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Abstract: The health of humans has been negatively impacted by PM2.5 exposure, but the chemical
composition and toxicity of PM2.5 might vary depending on its source. To investigate the toxic
effects of particulate matter from different sources on lung epithelial cells (A549), PM2.5 samples
were collected from residential, industrial, and transportation areas in Nanjing, China. The chemical
composition of PM2.5 was analyzed, and toxicological experiments were conducted. The A549 cells
were exposed using an air–liquid interface (ALI) exposure system, and the cytotoxic indicators of
the cells were detected. The research results indicated that acute exposure to different sources of
particulate matter at the air–liquid interface caused damage to the cells, induced the production of
ROS, caused apoptosis, inflammatory damage, and DNA damage, with a dose–effect relationship.
The content of heavy metals and PAHs in PM2.5 from the traffic source was relatively high, and
the toxic effect of the traffic–source samples on the cells was higher than that of the industrial– and
residential–source samples. The cytotoxicity of particulate matter was mostly associated with water–
soluble ions, carbon components, heavy metals, PAHs, and endotoxin, based on the analysis of the
Pearson correlation. Oxidative stress played an important role in PM2.5–induced biological toxicity.

Keywords: PM2.5; air–liquid interface exposure; cell toxicity; oxidative stress

1. Introduction

With the rapid development of industrialization and urbanization, the impact of atmo-
spheric pollution on human health has been increasingly significant [1]. The International
Agency for Research on Cancer (IARC) has classified fine particulate matter (<2.5 µm,
PM2.5) as a Class I carcinogen. PM2.5 was a major air pollutant that was produced by traffic
exhausts, industrial emissions, burning coal and fuel, and other human activities, as well
as aerosol formation in natural processes [2–4]. PM2.5 could be suspended in the air for a
long time and carry various harmful substances (such as polycyclic aromatic hydrocarbons,
heavy metals, etc.). PM2.5 could enter the deep respiratory system of the human body
and be transported to the alveoli and blood, causing direct damage to the respiratory
system and causing a series of diseases such as to the cardiovascular system through blood
circulation [5–7].

PM2.5 was not a single chemical substance, but a complex mixture produced from
multiple sources [8]. PM2.5 might contain different chemical components and pollutants due
to its different sources and formation pathways, leading to differences in the health effects
of particulate matter from different sources [9,10]. A study has shown that PM2.5 from
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urban, suburban, and traffic–affected areas in Tehran exhibited different levels of toxicity to
A549 cells, while samples from urban locations exhibited higher levels of cytotoxicity [11].
Thus, it was essential to comprehend how PM2.5 from various sources affected human
health and to research the potentially toxic features of PM2.5 from various sources.

Previous studies have shown that the chemical components (water–soluble ions, car-
bonaceous components, heavy metals, and polycyclic aromatic hydrocarbons) in PM2.5
were one of the key factors leading to its toxic effects on cells [12–14]. Water–soluble
ions could lead to adverse effects such as cellular oxidative stress and inflammatory reac-
tions [4,15]. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), and their oxygen–
containing derivatives could induce cytotoxicity, oxidative stress, inflammatory response,
and DNA damage [15–19]. Oxidative stress was an important molecular mechanism for
PM2.5–induced damage, and reactive oxygen species (ROS) –mediated oxidative stress
was believed to play a crucial role in PM2.5–induced cytotoxicity [20–22]. Research has
shown that ROS could induce oxidative stress damage, leading to DNA damage and cell
apoptosis [12,21,23].

The air–liquid exposure device was a novelty experimental method for direct contact
between air and cells at the air–liquid interface (ALI). Compared with traditional immersion
exposure methods, the ALI exposure could better simulate the contact process between
PM2.5 and cells, which was closer to the exposure mode of the human body in actual living
environments and helped to more accurately simulate the impact of PM2.5 on the respiratory
system [24]. In this study, we collected different particulate matter samples under the
influence of residential areas, industry, and road traffic in Nanjing, and determined their
composition. A549 cells were exposed at the ALI using the Vitrocell Cloud 12 system.
Based on the evaluation of post–exposure cytotoxicity indicators, we explored the acute
exposure toxicity and toxicity differences in PM2.5 from different sources on A549 cells.
The correlation between the toxicity indicators and the chemical composition of particulate
matter were analyzed, and the main toxic components of PM2.5 were explored.

