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Abstract: Plastic additives that maintain integrity have been extensively studied for potential toxicity
to fish; however, chemicals that protect polymers from (artificial) UV degradation are less studied.
Benzotriazole UV stabilizers (BUVSs) are the most widely used UV stabilizers in plastics and are
often used in sunscreens, cosmetics, paint, and food packaging. BUVSs can negatively affect aquatic
wildlife when released into the environment via plastic degradation. In this review, we summarize
the distribution of BUVSs globally and discuss neurotoxicological endpoints measured in fish to
understand how these plastic additives can affect the neurological health of teleost fishes. BUVSs
have been detected in aquatic environments at concentrations ranging from 0.05 up to 99,200 ng/L.
Studies show that BUVSs affect behavioral responses and acetylcholinesterase activity, indicators of
neurotoxicity. Our computational analysis using transcriptome data suggests certain pathways asso-
ciated with neurodegeneration are responsive to exposure to BUVSs, like “Complement Activation in
Alzheimer’s Disease”. Based on our review, we identify some research needs for future investigations:
(1) molecular studies in the central nervous system to define precise mechanisms of neurotoxicity;
(2) a wider range of tests for assessing aberrant behaviors given that BUVSs can affect the activity of
larval zebrafish; and (3) histopathology of the nervous system to accompany biochemical analyses.
These data are expected to enhance understanding of the neurotoxicity potential of benzotriazoles
and other plastic additives.

Keywords: plasticizers; central nervous system; aquatic toxicology; BUVS; behavior; plastic additives

1. Introduction: Ultraviolet Stabilizers, Non-Negligible Additives in Plastics

Microplastic pollution has received intensifying attention as an emerging worldwide
environmental issue. One of the most important problems with microplastics is the leaching
of harmful additives [1]. During plastic production, chemical additives are often added
to improve the performance, functionality, and ageing properties of the polymer. Plastics
often contain four types of plastic additives: plasticizers, flame retardants, light stabilizers,
and antioxidants. Amongst these additives, plasticizers and flame retardants are the most
frequently added, at a proportion of >70% to products. Plasticizers are functional additives
that improve plasticity, flexibility, processability, and durability [2]. They are mostly used
in polyvinyl chloride (PVC) products, but are also used in wires, cables, coatings, product
packaging, cosmetics, pharmaceuticals, and medical devices [3–6]. Currently, there are
over 500 types of plasticizers produced industrially. To protect plastics and plasticizers,
other stabilizing chemicals are embedded in polymer resins to delay the overall oxidative
degradation of plastics if/when exposed to ultraviolet (UV) light [7]. Although they
only account for 0.05–3% of the number of additives used in plastic manufacturing, their
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ubiquitous detection in the environment and biota, as well as potential toxicity to aquatic
organisms, has led to increased concern regarding their aquatic ecosystem presence.

UV stabilizers are a group of substances that protect polymers from degradation
caused by sunlight or other artificial UV light. Of these, benzotriazole derivatives are the
most widely used UV stabilizers in plastics [8]. Benzotriazole UV stabilizers (BUVSs) share
a common 2-hydroxyphenyl benzotriazole structure, and the derivatives are classified
by various alkyl substitutions on the phenol ring (Figure 1). BUVSs can absorb the full
spectrum of UV light, including UV-A (320–400 nm) and UV-B light (280–320 nm), to
prevent light-induced yellowing and degradation of products [9]. Due to these unique
properties, benzotriazole UV stabilizers (BUVSs) are often used in sunscreen, cosmet-
ics, and other personal care products [10–12], as well as in plastics, paints, and food
packaging [13,14]. BUVSs have been added to the list of high-production-volume (HPV)
chemicals [15].

Toxics 2024, 12, x FOR PEER REVIEW 2 of 17 
 

 

overall oxidative degradation of plastics if/when exposed to ultraviolet (UV) light [7]. Alt-
hough they only account for 0.05–3% of the number of additives used in plastic manufac-
turing, their ubiquitous detection in the environment and biota, as well as potential tox-
icity to aquatic organisms, has led to increased concern regarding their aquatic ecosystem 
presence.  

