particulate matter might be a risk factor
for gestational diabetes mellitus (GDM). However, the concentration–response relationships and the
susceptible time windows for different types of particulate matter may vary. In this retrospective
analysis, we employ a novel robust approach to assess the crucial time windows regarding the
prevalence of GDM and to distinguish the susceptibility of three GDM subtypes to air pollution
exposure. This study included 16,303 pregnant women who received routine antenatal care in
2018–2021 at the Maternal and Child Health Hospital in Chongqing, China. In total, 2482 women
(15.2%) were diagnosed with GDM. We assessed the individual daily average exposure to air pollution,
including PM2.5, PM10, O3, NO2, SO2, and CO based on the volunteers’ addresses. We used high-
accuracy gridded air pollution data generated by machine learning models to assess particulate
matter per maternal exposure levels. We further analyzed the association of pre-pregnancy, early, and
mid-pregnancy exposure to environmental pollutants using a generalized additive model (GAM) and
distributed lag nonlinear models (DLNMs) to analyze the association between exposure at specific
gestational weeks and the risk of GDM. We observed that, during the first trimester, per IQR increases
for PM10 and PM2.5 exposure were associated with increased GDM risk (PM10: OR = 1.19, 95%CI:
1.07~1.33; PM2.5: OR = 1.32, 95%CI: 1.15~1.50) and isolated post-load hyperglycemia (GDM-IPH)
risk (PM10: OR = 1.23, 95%CI: 1.09~1.39; PM2.5: OR = 1.38, 95%CI: 1.18~1.61). Second-trimester
O3 exposure was positively correlated with the associated risk of GDM, while pre-pregnancy and
first-trimester exposure was negatively associated with the risk of GDM-IPH. Exposure to SO2 in
the second trimester was negatively associated with the risk of GDM-IPH. However, there were no
observed associations between NO2 and CO exposure and the risk of GDM and its subgroups. Our
results suggest that maternal exposure to particulate matter during early pregnancy and exposure to
O3 in the second trimester might increase the risk of GDM, and GDM-IPH is the susceptible GDM
subtype to airborne particulate matter exposure.

Keywords: airborne particulate matter; gestational diabetes mellitus; isolated post-load hyperglycemia;
sensitive time windows; sensitive subtypes
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1. Introduction

Gestational diabetes mellitus (GDM) is a common metabolic disturbance of pregnancy.
The condition increases the risk of complications for both diabetic mothers and infants,
including maternal obesity [1–3], type 2 diabetes (T2DM), cardiovascular diseases [4,5],
macrosomia, neonatal hypoglycemia, and long-term risk of obesity and cardiovascular
diseases in offspring [6,7]. Over time, the global incidence of GDM has been on the rise. As
ambient air pollution has become an important factor affecting human health, there are
emerging studies showing that airborne particulate matter may contribute to GDM [8–11].
Both animal and population studies demonstrated that exposure to PM2.5 is positively
linked to the risk of T2DM [12–15], affecting blood glucose through multiple pathways,
including insulin resistance [16], endothelial dysfunction [17,18], and inflammatory re-
sponses [19,20]. Since pregnancy is a vulnerable period for women, there is increased
interest in studying the effects of particulate matter on the onset of GDM and its further
prevention in this particular population.

A precise exposure assessment method is crucial for estimating the effect of air pol-
lutants on the risk of GDM. Most of the previous studies assessing maternal air pollution
exposure levels were obtained from air monitoring stations. Observations at monitoring
sites were inadequate to capture the spatial variation in air pollution at a fine scale, and
thus assessing individual exposure with data from the nearest sites could cause substantial
misclassification [21]. In recent years, studies have used a mixture of satellite simulation
and monitoring data to estimate air pollution exposure. Machine learning models have
been applied to predict the spatial and temporal distribution of atmospheric pollutants
such as PM2.5, PM10, and O3. Machine learning algorithms may have higher predictive
performance compared to traditional statistical models, such as general linear regression
and kriging [22]. Random forest is a popular machine learning algorithm that makes statis-
tical predictions by averaging over a collection of de-correlated classification or regression
trees; it can handle nonlinear relationships and interaction effects [23]. Based on satellite
data retrieval, ground-monitored nitrogen dioxide and carbon monoxide concentrations,
and various geographic covariates, the use of spatiotemporal autocorrelation, random
forest, and spatiotemporal kriging (RF-STK) models have also been proposed to predict
daily ground-level nitrogen dioxide and carbon monoxide concentrations in different re-
gions [24,25]. These data assimilation methods compensate for the high uncertainty of
satellite retrieval and the low spatial coverage of ground-based detection, and effectively
improve the spatial coverage and accuracy of pollutant exposure, providing more reliable
information for environmental epidemiology studies and air quality management.

According to laboratory examinations, we can classify OGTT test results as normal
glucose-tolerant (NGT) or as having isolated fasting hyperglycemia (GDM-IFH), isolated
post-load hyperglycemia (GDM-IPH), or combined hyperglycemia (GDM-CH) [26]. More
recently, emerging research has found that different subtypes of GDM may comprise differ-
ent metabolic entities. Previous studies have found that fasting hyperglycemia (GDM-IFH)
is closely associated with liver insulin sensitivity and subsequent liver glucose production,
whereas post-load hyperglycemia (GDM-IPH) is closely linked with muscle insulin resis-
tance [27,28]. Previous research has also indicated that GDM-IFH is strongly associated
with adverse pregnancy outcomes, and these pregnant women have a greater need for
insulin therapy and are less responsive to dietary lifestyle therapies [29,30]. However,
to our knowledge, few studies have explored the impact of air pollution exposure on
subclinical GDM groups during pregnancy. Therefore, it is of great importance to clarify
the effects of ambient pollution exposure on GDM from a comprehensive viewpoint.