2. Materials and Methods
2.1. PM2.5 Collection and Preparation

Three sampling points were selected for the collection of the PM2.5 samples, located at
the entrance of the Nanjing Yangtze River Bridge (32◦05′42′ ′ N, 118◦45′21′ ′ E), the roof of
the library of the Nanjing University of Information Science and Technology (32◦12′8′ ′ N,
118◦42′49′ ′ E), and the Nanjing Pukou Chemical Industrial Park (32◦15′11′ ′ N, 118◦46′23′ ′ E).
The Nanjing Yangtze River Bridge was selected as the sampling site for collecting traffic–
source PM2.5, with a sampling time of January 2016. The Nanjing University of Information
Science and Technology was selected as the sampling site for collecting residential–source
PM2.5, with a sampling time of February 2016. The Nanjing Pukou Chemical Industrial Park
was selected as the sampling site for collecting industrial–source PM2.5, with a sampling
time of March 2016. Each sampling point collected 25 samples, for a total of 75 samples.
PM2.5 was collected on a quartz fiber filter through a high–flow sampler with a sampling
flow rate of 1.13 m3/min, and samples were collected continuously for 24 h. Before sam-
pling, the quartz fiber filter was baked at 450 ◦C for 6 h in a muffle furnace to remove
organic matter and impurities from the filter. The filter was weighed both before and after
sampling, and it was kept in a desiccator at room temperature for 24 h. These PM2.5 samples
in the same source were cut into pieces, and ultrasonic extraction was performed 3 times
with ultrapure water, each time for 20 min. To collect the PM2.5 samples, the solution was
filtered through 8 layers of sterile gauze and then put in freeze–drying equipment to be
vacuum freeze–dried. For later usage, the samples were kept in a refrigerator at –20 ◦C in
the dark.

2.2. Analysis of PM2.5 Chemical Components

The primary water–soluble inorganic ions (Na+, NH4
+, K+, Mg2+, Ca2+, F−, Cl−,

SO4
2−, and NO3

−) were measured using multi-function ion chromatograph (IC, Dionex,
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Sunnyvale, CA, USA). The amount of elemental carbon (EC) and organic carbon (OC)
was measured using an organic carbon analyzer (RT–4, Sunset Laboratory, Portland, OR,
USA). For the analysis of PAHs, a certain amount of PM2.5 samples were dissolved in
dichloromethane, ultrasonically extracted for 30 min, and repeated twice. After ultrasonic
treatment, the samples were filtered using the 0.22 µm PTFE filter. After filtration, nitrogen
was blown to 200 µL for analysis. Gas chromatography–mass spectrometry (GC–MS,
Agilent, Santa Clara, CA, USA) was used to determine the presence of PAHs. For the
analysis of metal elements, a certain amount of PM2.5 samples were dissolved in 65%
HNO3 after microwave digestion. The inductively coupled plasma mass spectrometer
(ICP–MS, Thermo Fisher Scientific, Waltham, MA, USA) was used to assess the presence of
17 different heavy metals in the samples. The endotoxin detection kit (Beyotime, Shanghai,
China) was used to detect the endotoxin content in the PM2.5 samples, which was based on
the horseshoe crab reagent colorimetric method for detection. The experimental operation
was carried out according to the instructions provided by the reagent kit. The microplate
reader (Molecular Devices, San Jose, CA, USA) was used to measure the absorbance of the
sample at a wavelength of 545 nm. The blank value was deducted from each result. These
components’ recovery rate was within the desired range of 100 ± 15%, guaranteeing the
data’s accuracy.

2.3. Cell Culture and Gas–Liquid Interface Exposure

A549 cells were provided by the stem cell bank of the Chinese Academy of Sciences.
A549 cells were cultivated in RPMI–1640 media in an incubator set at 37 ◦C with 5% CO2
(Thermo Fisher Scientific, Waltham, MA, USA), supplemented with 10% fetal bovine serum
(FBS, Bioagrio Science, Nanjing, China). The cell growth status was observed under the
microscope, and cell passage culture was carried out when cell growth occupied 80–90% of
the dish area. Cells were cultivated on 12–well Transwell culture plates (Labselect, Nanjing,
China) with 50,000 cells per cell chamber for all exposure studies. In each cell chamber,
0.5 milliliters of RPMI-1640 medium was applied to the upper side and 1 milliliter to the
lower. The surface area of the cell chamber was 1.12 cm2, and the pore size was 0.4 µm
polyester film. A549 cells were incubated under immersion conditions for 12 h to adhere to
the wall and form a tightly adhered cell layer. After the upper layer of the culture medium
was removed from the cell chamber, the cells were incubated under the air–liquid interface
conditions for another 4 h until exposure experiments were conducted.