UV stabilizers are a group of substances that protect polymers from degradation 
caused by sunlight or other artificial UV light. Of these, benzotriazole derivatives are the 
most widely used UV stabilizers in plastics [8]. Benzotriazole UV stabilizers (BUVSs) 
share a common 2-hydroxyphenyl benzotriazole structure, and the derivatives are classi-
fied by various alkyl substitutions on the phenol ring (Figure 1). BUVSs can absorb the 
full spectrum of UV light, including UV-A (320–400 nm) and UV-B light (280–320 nm), to 
prevent light-induced yellowing and degradation of products [9]. Due to these unique 
properties, benzotriazole UV stabilizers (BUVSs) are often used in sunscreen, cosmetics, 
and other personal care products [10–12], as well as in plastics, paints, and food packaging 
[13,14]. BUVSs have been added to the list of high-production-volume (HPV) chemicals 
[15]. 

 
Figure 1. A 3D depiction of examples of different benzotriazoles, benzophenones, and their deriva-
tives. Red indicates the position of oxygen, and blue indicates the position of nitrogen. Images ex-
tracted from the National Center for Biotechnology Information (2023). PubChem Compound Sum-
mary. Images retrieved 1 March 2023. 

2. Objectives of the Review 
The objectives of this review were to (1) summarize the distribution of BUVSs on a 

global scale and (2) review studies in fish to better understand how these plastic additives 
may affect the neurological health of aquatic species. While exposure to BUVSs can have 
a range of biological effects in fish, including oxidative stress, reproductive disruption, 
and immunotoxicity [16–18], we elect to focus here on neurotoxicity, as several studies 
now report that microplastics negatively affect the central nervous system of fish [19]. Ev-
idence shows that BUVSs can affect common biomarkers of neurotoxicity, including ace-
tylcholinesterase activity and neurotransmitter concentrations in fish.  

A literature search was conducted on the Web of Science 
(www.webofknowledge.com) and ScienceDirect (https://www.sciencedirect.com) ac-
cessed on 1 August 2023 using the keywords [benzotriazole UV stabilizers or benzotria-
zole UV filters + aquatic environment or water or sludge or sediment]. A total of 365 pa-
pers were collected and surveyed for information regarding environmental concentra-
tions in sediment, soil, and water. Figure 2 displays the number of studies corresponding 
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2. Objectives of the Review

The objectives of this review were to (1) summarize the distribution of BUVSs on a
global scale and (2) review studies in fish to better understand how these plastic additives
may affect the neurological health of aquatic species. While exposure to BUVSs can have
a range of biological effects in fish, including oxidative stress, reproductive disruption,
and immunotoxicity [16–18], we elect to focus here on neurotoxicity, as several studies
now report that microplastics negatively affect the central nervous system of fish [19].
Evidence shows that BUVSs can affect common biomarkers of neurotoxicity, including
acetylcholinesterase activity and neurotransmitter concentrations in fish.

A literature search was conducted on the Web of Science (www.webofknowledge.com)
and ScienceDirect (https://www.sciencedirect.com) accessed on 1 August 2023 using
the keywords [benzotriazole UV stabilizers or benzotriazole UV filters + aquatic envi-
ronment or water or sludge or sediment]. A total of 365 papers were collected and sur-
veyed for information regarding environmental concentrations in sediment, soil, and
water. Figure 2 displays the number of studies corresponding to each keyword. Of these,
64 toxicological studies on the neurotoxicity of benzotriazole UV stabilizers and benzophe-
none UV filters were identified using the keywords [BUVSs + neurotoxicity OR nervous
system OR locomotion behavior OR anxiety]. Of these studies, there were 11 reports on
neurotoxic endpoints (molecular, biochemical, and behavioral) of BUVSs in fish. Data from

www.webofknowledge.com
https://www.sciencedirect.com
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these studies were synthesized to generate a more complete understanding of how BUVSs
may affect neural-related endpoints and identify potential knowledge gaps in the literature.
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3. Occurrence of Ultraviolet Stabilizers in Aquatic Environments