Chongqing is an industrial base in southwest China, where industry plays an impor-
tant role in the development of its economy, and industrial pollution is the key cause of
environmental pollution. Therefore, in this paper, we conduct a large retrospective study,
which includes 16,303 participants, by employing our reliable air pollution assessment
methods, aimed at (1) assessing the susceptible windows of air pollution exposure for
GDM over the preconception period and first and second trimesters at weekly levels; and
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(2) distinguishing the specific air pollutants to which GDM and its subgroups are suscepti-
ble. This highly accurate individual pollutant exposure evaluation model and the two steps
of statistical analysis strategies in our large sample study will provide high-level evidence
for the association between air pollution exposure and the risk of GDM.

2. Methods and Materials
2.1. Study Population

This retrospective study included pregnant women who had their first prenatal care
visit at the Chongqing Health Center for Women and Children, China, from January 2018
to June 2021. The recruiting criteria were pregnant women aged 18~49 years and who were
long-term residents of Chongqing. The participants were excluded or ineligible for the
study if they had T1DM or T2DM before pregnancy; had family members with diabetes;
suffered from a serious psychiatric disorder; or did not complete the OGTT in the health
center. The project proposal was approved by the Ethics Committee of the Chongqing
Health Center for Women and Children.

A total of 25,939 volunteers were recruited and screened for participation in the study.
Of these, 9636 pregnant women were ineligible or excluded from the final analysis, and
the reasons included: being aged over 50 years (n = 4); not being a long-term resident of
Chongqing (n = 781); having a history of diabetes, mental illness, and a family history
of diabetes (n = 331); having an existing endocrine disease (excluding diabetes and other
endocrine diseases, including thyroid, adrenal, and hypothalamic diseases; n = 5057);
missing values for blood glucose at three time points (n = 918); and OGTT not performed
at 24–28 weeks of gestation (n = 2545). Finally, 16,303 volunteers were included in the
analysis. The flowchart of the recruitment of the volunteers included in this study is shown
in Figure 1.
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Figure 1. Flowchart of the study subjects’ recruitment.

2.2. Glucose Tolerance Test and Diagnostic Criteria for GDM

According to the diagnostic criteria established by the International Consensus Group
on Pregnancy with Diabetes (IADPSG) [31], pregnant women underwent the OGTT test
at 24 to 28 weeks of gestation using the glucose oxidase assay (Hitachi 7600-110 fully
automated biochemical analyzer, Tokyo, Japan). After fasting for a period ranging from
8 to 12 h the night before, venous blood was collected from the pregnant women in the
next morning to measure the blood glucose. Then, 75 g of glucose was administered
orally and blood was taken intravenously from the pregnant women again after 1 and
2 h. The diagnostic criteria for GDM were as follows: fasting glucose ≥ 5.1 mmol/L
(92 mg/dL), 1 h post-glucose administration ≥ 10.0 mmol/L (180 mg/dL), or 2 h post-
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glucose administration ≥ 8.5 mmol/L (153 mg/dL). GDM can be diagnosed if any of
the above conditions are met. Based on the results of the OGTT, pregnant women were
classified as having isolated fasting hyperglycemia (GDM-IFH) if their fasting glucose was
≥5.1 mmol/L but their 1 h and 2 h post-load glucose levels were within the normal range,
and as having isolated post-load hyperglycemia (GDM-IPH) if their 1 and 2 h post-load
glucose levels were ≥10.0 mmol/L and ≥8.5 mmol/L, respectively. Pregnant women
who exceeded the fasting and post-load glucose-restricted values were considered to have
combined hyperglycemia (GDM-CH) [26].

2.3. Assessment of Individual Exposure to Air Pollutants and Meteorological Conditions

We assessed the individual daily average exposure to air pollution (including PM2.5,
PM10, O3, NO2, SO2, and CO) and weather conditions (i.e., temperature and relative hu-
midity) based on the long-term volunteers’ addresses and the spatially gridded datasets.
A grid with a spatial resolution of 1×1 km2 was delineated for Chongqing. The daily
average temperature and relative humidity observed at meteorological stations [32] were
interpolated to all the grid cells using cokriging with elevation [33]. The data on daily
air pollutant concentrations were obtained from the China National Environmental Moni-
toring Centre [34], which manages the air quality monitoring network across the nation.
We developed hybrid machine learning models (i.e., random forest with spatiotemporal
kriging) with air pollution observations and various predictor variables, such as satellite
retrieval, weather conditions, and land uses [24,25], to predict the daily air pollutant con-
centrations for all the grid cells. As the key predictor, satellite retrieval mainly included the
Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol optical depth,
the Ozone Monitoring Instrument (OMI) tropospheric vertical column density of NO2, the
OMI vertical column density of SO2 in the planetary boundary layer, and the Measurements
of Pollution in the Troposphere (MOPITT) CO retrieval [35–38].

2.4. Statistical Analysis

The categorical variables are represented by frequency (n) or percentage (%), and
the chi-squared test was used to compare binary variables and unordered multi-category
variables between groups. The correlation coefficients (r) of air pollutants and meteoro-
logical factors were analyzed using Spearman’s correlation to evaluate collinearity in the
regression analysis.