The ALI exposure of PM2.5 to A549 cells was achieved using a cloud system toxicology
instrument (Vitrocell Cloud 12, Vitrocell Systems, Waldkirch, Germany). An amount of
4 mL of RPMI–1640 medium was added to each exposure module of the Vitrocell Cloud 12
system, making the level of medium slightly higher than the height of the PET membrane
in the cell chamber to ensure sufficient contact between the medium and cells. The cloud
system toxicology instrument has a warming system, which stabilizes the temperature at
37 ◦C throughout the exposure process, providing favorable living conditions for the cells.
Four PM2.5 exposure gradients were set: 0 (control), 25 µg, 50 µg, and 100 µg. The PM2.5
samples were dissolved in phosphate–buffered saline (PBS), and treated with ultrasonic and
vortexing, and the Transwell chamber was placed in the exposure module. The particulate
exposure solution was atomized using an aerosolizer (Aeroneb Lab, Aerogen, Galway,
Ireland), and the PM2.5 deposition mass on the chamber was 25, 50, and 100 µg for 5 min of
continuous exposure. After the ALI exposure, the lower medium was replaced with 1 mL
of RPMI–1640 medium without FBS, and the cell plate was placed in an incubator for 4 h to
measure the cytotoxicity indicators [25,26]. Three parallel experiments were set up for the
control group and exposure group.

2.4. Cell Vitality Detection

The CCK–8 kit (Beyotime, Shanghai, China) was used to determine the viability of
A549 cells. WST–8 in the CCK–8 reagent reacted with intracellular dehydrogenases and
was reduced to generate yellow WST–8 formazan. The color of the reaction solution was
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positively correlated with the number of viable cells. After exposure, 1 milliliter of RPMI–
1640 medium containing 10% CCK–8 was added to the upper chamber of each cell chamber,
and the culture plates were incubated in darkness at 37 ◦C for 2 h. An amount of 100 µL
of CCK–8 solution was transferred from each cell chamber to a 96–well plate, with three
repeated wells in each cell chamber. At 450 nm in wavelength, the optical density (OD)
of the sample was measured with the microplate reader. The ratio of (OD sample − OD
blank)/(OD control − OD blank) × 100% was used to express cell vitality.

2.5. ROS Detection

The DCFH–DA probe was used to detect the level of cellular ROS. Dimethyl sulfoxide
(DMSO) was used to dissolve DCFH–DA powder (Sigma, St. Louis, MO, USA) to create a
10 mM stock solution. This was subsequently diluted to 10µM using RPMI–1640 medium.
Each chamber added 500 µL of DCFH–DA solution, which was then incubated for 20 min
at 37 ◦C in the dark. Each chamber was washed three times with PBS to thoroughly remove
the extracellular DCFH–DA solution. Trypsin without EDTA was used to digest the cells.
PBS was used to collect the cells, and the flow cytometry (CytoFLEX, Beckman Coulter,
Pasadena, CA, USA) was used to detect the cells using an excitation wavelength of 488 nm
and an emission wavelength of 525 nm. The ratio of the fluorescence intensity between the
sample group and the control group was used to express the level of ROS.

2.6. Detection of Inflammatory Factors

With the aid of the enzyme–linked immunosorbent assay (ELISA), the amounts of pro-
inflammatory cytokines were determined. Tumor necrosis factor (TNF–α) and interleukin–6
(IL–6) were inflammatory factors involved in particulate matter mediation. TNF–α was a pre–
inflammatory response factor that could promote the secretion of inflammatory factor IL–6.
The overexpression of IL–6 was associated with cellular inflammation [27–29]. Inflammatory
factors (TNF–α and IL–6) were detected using an ELISA kit (Jiangsu Meimian Industrial
Co., Ltd., Nanjing, China), and the absorbance was measured at a wavelength of 450 nm
using a microplate reader. The levels of inflammatory factors in the supernatant were
detected to determine the inflammatory damage effect of particulate matter on the cells.

2.7. Detection of Cell Apoptosis Rate

The Annexin V–FITC/PI cell apoptosis detection kit (Beyotime, Shanghai, China) was
used to determine the apoptosis rate of the A549 cells. The experimental operation was
carried out according to the operating instructions provided by the reagent kit manufacturer.
The flow cytometry was used to detect the cell apoptosis rates.