BUVSs can be deposited in aquatic ecosystems via wastewater treatment plant dis-
charges [20], runoff [21], landfills [22], and plastic debris [8,23,24]. These chemicals have
been detected in environmental samples such as surface water [14], wastewater [25], seawa-
ter [26], sediment [14,27], and sewage sludge [22,28]. Supplemental Table S1 summarizes
data for global benzotriazole concentrations. Limited studies examine environmental
concentrations in Africa, Australia, and South America, as only four studies in total have re-
ported benzotriazole concentrations at these locations. In North America, multiple studies
evaluate concentrations of BUVSs in the USA or Canada; however, most studies available
that report on benzotriazole concentrations are in Europe and Asia, in countries such as
Spain, China, and India. Briefly, BUVSs (e.g., UV-P, UV-320, UV-326, UV-327, UV-328,
and UV-329) were detected in water from rivers in central India at concentrations up to
6.79 ng/L [14], while UV-360 was detected in Gran Canaria seawater at concentrations rang-
ing from 41.12 to 544.9 ng/L [26]. BUVSs (e.g., UV-P, UV-329, UV-326, UV-328, UV-327, UV-
571, and UV-360) were present in Gran Canaria (Spain) wastewater at concentrations up to
83.3 ng/L (UV-326) [25]. Additionally, they were detected at concentrations ranging from
0.3 to 320 ng/g dry weight [27] and from 44 to 2362 ng/g dry weight [22] in sediment
and sewage sludge, respectively. Studies have also detected BUVSs in human breast
milk [29], urine [30], indoor dust [31], and in the tissues of fish, birds, and other aquatic
organisms [22,32–34]. Due to their high lipophilicity, BUVSs show a high propensity to
bioaccumulate in aquatic organisms [35]. For instance, reports indicate that BUVSs can
reach up to 450 ng/g lipid weight in mussels analyzed across 10 countries [34]. Figure 3
provides an overview of BUVS concentration globally.
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4. Neurotoxicity of Ultraviolet Stabilizers in Fish

The health of the central nervous system is critical to all physiological processes in
an individual. Unfortunately, there is a plethora of environmental contaminants that can
induce neurotoxicity in fish, including pesticides, industrial chemicals, and plastic de-
bris. Researchers have utilized several cellular, biochemical, and molecular endpoints
for evaluating the neurotoxicity potential of chemicals, including enzyme activity like
acetylcholinesterase or molecular indicators of neuronal or glial damage (e.g., beta-tubulin,
microtubule-associated protein tau, glial fibrillary acidic protein). In the following section
below, we discuss studies that support or refute the hypothesis that benzotriazoles induce
neurotoxicity in fish. Zebrafish were of focus as they share many genes and neurotrans-
mitters, as well as a similar central nervous system structure, with humans, which make
them valuable models of neurotoxicity. Table 1 provides a summary of the neurotoxic
endpoints assessed and the outcomes of the exposure experiments in fish. However, we
also point out that there are additional studies on marine species, mainly bivalves, that
address the toxicity of BUVSs. We have included this information in Supplemental Table S3
as a resource to guide future studies in marine invertebrates.
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Table 1. Summary of neurotoxic endpoints and outcomes in zebrafish following chemical exposure.

Chemicals Dose Life Stage Exposure
Period Endpoint Results Reference

UV-234,
UV-326

1, 10,
100 µg/L Embryos 7d AchE activity Upregulated at 10 and 100 µg/L

Zhang et al.,
2023 [57]

Locomotor
response

Both compounds induced
hyperactivity in the dark cycle via
swimming distance, acceleration,
and mobile activity.

Neurotrophic
factors

igf1 and sdf1a were inhibited 1.65-
to 2.26-fold and 2.15- to 2.19-fold,
respectively, with UV-234; mmp9,
fgf2, and sdf1a increased with
1 and 100 µg/L UV-326; igf1
decreased with 10 µg/L exposure
UV-326

Spontaneous tail
coiling (STC) Inhibited 2.08–6.25-fold

Pro-inflammatory
gene expression

tnfα decreased in all treatment.
il1β decreased with 100 µg/L
UV-234 and increased with
100 µg/ L UV-326; il6 increased
with 100 µg/ L UV-326

UV-234,
UV-320

0.01, 0.1,
1 µM Embryos 6d Locomotor

response

UV-234 altered activity in both
light/dark periods; Hyperactivity
was induced in fish pre-adapted to
darkness with 1 µM UV-320; 1 µM
UV-320 increased distance moved
in the dark phase; 0.1 µM UV-320
increased distance moved in the
light phase

Liang et al.,
2019 [58]

BP3 1, 10,
100 µg/L

Embryos
and larvae 4d Axonal Growth Decreased relative axon length in

27 hpf larvae.