We then analyzed the association of pre-pregnancy, early, and mid-pregnancy expo-
sure to environmental pollutants with GDM, GDM-IFH, GDM-IPH, and GDM-CH using a
generalized additive model (GAM). In the GAM, the response variable can have any distri-
bution in the exponential family [39]. The GAM model can identify nonlinear associations
among variables. This model maximizes the predictive quality of the responses by fitting a
more flexible model to the data. ORs with 95% CIs were reported for per IQR increases in
NO2, O3, PM10, PM2.5, SO2, and CO concentrations during each exposure window. We also
established a two-pollutant model to evaluate whether the risk of GDM from the studied
pollutants changed after controlling for other pollutants unless the Spearman’s correla-
tion coefficient of the two pollutants was greater than 0.6 [40]. We performed stratified
analyses according to the OGTT sampling time (cold and warm seasons), age (<35 and
≥35 years old), and BMI (<24 and ≥24 kg/cm2). Likelihood ratio tests were used to
calculate interaction p-values.

In addition, we used distributed lag nonlinear models (DLNMs) to analyze the as-
sociation between exposure at specific gestational weeks and the risk of GDM [41]. We
analyzed the exposure and lag effects for three trimesters (preconception: weeks −12 to
−1; first trimester: weeks 1 to 12; and second trimester: weeks 13 to 24). Since all preg-
nant women in this study had OGTT at 24 to 28 weeks and the diagnosis of GDM was
made immediately based on the test results, the 24th week after the last menstrual period
was used as the cutoff time. ORs and 95% CIs were calculated for each increase in IQR
(study period of 2018–2021) for different pollutants. When constructing the regression
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model of environmental pollution exposure with GDM, the maternal age, first-trimester
BMI, tobacco, alcoholism, gravidity, parity, macrosomia secretion, assisted reproduction,
multiple pregnancies, and sampling season of OGTT (spring, summer, autumn, and winter)
were controlled. All of the above covariates were categorical variables. The natural cubic
spline function was used to control meteorological factors, such as temperature and relative
humidity (RH), and the degrees of freedom of the temperature and RH in each exposure
time window were selected based on the minimum Akaike information criterion (AIC). A
small amount of missing data were filled using the predicted mean matching method in
Multiple Imputation (MI) [42].

The baseline data of the study subjects were analyzed using SPSS 25.0. A distributed
lag nonlinear model analysis was performed using the “dlnm”, “mgcv”, and “splines” pack-
ages of R 4.1.2. p < 0.05 was considered statistically significant. For GDM and blood glucose,
Bonferroni correction p < 0.006 (0.05/8) was used to assess statistical significance [43].

3. Results
3.1. Description of the Baseline Information

The demographics of the participants are presented in Table 1. From January 2018 to
June 2021, 16,303 pregnant women were included in the final analysis. Among them, there
were 2482 cases (15.2%) with GDM, including 214 (1.3%) with GDM-IFH, 1692 (10.4%) with
GDM-IPH, and 284 (1.7%) with GDM-CH. Compared with non-GDM pregnant women,
advanced age and overweight or obese mothers were more common in the GDM group
and subgroups. More pregnant women in the GDM group and subgroups exhibited
gravidity ≥ 3, parity ≥ 1, and had undergone assisted reproduction. The proportion of
twin pregnancies was greater in non-GDM pregnant women. Among all pregnant women
in our study, the average fasting blood glucose levels were 4.43 ± 0.39 mmol/L, the average
1 h post-glucose level was 7.73 ± 1.74 mmol/L, and the average 2 h post-glucose level was
6.65 ± 1.41 mmol/L (Table 2).

Table 1. The basic characteristics of the study population, 2018–2021.

Categories
Total Non-GDM GDM GDM-IFH GDM-IPH GDM-CH

n (%)

16,303 13,821 (84.8) 2482 (15.2) 214 (1.3) 1692 (10.4) 284 (1.7)

Age (years)
<25 436 408 (3.0) 28 (1.1) 4 (1.9) 20 (1.2) 2 (0.7)

25–30 4015 3666 (26.5) 349 (14.1) 46 (21.5) 229 (13.5) 24 (8.5)
31–35 6613 5701 (41.2) 912 (36.7) 79 (36.9) 625 (36.9) 94 (33.1)
≥35 5239 4046 (29.3) 1193 (48.1) 85 (39.7) 818 (48.3) 164 (57.7)

BMI (kg/cm2)
<18.5 4287 3984 (28.8) 303 (12.2) 24 (11.2) 250 (14.8) 6 (2.1)

18.5–24.9 9354 7900 (57.2) 1454 (58.6) 114 (53.3) 1029 (60.8) 138 (48.6)
25.0–29.9 2273 1643 (11.9) 630 (25.4) 67 (31.3) 362 (21.4) 122 (43.0)

≥30 389 294 (2.1) 95 (3.8) 9 (4.2) 51 (3.0) 18 (6.3)
16,303 13,821 (84.8) 2482 (15.2) 214 (1.3) 1692 (10.4) 284 (1.7)

Gravidity
1 5097 4445 (32.2) 652 (26.3) 57 (26.6) 468 (27.7) 65 (22.9)
2 4367 3735 (27.0) 632 (25.5) 51 (23.8) 430 (25.4) 69 (24.3)
≥3 6839 5641 (40.8) 1198 (48.3) 106 (49.5) 794 (46.9) 150 (52.8)

Parity
0 9851 8479 (61.3) 1372 (55.3) 114 (53.3) 949 (56.1) 158 (55.6)
≥1 6452 5342 (38.7) 1110 (44.7) 100 (46.7) 743 (43.9) 126 (44.4)
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Table 1. Cont.