2.8. DNA Damage Detection

DNA damage was detected using the γ–H2AX immunofluorescence DNA damage
detection kit (Beyotime, Shanghai, China). The experimental operation was carried out
according to the operating instructions provided by the reagent kit manufacturer. The cells
stained with fluorescence were observed and captured using the fluorescence microscope
(Jiangnan NIB910, Yong Xin Corporation, Ningbo, China). γ–H2AX exhibited green fluo-
rescence at an excitation wavelength of 488 nm. The Image J software was used to calculate
the fluorescence intensity. The ratio of the sample group’s fluorescence intensity to that of
the control group was used to express the degree of DNA damage.

2.9. Data Analysis

To guarantee that the results were accurate, each experiment was conducted three
times. The mean± standard deviation (SD) was used to express the experimental data. The
statistical program SPSS (IBM Statistics SPSS 27.0) was used to conduct the analysis. One–
way analysis of variance (ANOVA) was used to assess the differences between concentration
groups, and Pearson correlation analysis was used to ascertain the relationship between
PM2.5 components and cytotoxicity. In every experiment, the difference was statistically
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significant when the threshold of statistical testing was p < 0.05, and very significant when
it was p < 0.01.

3. Results and Discussion
3.1. Analysis of PM2.5 Mass Concentration and Chemical Composition

The average concentration of PM2.5 in different regions of Nanjing City was
111.32 ± 24.49 µg/m3 for the industrial sources, 82.37± 33.61 µg/m3 for the traffic sources,
and 43.87 ± 16.30 µg/m3 for the residential sources, from high to low. The mass concentra-
tion ratios of the main components of PM2.5 from the different sources are summarized as
follows (Figure 1). The average values of the PM2.5 components from the different sources
are listed in the supplementary information (Tables S1–S5). From Figure 1, it can be seen
that water–soluble ions accounted for 57.59%, 71.39%, and 75.78% of the PM2.5 mass in the
residential, industrial, and traffic sources, respectively, making them the largest contribu-
tors to the PM2.5 mass concentration. The NO3

−/SO4
2− ratio was often used to determine

the main source of atmospheric particulate pollution. When the ratio was larger than 1,
it meant that mobile sources, like car exhausts, dominated the emission source; when it
was less than 1, it meant that stationary sources, such as coal combustion, dominated [4,30].
The NO3

−/SO4
2− ratios of the PM2.5 samples from the residential, industrial, and traffic

sources were 0.99, 1.35, and 1.30, respectively. This indicated that the emission source in
the residential area of Nanjing was dominated by stationary sources, while the industrial
and traffic sources were dominated by mobile sources. OC and EC accounted for a large
proportion of PM2.5, accounting for 7.35–15.30% of the PM2.5 mass concentration. The
OC/EC ratio was often used to pinpoint PM2.5 secondary sources. The OC/EC ratios of the
PM2.5 samples from three sampling points in Nanjing were mainly distributed between 6
and 8, indicating that PM2.5 in Nanjing was mainly secondary. The heavy metals accounted
for 3.93%, 5.09%, and 5.76% of the PM2.5 samples from the residential, industrial, and
traffic sources, respectively. The significant differences in the heavy metals content between
particulate matter from different sources indicated a relationship with the pollution sources
in their respective regions. In terms of PAHs, 16 types of PAHs (naphthalene was not
detected) accounted for 0.00483%, 0.00612%, and 0.00913% of the mass concentration of
PM2.5 from the residential, industrial, and traffic sources, respectively. The trend of the total
concentration of PAHs was traffic source (91.31 ng/mg) > industrial source (61.15 ng/mg) >
residential source (48.30 ng/mg). The content of PAHs varied significantly among different
sources of particulate matter, indicating that the source of PM2.5 had an impact on the
content of PAHs.
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Figure 1. The mass concentration ratio of the main components of PM2.5 from different sources in
Nanjing, China.

3.2. Cell Vitality

As demonstrated in Figure 2a, the cell viability of the A549 cells exhibited significant
differences (p < 0.05) from the control group at PM2.5 exposure levels of 25, 50, and 100 µg.
Additionally, the exposure dose of PM2.5 was in a dose–response relationship with the