Tao et al.,
2020 [59]

Touch response Decreased in 27 hpf larvae with
10 µg/L

Locomotor
response

Increased swimming distance and
average swimming speed in the
dark period with 10 µg/L

Spontaneous
movement

Increased frequency of bending at
21 hpf (10 and 100 µg/L) and
24 hpf (10 µg/L)

Social behaviors

Nearest neighbor distance and the
inter-individual distance
increased; Mean attacks and time
spent in the mirror area decreased

BP3 10 µg/L Adults 150d Social preference Reduced prosocial behaviors

Bai et al.,
2023 [60]

Mirror biting test Reduction of biting behavior in
females

T–maze test Impaired learning and memory
regardless of sex

Body length,
weight, brain
weight, brain
dopamine and
acetylcholine

Reduced female brain weight and
dopamine level

Cell proliferation in
the telencephalon

Neurogenesis inhibited in the
telencephalon

Cell apoptosis in
the telencephalon

Apoptotic cells increased in the
female telencephalon
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Table 1. Cont.

Chemicals Dose Life Stage Exposure
Period Endpoint Results Reference

BP3 2 mg/L Larvae 5d
Enteric neuron
number and related
gene expression

BP-3 could impede ENS zebrafish
development via the MAPK/ERK
signaling pathway

Hemalatha
et al., 2020 [61]

BP3 1, 10 µg/L Embryos 3d AChE Inhibited by both concentrations Sandoval-Gío
et al., 2021 [62]

BP3 10, 100,
1000 µg/L Adults 15d Novel tank test Reduced locomotion and

decreased anxiety-like behavior

Moreira et al.,
2022 [63]

Shoal preference Reduced interaction and time near
the shoal

Mirror test
Reduced interactions with the
mirror image; thus, impairing
proper aggressive response

T-maze
Reduced exploration of the novel
arm; thus, jeopardizing the ability
to retain information

BP3,
nano-Tio2

10 µg/L
BP3;
100 µg/L
nano-Tio2
(sepa-
rately and
com-
bined)

Embryos 1d Spontaneous
movement

Increased in single and
coexposure groups at 24 hpf

Sun et al.,
2023 [64]

Touch response Decreased in co-exposure at 30 hpf

Axonal growth
Single and coexposure inhibited
axonal growth, and induced
apoptosis and ROS generation

BP1
0.8, 1, 1.2,
1.6, 2.4
µg/mL

Larvae 4d CNS Abnormal brain structure and
neuron loss

Song et al.,
2022 [65]

DA neurons Decreased the number in
the midbrain

6d Locomotor capacity

Suppressed velocity and
movement distance; altered
expression of neurodevelopment
related genes

BP1 1, 10, 100,
1000 µg/L Adults 14d T-maze tests Inhibited spatial working memory

Tank diving tests

Increase in proportion of bottom
swimming duration/distance to
total duration/distance, indicating
a decrease of exploratory behavior