Categories
Total Non-GDM GDM GDM-IFH GDM-IPH GDM-CH

n (%)

Tobacco
Yes 490 411 (3.0) 79 (3.2) 3 (1.4) 51 (3.0) 16 (5.6)
No 15,813 13,410 (97.0) 2403 (96.8) 211 (98.6) 1641 (97.0) 268 (94.4)

Alcoholism
Yes 2484 2116 (15.3) 368 (14.8) 39 (18.2) 234 (13.8) 48 (16.9)
No 13,819 11,705 (84.7) 2114 (85.2) 175 (81.8) 1458 (86.2) 236 (83.1)

Folic acid
Yes 15,725 13,333 (96.5) 2392 (96.4) 210 (98.1) 1628 (96.2) 271 (95.4)
No 578 488 (3.5) 90 (3.6) 4 (1.9) 64 (3.8) 13 (4.6)

Multiple
pregnancy

Yes 892 690 (5.0) 202 (8.1) 17 (7.9) 140 (8.3) 27 (9.5)
No 15,411 13,131 (95.0) 2280 (91.9) 197 (92.1) 1552 (91.7) 257 (90.5)

Macrosomia
Yes 31 27 (0.2) 4 (0.2) 0 (0) 2 (0.1) 2 (0.7)
No 16,272 13,794 (99.8) 2478 (99.8) 214 (100) 1690 (99.9) 282 (99.3)

ART
Yes 1537 1190 (8.6) 347 (14.0) 26 (12.1) 242 (14.3) 42 (14.8)
No 14,766 12,631 (91.4) 2135 (86.0) 188 (87.9) 1450 (85.7) 242 (85.2)

Sampling
Season
Spring 4515 3806 (27.5) 709 (28.6) 57 (26.6) 489 (28.9) 84 (29.6)

Summer 4512 3820 (27.6) 692 (27.9) 44 (20.6) 331 (19.6) 72 (25.4)
Autumn 3872 3301 (23.9) 571 (23.0) 43 (20.1) 394 (23.3) 57 (20.1)
Winter 3404 2894 (20.9) 510 (20.5) 70 (32.7) 478 (28.3) 71 (25.0)

Abbreviations: GDM, gestational diabetes mellitus; BMI, body mass index; ART, assisted reproductive technology;
GDM-IFH, GDM with isolated fasting hyperglycemia; GDM-IPH, GDM with isolated post-load hyperglycemia;
GDM-CH, GDM with combined hyperglycemia.

3.2. Air Pollution Exposure

The average levels of maternal exposure to NO2, O3, PM10, PM2.5, SO2, and CO over
the preconception period were 40.96 ± 8.66, 42.03 ± 18.44, 60.41 ± 16.50, 37.27 ± 13.46,
8.63 ± 1.48 µg/m3, and 0.86 ± 0.13 mg/m3, respectively, similar to those in the first and
second trimesters (Table 2). The average temperature and relative humidity were also
similar across different gestation periods, and in the preconception period, they were
17.92 ◦C and 80.34%, respectively. The Spearman’s correlation analysis of air pollutants and
meteorological factors is shown in Figure S1 in the Supplementary Materials. Correlations
among NO2, O3, PM10, PM2.5, CO, SO2, temperature, and relative humidity weekly levels
ranged from −0.77 to 0.94. O3 and meteorological factors were negatively correlated with
other air pollutants.

3.3. Association of Air Pollution Exposure with GDM and Its Subgroups

Figure 2 shows that the effects of per IQR increase in exposure to PM10 and PM2.5
during the first trimester were associated with increased GDM (PM10: OR = 1.19, 95%CI:
1.07~1.33; PM2.5: OR = 1.32, 95%CI: 1.15~1.50) and GDM-IPH risks (PM10: OR = 1.23,
95%CI: 1.09~1.39; PM2.5: OR = 1.38, 95%CI: 1.18~1.61). Per IQR O3 exposure during the
second trimester increased the associated risks of GDM by 43% (95%CI: 15%~79%), while
preconception and first-trimester exposure was negatively associated with GDM-IPH risks.
Each IQR increase in SO2 in the second trimester was negatively associated with the risk of
GDM-IPH. However, there were no observed associations between NO2 and CO exposure
and the risk of GDM, GDM-IFH, GDM-IPH, and GDM-CH. We also constructed a two-
pollutant model, and similar associations were observed between air pollutants and the
risk of GDM and its subgroups (see Tables S1–S4 in the Supplementary Materials).
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Table 2. Descriptive statistics of air pollution exposure and blood glucose levels, 2018–2021.