Toxics 2024, 12, 21 6 of 14

cell viability, and the higher the exposure dose, the lower the cell viability. The A549 cells
were exposed to PM2.5’s organic components in Nanjing’s industrial and urban districts,
and the results showed that the inhibitory effect on the cell viability in the industrial area
samples was greater than that in the urban area samples during winter and spring [31]. The
results in this study were similar, with differences in the toxicity of particles from different
sources on the A549 cells. The toxicity of PM2.5 from the traffic source was the strongest,
followed by the industrial source, and the residential source had the lowest toxicity. This
might be related to differences in the chemical composition of PM2.5 from different sources.
The results of the component analysis indicated that water–soluble ions, PAHs, and heavy
metals components had the highest content in the traffic–source samples, followed by the
industrial areas, and the lowest content in the residential sources. This might be the reason
for the differences in cytotoxicity of PM2.5 from the different sources.
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3.3. ROS Generation

The production of ROS could damage cellular macromolecules, such as DNA, and
proteins. The ROS level was an important indicator reflecting the degree of oxidative
damage to organisms [32,33]. After 4 h of exposure at the ALI, the ROS level of the A549
cells was measured, as shown in Figure 2b. At low exposure dosages, all particulate
matter exposure groups significantly increased the ROS concentration of the A549 cells in
comparison to the control group (p < 0.05). At the PM2.5 exposure of 50 µg, the industrial
source of PM2.5 induced higher levels of ROS in the cells compared to the residential and
transportation sources. As the PM2.5 exposure dose increased, the ROS levels in each
exposure group showed a trend of increasing, indicating that PM2.5 exposure induced
oxidative stress in the cells. According to a study conducted in India, traffic PM2.5 particles
had a greater degree of oxidative potential, produced more ROS, and caused more DNA
damage and cell death in human respiratory cells than PM2.5 from different areas (rural,
urban, and industrial) [23]. The results of this study also confirmed the previous report that,
overall, after acute exposure, the traffic–source PM2.5 samples produced more ROS than
the other samples. This difference in ROS generation might be attributed to the samples’
high concentration of heavy metals and PAHs.

3.4. Expression Level of Inflammatory Factors

Relevant research has shown that oxidative stress in cells led to the increased expres-
sion of inflammatory factors, which in turn caused inflammatory damage to the body [29].
As shown in Figure 3a, compared with the control group, there was a significant difference
in the expression level of TNF–α in particulate matters from the residential and traffic
sources at PM2.5 exposure doses of 25 µg to 100 µg (p < 0.05). When the exposure level
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of PM2.5 was 100 µg, compared with the control group, the industrial particulate matters
caused a significant increase in the TNF–α levels (p < 0.05). When the exposure dose of
PM2.5 was 25–100 µg, there was a significant difference in the expression level of IL–6
between the exposure groups and the control group (Figure 3b) (p < 0.01). The expression
level of IL-6 increased in a dose-dependent manner. At PM2.5 exposure levels of 25 and
50 µg, the impact of the industrial source of PM2.5 on IL–6 secretion was relatively low
compared to the residential and traffic sources. The experimental results indicated that
with the increase in PM2.5 exposure, the inflammatory damage to the cells became more
severe, and there was a significant difference in the toxicity of the particulate matter sources.
The impact of the traffic–source PM2.5 samples on the expression of inflammatory factors
was higher than that of the residential and industrial sources. Some related studies have
found that different seasons and sources of particulate matter had varying degrees of
influence on the secretion of inflammatory factors (IL–8 and IL–6). The metals, PAHs,
endotoxin, and other components in particulate matter played an important role in the
inflammatory response induced by PM2.5 [34,35]. These results suggested that the source
and spatiotemporal distribution of particulate matter could lead to different components of
particulate matter, which in turn affected its biological toxicity.
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Figure 3. The expression levels of TNF–α (a) and IL–6 (b) in A549 cells after 4 h of ALI exposure.
Compared with the control group, the expression levels of TNF–α and IL–6 in each exposure group
were significantly increased, and there was a positive correlation between PM2.5 exposure levels,
“*” means p < 0.05, and “**” means p < 0.01.