4.1. Molecular and Biochemical Indicators of Neurotoxicity

There have been several studies reporting the neurotoxic effects of BUVSs at the cellu-
lar and molecular level. Song et al. [65] exposed larval zebrafish (Danio rerio) to 0.8, 1, 1.2,
1.6, or 2.4 µg/mL and adult zebrafish to 1, 10, 100, or 1000 µg/L benzophenone-1 (BP-1)
and reported that BP-1 decreased the number of dopaminergic neurons in the midbrain
and induced the loss of neurons in the central nervous system (midbrain and thalamus) in
a concentration-dependent manner. Zebrafish exposed to 2.4 µg/mL also lost a significant
number of neurons in their tails. Neurodevelopment-related genes in larvae were also mea-
sured in the study following 6 days of exposure. Following exposure to 1.6 and 2.4 µg/mL,
brain-derived neurotrophic factor (bdnf ) and myelin basic protein a (mbpa) decreased and
increased in expression, respectively. Additionally, pro-opiomelanocortin (pomc) expression
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was reduced in fish exposed to 0.8 and 1.0 µg/mL, and glial fibrillary acidic protein (gfap)
expression was reduced in fish exposed to between 1.0 and 2.4 µg/mL [65]. Additional
studies support the hypothesis that BUVSs induce oxidative stress and neuroinflamma-
tion in fish. For example, Sun et al. [64] exposed zebrafish embryos to 10 or 100 µg/L
benzophenone-3 (BP-3) or titanium dioxide nanoparticles (nano-TiO2) for 1 day, either
separately or in a mixture. Single and co-exposure to BP-3 induced apoptosis, inhibited
axonal growth, and generated reactive oxygen species (ROS). The immune system also
appears to be a target for toxicity, indicating the potential for neuroinflammation. In an-
other study, Zhang et al. [57] exposed zebrafish embryos to two common benzotriazole
UV stabilizers, UV-234 and UV-326, at concentrations of 1, 10, and 100 µg/L for 7 days. In
the study, pro-inflammatory gene expression was analyzed, and it was found that the two
stabilizers had varying effects on the organism, suggesting differences in mechanisms of
toxicity. In fish exposed to 100 µg/L UV-326, interleukin-1 beta (il1β) and interleukin 6 (il6)
were significantly increased; however, il1β was significantly decreased in fish exposed to
100 µg/L UV-234. Tumor necrosis factor α (tnfα), a pro-inflammatory cytokine, was signifi-
cantly decreased following both stabilizer treatments. Insulin-like growth factor 1 (igf1) and
stromal cell-derived factor 1 (sdf1a) were inhibited 1.65- to 2.26-fold and 2.15- to 2.19-fold,
respectively, following UV-234 exposure, which indicates damage to cell differentiation
and regeneration function. In fish exposed to UV-326, igf1 decreased with 10 µg/L, but fi-
broblast growth factor 2 (fgf2), matrix metalloproteinase 9 (mmp9), and sdf1a increased with
exposure to 1 or 100 µg/L UV-326, indicating the initiation of nerve cell repair following
an inflammatory reaction [57]. Furthermore, at the biochemical level, exposure to BP-3 for
3 days decreased acetylcholinesterase (AChE) activity and increased AChE gene expression
in a concentration-dependent manner in zebrafish [62]. Taken together, oxidative stress,
neuroinflammation, and effects on AchE are notable mechanisms of toxicity for BUVSs.

4.2. Behavioral Indicators of Neurotoxicity

Behavioral assays have been utilized to identify interactions of ultraviolet stabilizers
with the nervous system. Behavioral endpoints measured that provide sensitive indicators
for neuroactivity of BUVSs in fish have included spontaneous tail coiling (STC), alternating
light- and dark-induced locomotor response (LMR-L/D), and social behaviors such as
shoaling, and mirror response (Table 1). To date, several toxicological studies have reported
on ultraviolet filters, including benzophenone derivatives like BP-1 and BP-3 (BP-3 being
the most studied) [66]. These studies have been conducted on both larval and adult fish.
Tao and colleagues [59] exposed zebrafish embryos to 1, 10, or 100 µg/L BP-3 for up to
4 days. Axon length was decreased in 27 hpf larvae, and cell apoptosis in the head region
increased in all treated embryos. Concerning motor and social behavior analysis, only
embryos exposed to 10 µg/L were analyzed. Response rates in 27 hpf larvae were reduced,
but this effect was not observed in 48 hpf larvae. Swimming distance and speed were
increased at 5 dpf, the nearest neighbor distance and the inter-individual distance increased
significantly at 11 dpf, and the mean number of times fish butted/bit or spent around the
mirror during the mirror response test were significantly decreased at 12 dpf. In another
study, larval zebrafish exposed to between 0.8 and 2.4 µg/mL BP-1 for 6 days showed
reduced velocity when exposed to the highest tested concentration [59]. Sun et al. [64]
exposed zebrafish embryos separately or in a mixture to 10 or 100 µg/L BP-3 or nano-TiO2
for 1 day. At 24 hpf, both single and co-exposure significantly increased spontaneous
movement, and, at 30 hpf, co-exposure of the chemicals caused the touch response rate
to decrease.