Total Non-GDM GDM
p

Mean ± SD P25 P50 P75 Mean ± SD P25 P50 P75 Mean ± SD P25 P50 P75

Preconception
NO2 (µg/m3) 40.96 ± 8.66 35.80 42.07 46.89 40.97 ± 8.66 35.81 42.02 46.93 40.90 ± 8.69 35.73 42.20 46.68 0.848
O3 (µg/m3) 42.03 ± 18.44 23.53 43.71 58.01 42.19 ± 18.43 23.63 44.14 58.12 41.17 ± 18.49 23.26 41.46 57.23 0.020
PM10 (µg/m3) 60.41 ± 16.50 47.05 57.55 71.62 60.37 ± 16.52 47.02 57.55 71.52 60.65 ± 16.42 47.17 57.51 72.20 0.383
PM2.5 (µg/m3) 37.27 ± 13.46 26.21 33.41 47.30 37.21 ± 13.48 26.19 33.34 47.14 37.60 ± 13.35 26.37 33.74 47.88 0.119
CO (mg/m3) 0.86 ± 0.13 0.76 0.85 0.95 0.86 ± 0.13 0.76 0.85 0.95 0.87 ± 0.13 0.77 0.86 0.96 0.008
SO2 (µg/m3) 8.63 ± 1.48 7.64 8.53 9.38 8.62 ± 1.48 7.63 8.51 9.36 8.69 ± 1.49 7.69 8.58 9.48 0.015
Temperature 17.92 ± 6.52 11.91 18.02 23.78 17.95 ± 6.53 11.94 18.12 23.78 17.75 ± 6.50 11.79 17.63 23.79 0.153
RH 80.34 ± 3.91 76.89 79.97 83.98 80.29 ± 3.91 76.83 79.89 83.90 80.62 ± 3.89 77.15 80.37 84.38 <0.001
First trimester
NO2 (µg/m3) 40.67 ± 8.61 35.68 41.89 46.59 40.60 ± 8.60 35.57 41.81 46.57 41.02 ± 8.67 36.09 42.29 46.74 0.016
O3 (µg/m3) 41.80 ±18.89 22.78 43.38 58.19 42.02 ± 18.85 23.01 43.88 58.31 40.54 ± 19.02 21.75 40.60 57.38 <0.001
PM10 (µg/m3) 60.60 ± 16.07 47.18 58.89 71.99 60.28 ± 16.02 46.91 58.51 71.53 62.37 ± 16.23 48.67 60.84 74.00 <0.001
PM2.5 (µg/m3) 37.86 ± 13.45 26.29 34.78 49.24 37.60 ± 13.41 26.13 34.23 48.83 39.33 ± 13.60 27.21 37.21 50.69 <0.001
CO (mg/m3) 0.85 ± 0.12 0.77 0.85 0.94 0.85 ± 0.12 0.77 0.85 0.93 0.86 ± 0.12 0.78 0.86 0.96 <0.001
SO2 (µg/m3) 8.52 ± 1.39 7.61 8.47 9.28 8.50 ± 1.39 7.59 8.45 9.28 8.59 ± 1.39 7.70 8.53 9.29 0.009
Temperature 17.47 ± 6.78 10.75 17.09 23.78 17.58 ± 6.78 10.89 17.28 24.02 16.82 ± 6.73 10.19 16.22 22.95 <0.001
RH 80.07 ± 3.67 76.95 79.65 82.99 80.06 ± 3.67 76.94 79.62 82.95 80.12 ± 3.65 77.04 79.74 83.24 0.355
Second trimester
NO2 (µg/m3) 40.27 ± 8.36 35.88 41.44 46.12 40.33 ± 8.37 35.97 41.54 46.17 39.96 ± 8.31 35.44 41.05 45.82 0.010
O3 (µg/m3) 43.49± 18.04 26.93 45.80 58.43 43.29 ± 18.07 26.45 45.55 58.32 44.61 ± 17.84 29.42 47.57 58.98 0.002
PM10 (µg/m3) 57.93 ± 13.78 47.08 56.49 67.73 57.94 ± 13.77 47.11 56.49 67.73 57.85 ± 13.84 46.78 56.60 67.79 0.832
PM2.5 (µg/m3) 35.72 ± 11.77 26.14 32.96 44.80 35.72 ± 11.79 26.12 32.92 44.81 35.69 ± 11.68 26.15 33.08 44.73 0.982
CO (mg/m3) 0.84 ± 0.12 0.76 0.83 0.91 0.84 ± 0.12 0.76 0.83 0.92 0.83 ± 0.12 0.75 0.83 0.91 0.204
SO2 (µg/m3) 8.32 ± 1.15 7.58 8.29 9.05 8.33 ± 1.16 7.58 8.29 9.05 8.31 ± 1.15 7.58 8.31 9.06 0.820
Temperature 18.14 ± 6.28 12.22 18.26 23.73 18.12 ± 6.28 12.22 18.26 23.70 18.21 ± 6.31 12.16 18.27 23.90 0.473
RH 80.05 ± 3.63 76.93 79.58 82.95 80.11 ± 3.63 76.97 79.70 83.01 79.68 ± 3.61 76.75 79.01 82.59 <0.001
OGTT glucose levels (mmol/L)
Fasting glucose 4.43 ± 0.39 4.20 4.40 4.59 4.36 ± 0.30 4.09 4.40 4.59 4.85 ± 0.53 4.50 4.80 5.20 <0.001
1 h post-glucose 7.73 ± 1.74 6.50 7.70 8.80 7.29 ± 1.37 6.30 7.40 8.30 10.18 ± 1.54 9.40 10.10 11.00 <0.001
2 h post-glucose 6.65 ± 1.41 5.70 6.50 7.40 6.28 ± 1.03 5.60 6.30 7.00 8.68 ± 1.51 7.70 8.69 9.50 <0.001