3.5. Cell Apoptosis Analysis

PM2.5 exposure could cause necrosis and apoptosis in cells. The Annexin V–FITC/PI
double–stained method was used to determine the apoptosis rate of the A549 cells after
they were exposed to the ALI for 4 h. As shown in Figure 4a, with the increase in the
exposure dose of particulate matter, the early apoptosis rate and the mid–late apoptosis
rate of the A549 cells showed an upward trend. Except for the low–exposure group of the
industrial particulate matter, the mid–late apoptosis rate was generally higher than the
early apoptosis rate. In Figure 4b, compared with the control group, the apoptosis rates of
the three exposed samples were significantly increased at a dose of 25 µg (p < 0.05), and
the trend increased as the exposure dose increased. When the exposure level of particulate
matter was 25 µg, the industrial–source PM2.5 caused more cell apoptosis, and when the
exposure level of particulate matter was 50 and 100 µg, the traffic–source PM2.5 caused a
higher degree of cell apoptosis. The above results indicated that acute exposure to PM2.5
could lead to cell apoptosis. It has been reported that short–term exposure to PM2.5 in
Ningxia and Qinghai regions induced cell cycle arrest in A549 cells, led to apoptosis or
necrosis, and damaged cells might not be able to repair [5]. In addition, the trend of changes
in the apoptosis rate and cell viability were opposite, but the overall trend showed that
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the cytotoxicity of particulate matter from the traffic source was stronger, followed by the
toxicity of the industrial source, and the toxicity of the residential source was lower.
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Figure 4. (a) Apoptosis flow cytometry of A549 cells exposed to PM2.5 at the ALI for 4 h. The exposure
concentrations from left to right are 0, 25, 50, and 100 µg, respectively. Compared with the control
group, the apoptosis rate of each exposure group increased in a dose–dependent manner. Green,
orange, red, and blue within the quadrant represent the proportion of live cells, early apoptotic cells,
late apoptotic cells, and dead/necrotic cells, respectively. (b) The apoptosis rate of A549 cells after 4 h
of exposure. “*” means p < 0.05, “**” means p < 0.01.

3.6. DNA Damage

H2AX is a variant of the histone H2A family. A common biomarker of DNA double–
strand breaks (DSBs) is γ–H2AX, which is produced when H2AX is phosphorylated. The
level of γ–H2AX might indicate the extent of DNA damage [4,36]. In this experiment,
stained γ–H2AX showed green fluorescence under a fluorescence microscope (Figure 5a–c).
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In each exposure group, there were more fluorescent spots and a higher fluorescence
intensity as compared to the control group. As the exposure dose of the particulate matter
increased, the number and intensity of fluorescent dots increased, indicating an increase
in the γ–H2AX content and an aggravation of cellular DNA damage. By calculating the
fluorescence intensity of each image, the DNA damage level of A549 cells was quantified,
as shown in Figure 5d. At low exposure doses, each exposure group could significantly
increase the levels of γ–H2AX in cells when compared to the control group (p < 0.05). As
the PM2.5 exposure dose increased, the levels of γ–H2AX in cells significantly increased
(p < 0.01), indicating an increase in the DNA damage levels. At PM2.5 exposure levels of
50 µg, the industrial–source samples caused relatively high levels of cellular DNA damage.
A study has shown that the exposure of cells to fresh and aged smoke particles at the
air–liquid interface could induce an increase in the DNA damage levels in cells, and the
toxicity of aged smoke particles was stronger [37]. In this study, under acute exposure
conditions at the air–liquid interface, the traffic–source PM2.5 induced the highest levels
of γ–H2AX and DNA damage in cells, the industrial–source PM2.5 had a higher degree
of DNA damage in cells, and the residential–source PM2.5 had the lowest impact on the
DNA damage. The results suggested that the traffic, industrial, and residential PM2.5 had
different chemical compositions, resulting in different levels of DNA damage. The trend of
the DNA damage changes was consistent with the trend of the ROS level changes, which
might be due to oxidative stress-induced DNA damage. It has been reported that PM2.5
caused DNA strand breakage through the production of ROS, affecting the genetic toxicity
of cells [38–40]. ROS could interact with DNA molecules, inducing DNA strand breaks and
causing oxidative DNA damage [41,42].
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Figure 5. (a–c) Fluorescence images of γ–H2AX in A549 cells exposed to PM2.5 at the ALI for 4 h.
The exposure concentrations from left to right are 0, 25, 50, and 100 µg, respectively. Compared with
the control group (0 µg), the fluorescence intensity of each exposure group increased. (d) Level of
γ–H2AX in A549 cells after 4 h of exposure. Compared with the control group, “*” means p < 0.05,
and “**” means p < 0.01.