Adult fish behavioral responses have also been investigated following BUVSs exposure.
Moreira and Luchiari [57] analyzed the response of adult zebrafish exposed to 10, 100, or
1000 µg/L BP-3 following several administered tests (i.e., T-maze, shoal preference, mirror
test, novel tank test). Decreased exploration and interaction of the novel arm in the T-maze
and with the shoal preference test were observed in fish, along with fewer mirror image
interactions, decreased anxiety-like behavior, and decreased locomotion. Furthermore, Bai
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et al. [60] exposed adult zebrafish to 10 µg/L BP-3 for 150 days and analyzed behavioral
alterations and cognitive deficits. Following a social preference test, fish were observed to
have reduced prosocial behaviors. Additionally, biting behavior in females was significantly
reduced. Both male and female fish were found to display impaired learning and memory
and neurogenesis inhibition [60]. In female fish, brain weight and dopamine levels were
reduced, and the number of apoptotic cells in their telencephalon was increased. In another
study using a T-maze test in adult zebrafish exposed to BP-1, impaired learning and memory
ability were observed as retention time decreased and latency to deep water increased
in a concentration-dependent manner [25]. The total swimming distance in adults also
decreased in a concentration-dependent manner, and the swimming duration at the bottom
of the tank increased, indicating that BP-1 decreases exploratory behavior at the top of the
tank (i.e., increases anxiety).

Conversely, behavioral studies on UV stabilizers are limited. As a derivative of the
suspected neurotoxin benzotriazole [67], many BUVS congeners are reported to disrupt
swimming behavior in early-stage zebrafish. Liang et al. [58] exposed zebrafish embryos to
0.01, 0.1, or 1.0 µM UV-234 or UV-320 for 6 days and conducted a light/dark locomotor
response assay. There were subtle behavioral responses that were chemically dependent.
Concerning fish in the UV-234 exposure group, larvae pre-adapted to darkness and ex-
hibited decreased locomotor activity during the beginning of the assay. Zebrafish larvae
exposed to 0.1 and 1 µM exhibited a decrease in overall distance moved, whereas fish
exposed to 0.01 µM exhibited an increase in distance moved. Concerning fish in the UV-320
exposure group, larvae pre-adapted to darkness at the beginning of the assay and exhibited
decreased activity. Fish pre-adapted to darkness and exposed to 1 µM initially exhibited
increased activity and distance moved but exhibited a decrease in distance moved near the
end of the exposure. Additionally, fish treated with 0.1 µM exhibited increased distance
moved during the light phase of the assay. Thus, it appears that the type of BUVS and its
concentration can induce variable responses in zebrafish larvae. In another study, Zhang
et al. [57] exposed zebrafish embryos to UV-234 and UV-326 at 1, 10, and 100 µg/L for
7 days. Concerning behavioral alterations following a light/dark locomotor response assay,
both compounds were found to induce hyperactivity during the dark cycles of the assay,
where acceleration, mobile activity, and swimming distance were increased. Additionally,
spontaneous tail coiling was inhibited 2.08–6.25-fold from 28–29 hpf following exposure to
both stabilizers. Noteworthy is that these behavioral responses corresponded to the activity
of AChE, which was elevated in fish exposed to 10 and 100 µg/L UV-234 and UV-326.
Taken together, aberrant behavior has been associated with BUVS-induced apoptosis and
ROS generation, which subsequently influence neuroinflammation and cell regeneration
processes [57]. Similar molecular events have also been observed in Asian clams (Corbic-
ula fluminea) [68], where impairment of the oxidative defense system induced by BUVSs
triggered an increase in the neurotransmitter acetylcholine, causing accelerated filtration
and tissue damage, suggesting that the neurotoxic effects of BUVSs may not be limited to
aquatic vertebrates.

5. Biomarkers of Toxicity: Neurotoxic Indicators?

To uncover molecular responses underlying benzotriazole and benzotriazole deriva-
tives, we extracted molecular interactions for further investigation using Pathway Studio
(V12) as per our previous methods [69,70]. Genes differentially affected by benzotriazole
were extracted from the comparative toxicogenomics database (CTD) [71]. We were able to
identify cell processes, cell components, clinical parameters, proteins, and other functional
classes with direct connections to benzotriazole. These interactions have been implicated in
experiments investigating benzotriazoles.