Abbreviations: GDM, gestational diabetes mellitus; SD, standard deviation; RH, relative humidity; NO2, nitrogen dioxide; O3, ozone; PM10, inhalable particulate matter; PM2.5, fine
particulate matter; CO, carbon monoxide; SO2, sulfur dioxide. The rank sum test was used to compare the levels of air pollutants and blood glucose in the GDM and non-GDM groups.
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Figure 2. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for air pollution exposure (per
IQR) and risk of GDM, GDM-IFH, GDM-IPH, and GDM-CH in single-pollutant models, 2018–2021.
(a) Effect of NO2 exposure during different trimesters on the risk of GDM and various subgroups.
(b) Effect of O3 exposure during different trimesters on the risk of GDM and various subgroups.
(c) Effect of PM10 exposure during different trimesters on the risk of GDM and various subgroups.
(d) Effect ofPM2.5 exposure during different trimesters on the risk of GDM and various subgroups.
(e) Effect of CO exposure during different trimesters on the risk of GDM and various subgroups.
(f) Effect of SO2 exposure during different trimesters on the risk of GDM and various subgroups.
Bonferroni corrections with significance (p < 0.006), ** p < 0.006, and *** p < 0.001. Abbreviations:
GDM, gestational diabetes mellitus; GDM-IFH, GDM with isolated fasting hyperglycemia; GDM-IPH,
GDM with isolated post-load hyperglycemia; GDM-CH, GDM with combined hyperglycemia; NO2,
nitrogen dioxide; O3, ozone; PM10, inhalable particulate matter; PM2.5, fine particulate matter; CO,
carbon monoxide; SO2, sulfur dioxide. Model adjusted for maternal age, first-trimester BMI, gravidity,
parity, tobacco, alcohol, folic acid, assisted reproduction, macrosomia, multiple pregnancies, season
of OGTT, temperature, and relative humidity.

3.4. Association between Air Pollutant Exposure and GDM in Specific Gestational Weeks

The multivariable-adjusted associations of GDM with week-specific air pollutant
exposure during the preconception period and first and second trimesters are shown in
Figure 3. A positive correlation between per IQR increase in NO2 and GDM was observed
from −2 to 9 weeks, with the strongest association from 2 to 5 weeks (OR = 1.02, 95%CI:
1.01~1.03). The critical time window for O3 exposure was 19 to 24 weeks, with the strongest
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effects observed at week 24 (OR = 1.09, 95%CI: 1.04~1.15). PM10 and PM2.5 increases
per IQR were positively correlated with GDM risk at 3 to 8 and 4 to 15 weeks, with the
strongest association in week 7 (OR = 1.02, 95%CI: 1.00~1.03) and week 12 (OR = 1.03,
95%CI: 1.01~1.05), respectively. CO exposure from −8 to −5 weeks was associated with
the risk of GDM, with the strongest association at week −7 (OR = 1.02, 95%CI: 1.00~1.05).
Exposure to SO2 from −6 to 4 weeks was positively associated with the risk of GDM, with
the strongest effect at week −2 (OR = 1.04, 95%CI: 1.02~1.06).
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Figure 3. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the association of
week-specific air pollution exposure (per IQR) with GDM risk in pregnant women, 2018–2021.
(a) Effect of NO2 exposure at different gestational weeks on GDM. (b) Effect of O3 exposure at
different gestational weeks on GDM. (c) Effect of PM10 exposure at different gestational weeks on
GDM. (d) Effect of PM2.5 exposure at different gestational weeks on GDM. (e) Effect of CO exposure
at different gestational weeks on GDM. (f) Effect of SO2 exposure at different gestational weeks on
GDM. Preconception: weeks −12 to −1; first trimester: weeks 1 to 12; and second trimester: weeks
13 to 24. Abbreviations: GDM, gestational diabetes mellitus; NO2, nitrogen dioxide; O3, ozone;
PM10, inhalable particulate matter; PM2.5, fine particulate matter; CO, carbon monoxide; SO2, sulfur
dioxide. Model adjusted for maternal age, first-trimester BMI, gravidity, parity, tobacco, alcohol, folic
acid, assisted reproduction, macrosomia, multiple pregnancies, season of OGTT, temperature, and
relative humidity.
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3.5. Stratified Analysis and Interaction Tests

The subgroup analysis results show a greater association of air pollutants with GDM
and GDM-IPH during the warm season and in normal or lean women, with no significant
differences in the age groups (see Figures S2–S4 in the Supplementary Materials). The re-
sults of the interaction analysis suggest that the seasons and BMI had potential modification
effects on the association of environmental pollution exposure and GDM.

4. Discussion

This is the first large-population-based study to assess air pollutant exposure and
GDM risk in southwest China, and one of the few studies to evaluate the relationship
between air pollution and the risk of GDM in various subgroups. Our research found that
maternal exposure to PM10 and PM2.5 was positively correlated with the risk of GDM and
GDM-IPH, and the susceptible exposure windows for PM10 and PM2.5 were observed at
weeks 3 to 8 and 4 to 15, with the strongest associations found at weeks 7 and 12, when
the risk of GDM increased by 2.0% (95% CI: 0.0%~3.0%) and 3.0% (95% CI: 1.0%~5.0%) for
each increase in IQR for PM10 and PM2.5, respectively. A susceptibility exposure window
for O3 was observed at weeks 19 to 24 of gestation, with the strongest association found at
24 weeks of pregnancy, with a 9.0% (95% CI: 4.0%~15%) increased risk of GDM per IQR
increase in O3.