3.7. Correlation Analysis between Biological Toxicity Indicators and Chemical Components of PM2.5

According to earlier research, the chemical compositions of PM2.5 played a significant
role in causing biological toxicity effects, and the toxicity effects produced by different
components vary [43]. The correlation between the chemical makeup of PM2.5 and the
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cytotoxicity effects was analyzed (Tables 1, 2 and S6). NH4
+, Cl−, SO4

2−, and NO3
− were

highly negatively correlated with the cell viability. In addition to Na+, K+, and Mg2+,
other water–soluble ions were highly correlated with ROS, TNF–α, IL–6, the apoptosis
rate, and DNA damage. Carbon components (OC and EC) were highly correlated with
toxicity indicators such as ROS, inflammatory factors, and DNA damage. PAHs and
endotoxin were highly correlated with the cytotoxicity effect indicators. According to a
study conducted in Jinan, PM2.5 and its chemical constituents could cause lung damage
and generate cytotoxicity. The majority of inorganic elements (including Hg, Pb, and
Cr) and PAHs had a strong negative correlation with the cell viability and were crucial
for cytotoxicity [44]. For heavy metals, Al, Mn, Fe, As, Cd, Pb, Sb, and Ti were highly
negatively correlated with the cell viability. In addition to Cr, Ni, Cu, Se, Ba, and Sr, most
heavy metals were highly positively correlated with ROS, TNF–α, IL–6, the apoptosis rate,
and DNA damage. Previous similar studies have found that the toxicity indicators were
related to the content of metal elements such as Zn, Fe, Cr, Mn, Cd, Ni, As, Cs, and Pb in
atmospheric particulate matter [17,45]. When exposed to PM2.5 in Nanjing’s urban and
industrial districts, the industrial–source samples typically produced more cytotoxicity than
the urban–source samples [31]. This indicated that there were differences in the particulate
matter toxicity in different regions, which was generally consistent with the results of this
study. The overall trend of cytotoxicity produced by the PM2.5 samples was traffic–source
samples > industrial–source samples > residential–source samples. This might be related
to differences in the chemical composition of PM2.5. The results of the component analysis
indicated that water–soluble ions, PAHs, and heavy metals components had the highest
content in the traffic–source samples, followed by the industrial–source samples, and the
residential–source samples had the lowest content. According to the Pearson correlation
analysis (Tables 1 and 2), several cytotoxicity effect indicators were highly correlated with
PAHs, endotoxin, carbon components, and heavy metals components in the PM2.5 samples,
and there was a significant correlation between the cytotoxicity indicators and several
water–soluble ions. The water–soluble ions, carbon components, PAHs, endotoxin, and
heavy metals in PM2.5 might be the main elements that caused cytotoxicity, according to
our analysis of the aforementioned results.

The hypothesis that oxidative stress was the initial step in the toxic effects induced by
fine particulate matter has been widely accepted [46,47]. Some research results supported
oxidative stress as an important mechanism for PM2.5–induced inflammatory response,
cytotoxicity, and carcinogenesis. Wang et al. [48]. investigated the mechanism of particulate
matter–induced lung inflammation and found that particulate matter exposure led to the
activation of ROS–mediated MAPK kinases (ERK, JNK, p38MAPK) and the downstream
NF–κB signaling pathway, which in turn induced airway inflammation. This suggested
that oxidative stress played a crucial role in particulate matter–induced pulmonary inflam-
mation. Yang et al. [5]. found that human lung cancer cells exposed to particulate matter
could lead to oxidative stress and apoptosis. This study showed that acute exposure to
PM2.5 at the ALI significantly raised the generation of ROS, suggesting that PM2.5 caused
oxidative stress in cells under acute exposure. The formation of ROS and the presence of
PAHs and heavy metals in PM2.5 were significantly correlated, according to the Pearson
correlation analysis. This implied that oxidative stress caused by PM2.5 might be signifi-
cantly influenced by PAHs and heavy metals. Numerous investigations have also verified
that ROS production could be triggered by heavy metals and PAHs [20,49]. Furthermore,
OC and water–soluble ions had a strong correlation with the generation of ROS. The fact
that water–soluble ions could break down into cells and stimulate ROS generation might
be a significant contributing factor [50,51]. Water–soluble ions make up the majority of the
PM2.5 samples, according to the component analysis of the samples, and they might be
involved in inducing the production of ROS in cells. According to the Pearson correlation
analysis between the toxicity effect indicators (Supporting Information, Table S7), ROS
generation was strongly correlated with the cell survival rate, TNF–α, IL–6, cell apoptosis
rate, and DNA damage. This suggested that ROS–mediated oxidative stress was an impor-
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tant mechanism for the PM2.5–induced toxicity effects, which was also consistent with the
results of other studies [5,40,52].

Table 1. Pearson correlation coefficient between cytotoxic effect indexes and main chemical compo-
nents of PM2.5. “**” means p < 0.01.