There were over 50 entities that were associated with benzotriazole exposure. Several
small molecules were linked to benzotriazoles (i.e., ozone, chloroform, Cd2+, and chlo-
rine), as well as several viral entities (i.e., hepatitis C, HIV-1) and pathogens (i.e., Candida
albicans and Mycobacterium tuberculosis) (Figure 4). Other notable entities associated with
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benzotriazoles included chemotaxis, oxidative stress, DNA recombination, mitochondria,
genotoxicity, endometrial carcinoma, and liver atrophy. Transcripts or proteins responsive
to benzotriazoles included PTPN1 (protein tyrosine phosphatase non-receptor type 1), PT-
GES (prostaglandin E synthase), GNRH1 (gonadotropin releasing hormone 1), AHR (aryl
hydrocarbon receptor), CDH1 (cadherin 1), and CDK2 (cyclin dependent kinase 2). Many
of these proteins have been implemented in neurodegenerative diseases and are linked to
protective effects for neural toxicity. For example, paraoxonase-1 can neutralize environ-
mental toxicants to protect lipids against peroxidation. Consequently, the deterioration and
absence of paraoxonase-1 removes mechanisms responsible for breaking down neurotoxic
compounds, which can increase a species’ vulnerability to neurotoxic consequences [72,73].
CDH1 is a transmembrane protein involved in mediating cell-to-cell adhesion, thus playing
a significant role in tissue homeostasis, including in the blood–brain barrier. Transcription
of cadherin-1 has been found to increase in the presence of neuronal degeneration and
astrocyte swelling following silver nanoparticle exposure, which demonstrates its protec-
tive effects against neurotoxicity [74]. CDK2 positively regulates cell cycle progression
and has been found to be essential in mice for the regeneration and growth of neural
progenitor cells [75]. Disruption to the regeneration and proliferation of progenitor cells
can alter the communication abilities of the central nervous system. Lastly, AHR connects
environmental chemical inputs to adaptive reactions, including metabolic processes and
immunological responses. Disruption of the receptor, specifically its inactivation, has been
found to negatively regulate transcriptional responses related to microglial activation and
neurotoxic monocyte recruitment [76].
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In addition, gene set enrichment revealed pathways like “Complement Activation
in Alzheimer’s Disease”, “MPB-Related Complement Cascade Activation”, and “Positive
Acute Phase Protein Synthesis” were associated with BUVSs exposure (Table 2). Some stud-
ies report upregulated AChE activity following UV-234 and UV-326 exposure [57], which
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can result in increased amyloid-beta deposition, thus contributing to Alzheimer’s disease.
Such targets can be further investigated for their role in BUVS-induced neurotoxicity.

Table 2. Gene set enrichment of genes regulated by benzotriazole (p < 0.001). The name of the
pathway, the number (#) of entities in the pathway, and the overlap between regulated genes and
those in the pathway. percent overlap, p-value, and hit type are included in the table.

Name Expanded #
of Entities Overlap Percent

Overlap Hit Type

Complement Activation in
Alzheimer’s Disease 36 10 27 Disease

MPB-Related Complement
Cascade Activation 39 10 25 Disease

Positive Acute Phase Proteins Synthesis 609 20 3 Biological
Process

Trophoblast Damage in Infertility
(Hypothesis) 61 10 16 Disease

CD46/CD55/CD59 Inhibit Complement
Mediated Lysis of Cancer Cells 50 10 20 Pathological