Most previous investigations have applied land-use regression (LUR) models based
on data from monitoring networks, and these data were all based on the census mesh block
level or location of the hospital. However, the use of such relatively extensive exposure
data may lead to erroneous estimates. Moreover, most monitoring sites are clustered in
urban areas, and a lack or paucity of sites are available in suburban or rural areas. In
this study, we used a mixture of satellite simulation and monitoring data to estimate in-
dividual air pollution levels based on every mother’s residential address. In addition,
we used the gridded air pollution data generated by machine learning models to assess
individual exposure levels, which improved the exposure classification and reduced the
bias in the exposure–effect analyses. Our previous studies used high-accuracy gridded
air pollution data generated by machine learning models to assess exposure levels and
demonstrated that different fractions of PAHs in fine particulate matter probably have
different effects on male reproductive health [44]. The machine learning models that are
capable of handling complicated nonlinear interactions showed a decent performance
in the cross-validation. Gridded datasets have been used for exposure assessments in
previous studies [45–47]. Compared to the nearest-site matching method for exposure
assessment, machine learning models provided more accurate air pollution data by fusing
site observations with various environmental factors, such as land-use types and satel-
lite retrieval [48,49]. Machine learning models demonstrated a superior performance in
reconstructing the spatiotemporal distributions of air pollutants, which laid a solid basis
for exposure–effect analyses [45,47,50]. The precision and robustness of these evaluation
methods have been well demonstrated in our previous studies [51,52].

Our study confirmed the significant positive correlation between air pollutant PM10
and PM2.5 exposure and GDM. Although previous epidemiological evidence supports
the air pollution effect on GDM risk, these results remain heterogeneous [53–57]. These
inconsistent results can be attributed to ethnic variations, regional differences, and differ-
ent time periods for air pollution assessment. Many studies have evaluated the window
of sensitivity to air pollution, which can help to determine the potential pathways of
pathogenesis and guide care during pregnancy. There are three strategies for estimat-
ing the window of susceptibility to air pollution exposure during pregnancy and GDM,
including by specific trimester, by month, and by week. Previous studies have concen-
trated on the first and second trimesters. For example, a meta-analysis that included
22,253,277 participants found that exposure to ambient pollutants during early pregnancy
was connected to pregnancy complications [58]. According to a cohort study conducted
in Foshan, China, 12,842 maternal exposures to PM10 and PM2.5 in early and middle preg-
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nancy were associated with the risk of GDM [57]. However, emerging research evidence
suggests that the pre-pregnancy period is also a critical exposure window for ambient
pollution exposure that affects GDM [59]. Other studies have shown that a relatively
broad, specific three-month window of exposure may mask the true effects of contaminants
because biological changes do not exactly follow the three-month interval [60]. Numerous
studies have observed the correlation between the risk of GDM and maternal exposure to
environmental pollutants [54–58,61–64]. Wilson [60] suggested that the use of a relatively
broad, specific three-month exposure window may mask the true effects of contaminants
because biological changes do not exactly follow the three-month interval. Physiological
changes throughout pregnancy usually occur on a weekly basis and include endocrine, car-
diovascular, respiratory, and water balance [65,66]. We used more refined weekly exposure
data for further analysis, and the DLNM results show that weeks 3 to 8 and 4 to 15 are
sensitive time windows for PM10 and PM2.5 exposure with the effects peaking at weeks 7
and 12, respectively,. Our study found that particulate matter exposure was associated with
early pregnancy GDM. This adds new evidence to the study of environmental particulate
matter exposure and the GDM risk sensitivity window and provides important guidance
for reducing environmental particulate matter exposure in early pregnancy to control the
occurrence of pregnancy complications related to air pollution.

Different from particulate matter, exposure to O3 in mid-pregnancy was also positively
correlated with the risk of GDM. It was found that the susceptible exposure window was 19
to 24 weeks using DLNMs to explore the week-specific association, with the maximum effect
being reached at 24 weeks. O3 concentrations at ambient temperature have highly oxidizing
properties and can cause damage to the organism, but the underlying mechanisms remain
unclear. Wagner JG [67] found that short-term repeated O3 exposure in mice induced
a pulmonary inflammatory response, which was correlated with the degree of insulin
resistance and hyperglycemia. Zhong JX [68] found that the continuous exposure of
genetically susceptible diabetic mice to O3 for 13 working days promoted insulin resistance
and that exposure to O3 can increase oxidative stress and the inflammatory response of
adipose tissue. Insulin resistance is considered to be an important cause of GDM [69,70],
and O3 exposure may increase the risk of GDM by promoting insulin resistance.

Our study also explored the risk of ambient pollutant exposure and GDM subtypes to
provide effective and individualized treatment strategies. We observed that PM10 and PM2.5
exposure in early pregnancy and O3 exposure in mid-pregnancy were associated with an
increased risk of GDM-IPH, but not significantly correlated with the risk of GDM-IFH. This
suggests that maternal exposure to air pollutants during pregnancy may increase the inci-
dence of GDM by influencing postprandial glucose abnormalities. Recent evidence suggests
that abnormal fasting and abnormal post-load hyperglycemia reflect different metabolic
processes and that mothers with isolated post-load hyperglycemia tend to have unfavorable
metabolic profiles compared to those with isolated fasting hyperglycemia [26]. Clinical
studies have found that the sites of insulin resistance occurring for impaired postprandial
glucose and impaired fasting glucose are different. Patients with impaired postprandial
glucose show significant muscle insulin resistance, but those with impaired fasting glucose
exhibit more pronounced hepatic insulin resistance [71]. Haberzettl et al.’s [11] study
indicated that, in mice on a high-fat diet, exposure to concentrated environmental fine
particulate matter enhances adipose tissue inflammation and systemic glucose intolerance.
Another animal study revealed that ozone exposure in rats promotes the development of
diabetes by activating the JNK pathway to impair insulin signaling in muscles [72]. These
potential mechanisms may explain the differential association we observed between ambi-
ent pollutant exposure and various subtypes of GDM, suggesting that ambient pollutant
exposure may ultimately increase the risk of GDM by promoting muscle insulin resistance,
leading to postprandial hyperglycemia.