Cell Viability ROS TNF–α IL–6 Apoptosis Rate DNA Damage

Na+ –0.646 0.716 0.730 0.771 0.632 0.718
NH4

+ –0.858 ** 0.983 ** 0.946 ** 0.928 ** 0.977 ** 0.973 **
K+ –0.575 0.673 0.538 0.631 0.506 0.636

Mg2+ –0.662 0.757 0.677 0.755 0.612 0.734
Ca2+ –0.781 0.876 ** 0.880 ** 0.898 ** 0.822 ** 0.876 **
F− –0.788 0.885 ** 0.887 ** 0.903 ** 0.831 ** 0.884 **
Cl− –0.863 ** 0.982 ** 0.962 ** 0.949 ** 0.969 ** 0.977 **

SO4
2− –0.862 ** 0.984 ** 0.943 ** 0.947 ** 0.944 ** 0.973 **

NO3
− –0.858 ** 0.981 ** 0.951 ** 0.929 ** 0.980 ** 0.973 **

OC –0.721 0.807 ** 0.803 ** 0.841 ** 0.725 0.805 **
EC –0.778 0.872 ** 0.875 ** 0.894 ** 0.814 ** 0.872 **

PAHs –0.829 ** 0.935 ** 0.957 ** 0.921 ** 0.959 ** 0.941 **
Endotoxin –0.824 ** 0.939 ** 0.937 ** 0.890 ** 0.978 ** 0.939 **

Table 2. Pearson correlation coefficient between cytotoxic effect indexes and heavy metals in PM2.5.
“**” means p < 0.01.

Cell Viability ROS TNF–α IL–6 Apoptosis Rate DNA Damage

Al –0.828 ** 0.958 ** 0.870 ** 0.888 ** 0.896 ** 0.934 **
V –0.798 0.929 ** 0.826 ** 0.845 ** 0.866 ** 0.902 **
Cr –0.646 0.718 0.722 0.769 0.624 0.717
Mn –0.829 ** 0.960 ** 0.873 ** 0.888 ** 0.903 ** 0.937 **
Fe –0.823 ** 0.950 ** 0.864 ** 0.893 ** 0.872 ** 0.927 **
Co –0.789 0.918 ** 0.810 ** 0.844 ** 0.832 ** 0.889 **
Ni –0.651 0.773 0.621 0.672 0.664 0.732
Cu –0.327 0.374 0.284 0.401 0.183 0.348
Zn –0.731 0.847 ** 0.736 0.800 ** 0.718 0.816 **
As –0.857 ** 0.983 ** 0.939 ** 0.924 ** 0.971 ** 0.972 **
Se –0.690 0.797 0.692 0.766 0.655 0.768
Cd –0.810 ** 0.941 ** 0.847 ** 0.857 ** 0.891 ** 0.916 **
Ba –0.513 0.589 0.493 0.594 0.414 0.562
Pb –0.809 ** 0.939 ** 0.839 ** 0.865 ** 0.865 ** 0.912 **
Sr –0.473 0.535 0.471 0.569 0.368 0.516
Sb –0.828 ** 0.959 ** 0.883 ** 0.878 ** 0.931 ** 0.939 **
Ti –0.827 ** 0.930 ** 0.952 ** 0.928 ** 0.937 ** 0.936 **

4. Conclusions

This study explored the toxic effects on A549 cells of PM2.5 from distinct regions in
Nanjing. The research results found that acute exposure to particle matter from different
sources at the air–liquid interface caused damage to cells, led to apoptosis, oxidative
stress, inflammatory damage, and DNA damage. The important potential mechanism of
PM2.5–induced biological toxicity was related to oxidative stress. The health hazards of
the PM2.5 samples from the traffic source were higher than those from the industrial and
residential sources, due to differences in the chemical composition. Water–soluble ions,
carbon components, PAHs, endotoxin, and heavy metals were key components that caused
cytotoxicity. The findings of this study contributed to understanding the impact of living in
urban environments on human health and provided a reference for evaluating the relevant
toxic components of PM2.5.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics12010021/s1, Table S1: Content of water–soluble ions in PM2.5.
Table S2: Content of OC and EC in PM2.5. Table S3: Concentrations of metal elements in PM2.5 as
measured by ICP–MS. Table S4: Content of PAHs in PM2.5 obtained from GC–MS. Table S5: Content
of endotoxin in PM2.5. Table S6: Pearson correlation coefficient between cytotoxic effect indexes
and PAHs of PM2.5. Table S7: Pearson correlation coefficient between cytotoxic effect indexes in
A549 cells.
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