Process

Complement Activation in
Glomerulonephritis 63 10 15 Disease

Complement System Defects in Systemic
Lupus Erythematosis 73 10 13 Disease

Complement Activation by Lectin 68 10 14 Biological
Process

Extraocular Muscles Weakness in
Myasthenia Gravis 84 10 11 Disease

Complement Classical Pathway 71 10 14 Biological
Process

Evidence for neurotoxicity was also noted in the interaction network with cell in-
vasion, membrane damage, and behavior (Figure 4); thus, evidence suggests the neural
and immune systems are relevant targets for adverse outcomes related to benzotriazole
exposure. Such relationships have yet to be investigated in fish, presenting an opportunity
to investigate novel mechanisms of action for this chemical class. Pathways responsive to
BUVSs retrieved from the Comparative Toxicogenomics Database [71] included glutathione
conjugation, glutathione metabolism, drug metabolism, cytochrome P450, and regulation of
Toll-like receptors (TLRs) by endogenous ligands. Benzotriazoles have been shown to affect
these processes in animals. He et al. [77] exposed marine medaka (Oryzias melastigma) to
0.01–1.0 mg/L benzotriazole for 35 days and observed decreased expression of cytochrome
P450 1A1 (cyp1A1) in the liver and intestines of fish, which is responsible for steroidal
hormone metabolism and immune response enhancement. Another study conducted by
Hemalatha et al. [61] found that BUV-328 elevated glutathione S-transferase in adult ze-
brafish exposed to 0.01–1 mg/L for up to 42 days, denoting the metabolization of lipid
peroxides and the biotransformation of toxic compounds. Additionally, zebrafish embryos
exposed to 15.8–690 µg/L 2-(2-Hydroxy-5-methylphenyl) benzotriazole (UV-P) exhibited
a dose-related induction of glutathione-S-transferase, whereas the opposite effect was
observed in fish exposed to 7.5–84.3 µg/L UV-326 for 6 days [78]; these data suggest that
benzotriazole and its derivatives have varying impacts on detoxification processes, which is
accomplished by the catalytic conjugation of glutathione. The computational analysis also
points to glutathione depletion, oxidative stress, and neuro-inflammation as underlying
neurological dysfunction and behavioral abnormalities following BUVS exposure.



Toxics 2024, 12, 125 11 of 16

6. Conclusions

Studies report low acute toxicity of BUVSs to fish; however, the ecotoxicological risk
to species is not fully elucidated. Benzotriazoles and their derivatives are highly stable
in soil/water due to their physiochemical properties, which allow them to persist in the
environment. In soil, benzotriazole has been reported to have a half-life of 180 days at 20 ◦C,
and, in freshwater, its half-life is 831 days at 12 ◦C (https://echa.europa.eu/registration-
dossier/-/registered-dossier/14234/5/3/4) (accessed on 1 August 2023). Though most
studies report benzotriazoles and their derivatives in ng/L, with the compound’s resistance
to biodegradation and its continued utilization, it can accumulate in the environment, thus
posing threats to aquatic organisms. We point out deficiencies in the literature currently
related to the neurotoxicity of BUVSs. These knowledge gaps include the following:

(1) In-depth mechanistic studies on the central nervous system of zebrafish are needed
to address neurotoxicity. Validation of specific neurotoxicity pathways relevant for
BUVS exposure is needed.

(2) Broader scope of behavioral assays related to the dopaminergic systems, such as
anxiety-related and fear-related behaviors, given that the exploration of novel tank
environments by fish is altered with exposures.

(3) Histopathology of the central nervous system is needed following exposure to these
chemicals, given evidence for neuronal damage, apoptosis, and neurodegeneration.

(4) Ecologically important species would broaden the scope and environmental relevance
of laboratory-based studies, as most studies are conducted using zebrafish. Never-
theless, the zebrafish model has proven useful for developmental toxicity studies for
plasticizers and has improved our understanding of toxicity mechanisms in fish.

(5) Based on our review, several studies report neurological responses above environ-
mental levels (Figure 5), although there are experimental data that correspond to
environmental levels.
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One final point to make is that most concentration data are collected in non-marine
environments. Benzotriazoles and benzophenone can also exert toxic effects on marine
organisms like sea urchin larvae and coral [79,80]. However, to our knowledge, the studies
on adverse effects on marine fish are limited. Research efforts in these areas are expected to

https://echa.europa.eu/registration-dossier/-/registered-dossier/14234/5/3/4
https://echa.europa.eu/registration-dossier/-/registered-dossier/14234/5/3/4
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fill knowledge gaps regarding the effects of UV stabilizers in the central nervous system of
fish and aquatic species in general. Such approaches will facilitate risk assessments and
identify safe environmental levels for this ubiquitous class of chemicals.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics12020125/s1, Supplemental Table S1: Occurrence of ultraviolet
stabilizers in aquatic environments. Supplemental Table S2: Occurrence of ultraviolet stabilizers in
aquatic environments. Supplemental Table S3: presents data for marine invertebrates. Supplemental
Data S1: contains all abbreviations for the pathway in Figure 4. References [81–98] are cited in the
supplementary materials.
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