Previous studies have evaluated the relationship between exposure to NO2, CO, and
SO2 and GDM during specific trimesters, and the results indicated that SO2 exposure in
the preconception period and early pregnancy was significantly correlated with the risk of
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GDM, particularly from 4 to 10 weeks of gestation [53,73]. Liu [74] found that CO exposure
in early pregnancy was significantly associated with GDM. Another study observed the
connection between NO2 exposure and GDM in a different model and found that the
preconception period was the critical window, while the association in early pregnancy
was not statistically significant [55]. However, the study showed no significant positive
correlation between NO2, CO, and SO2 exposure and GDM in single and co-pollution
models. In addition, we used DLNMs to ascertain the susceptibility window between
gaseous pollutant exposure and GDM risk at the weekly level. By applying DLNMs, we
observed that the preconception period and the first trimester are windows of susceptibility
for different gaseous pollutants (NO2: weeks −2~9; CO: weeks −8~−5; SO2: weeks −6~4),
with peak associations observed at weeks −7 to −2 and 2 to 5, respectively.

In addition, our study also found that, after stratifying by cold and warm seasons
according to the OGTT trial season, pregnant women in the warm season were at a greater
risk for GDM from PM10 and PM2.5 exposure in early pregnancy and O3 exposure in
mid-pregnancy. PM10 and PM2.5 exposure in early pregnancy interacted with the OGTT
season. The risk of GDM was higher in the warm season, possibly reflecting the effect of
ambient temperature on glucose metabolism. Previous studies have reported that GDM
development is influenced by the season, with an increased risk of GDM in the warm season.
And temperature was negatively correlated with fasting glucose and positively correlated
with post-load glucose [75]. Retnakaran [76] found that an elevated ambient temperature
may lead to maternal β-cell dysfunction, thereby increasing the risk of GDM. The stratified
analysis of BMI revealed an effect modification of BMI and air pollution exposure with
GDM, with a positive association between air pollution exposure and GDM in pregnant
women with BMI < 24. Numerous studies have shown that obesity leads to mild chronic
systemic inflammation and oxidative stress that persist in the body [77,78]. Therefore,
pregnant women with BMI < 24 may be more sensitive to inflammation and oxidative
stress attributable to environmental exposures compared to overweight or obese pregnant
women. No significant interaction of age with air pollution exposure was observed in this
study. However, the results of the stratified analysis must be interpreted with caution, and
type 1 errors (false positives) may be introduced in multiple trials. Further in-depth studies
are needed regarding the possible effects of ambient temperature and BMI on glucose
metabolism and their potential biological mechanisms.

In this retrospective study in Chongqing, China, the possibility of selection bias was
decreased by recruiting pregnant women who came to the Chongqing Health Center
for Women and Children for regular prenatal visits and obtained OGTT results. All
investigators involved in this study were formally provided with uniform training to
ensure the quality of information. A highly refined, spatiotemporally resolved exposure
model was used to assess individual air pollution exposure concentrations, and a two-step
statistical analysis strategy was used to explore the sensitive time window of exposure from
shallow to deep, which is more robust and reliable than the results of previous studies. This
study also has several limitations. Firstly, we estimated individual air pollution exposure
levels using the home address of the pregnant women and did not consider their individual
activity patterns during pregnancy, including commuting, time spent working in different
environments, and time spent outdoors. Secondly, pregnant women usually undergo
OGTT screening for GDM in the late second trimester; therefore, we can only assume
that testing occurred between 24 and 28 weeks of gestation based on the IADPSG criteria
and recommendations, which may lead to a potential misclassification of the exposure
time estimates. Finally, this study was a single-center retrospective study with a sample
from a single hospital; all baseline information was obtained through the medical center’s
electronic record access system, and some covariate data were missing from the records.
Therefore, prospective, multicenter, and larger studies must be conducted in the future for
support and validation.
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5. Conclusions

Our findings indicate that exposure to PM10 and PM2.5 in the first trimester and O3 in
the second trimester is associated with an increased risk of GDM and GDM-IPH, providing
strong evidence for an association between airborne particulate matter and the risk of GDM
and glucose metabolism disorders. In addition, the sensitive time window of weekly air
pollutant exposure levels for GDM risk was analyzed. Our findings are instructive for the
prevention and treatment of GDM from an environmental perspective, and more studies
are needed to confirm our findings and explore potential mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics12010019/s1, Table S1: Adjusted odds ratios (ORs) and 95%
confidence intervals (CIs) for air pollution exposure and the risk of GDM in co-pollutant models,
2018–2021. Table S2: Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for air pollution
exposure and the risk of GDM-IFH in co-pollutant models, 2018–2021. Table S3: Adjusted odds ratios
(ORs) and 95% confidence intervals (CIs) for air pollution exposure and the risk of GDM-IPH in
co-pollutant models, 2018–2021. Table S4: Adjusted odds ratios (ORs) and 95% confidence intervals
(CIs) for air pollution exposure and the risk of GDM-CH in co-pollutant models, 2018–2021. Figure S1:
Spearman’s correlation analysis of specific gestational pollutants and meteorological factors. Figure
S2: Modification for potential effects of air pollution exposure in association with GDM subgroups
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