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Abstract: Aerosol liquid water content (ALWC) affects the mass loading, optical properties, and
toxicity of aerosols. However, the measurement of ALWC is very rare due to its requirement of
sophisticated instruments and its high operational costs. In this work, we improved on our previous
simple, low-cost method by using a combination of one real-time fine particulate matter (PM2.5)
monitor and two turbidimeters and successfully applied these for the direct measurement of ALWC
in PM2.5 in Nanjing during the summer of 2023. The average ALWC during this measurement period
occupied ~1/6 of the total PM2.5 mass, and this contribution was even greater with the elevation in
the PM2.5 concentration. The ALWC was, as anticipated, closely related to the relative humidity (RH)
and PM2.5 concentrations, but it did not always increase with the air quality index (AQI) due to the
fact that polluted periods in summer were often governed by high O3 levels, not PM2.5 levels. The
ALWC also had a great impact on visibility; it could decrease the visibility rapidly to hazy conditions
when the dry PM2.5 was not high (~30 µg m−3) or the AQI was “good” (75~100), indicating that the
air quality classified as “good” using the dry PM2.5 concentration might actually be “lightly polluted”
if the ALWC is included. We also found that the air mass originating from Northeast China had the
lowest PM2.5 mass concentration yet the highest ALWC values due to its high RH. Moreover, the
quantification of ALWC levels can help us understand the solubility/bioavailability and thus the
toxic effects of some specific components (for example, heavy metals or organics). Moreover, the
influence of ALWC on air quality classifications should also be considered in the assessment of the
health effects of air pollution and in public health early warning and protection.

Keywords: aerosol liquid water content; visibility; ambient PM2.5

1. Introduction

Water is a ubiquitous component of fine particulate matter (PM2.5), referred to as
aerosol liquid water (ALW). Water is also known to be a very unique species that can
exist in gas, liquid, or solid phases in the atmosphere, and the ALW content (ALWC) is
governed by the gas–particle equilibrium (GPP). In detail, the ALWC can be affected by the
relative humidity (RH), air temperature, concentration, and chemical composition of PM2.5
as well as its phase state, etc. [1]. The ALWC can significantly alter ambient aerosol mass
concentrations, particularly at a high RH [2,3], and plays a critical role in many atmospheric
physicochemical processes [4]. It can impact the optical properties of aerosols, leading to
increased light extinction, reduced atmospheric visibility, elevated aerosol optical depth
(AOD), and variations in the direct impact of aerosols on the climate [5–9]. ALWC can
also act as a site for multiphase/aqueous/interfacial reactions, perturbing particle/droplet
chemistry and further affecting the aging process of aerosols [10], with many studies
showing the importance of ALWC in the formation of secondary aerosol species [11–13].

Moreover, ALWC can also affect an aerosol’s solubility, which in turn influences the
adsorption and dissolution of toxic components like heavy metal ions, etc. Solubility is an
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important indicator to link metals with their adverse health effects in epidemiological and
toxicological studies [14]. Reactive oxygen species (ROS) produced by transition metal ions
(such as cadmium and nickel) may trigger a wide range of health consequences including
inflammation, DNA damage, cardiovascular disease, and acute heart disease [15,16]. Some
other non-transition metals can be quite harmful to human health too; for instance, lead
and arsenic are found to be highly carcinogenic [16]. Previous studies show that soluble
fractions of Fe, Cd, Pb, and Zn increased significantly under acidic solvents, suggesting
that acidic aerosols with an abundant ALWC are able to dissolve more trace metals [17]
and therefore make the particles more toxic and pose a greater threat to human health than
dry aerosols.

However, despite its critical importance, ALWC is often not routinely measured or
included in reported PM2.5 concentrations. Most instruments determine the (dry) aerosol
mass and composition after the removal of associated aerosol water. The ALWC is typi-
cally estimated based on the measured aerosol composition and concentration by using
various thermodynamic models (for examples, the extended aerosol inorganic model
(E-AIM) [18] and ISORROPIA II [19]). Such a methodology assumes a thermodynamic equi-
librium state of the aerosols and often does not include all aerosol components (especially
organics) [20,21]. A humidified tandem differential mobility analyzer (H-TDMA) can be
used to determine the hygroscopic growth factor (HGF) of ambient aerosols under a fixed
RH (typically at 90%) [22]; it can obtain the particle number size distributions [23–25]
under both dry and humid conditions and then calculate the ALWC by comparing the
volume changes before and after humidification [26–28]. The cloud condensation nuclei
counter (CCNC) and electrodynamic balance (EDB) or optical tweezers can also be used
to study the hygroscopicity (though they often are not direct measurements of ALWC) of
particles [29–31]. In addition, sophisticated optical instruments, such as polarized lidar [32]
or a three-wavelength humidified turbidimeter, use measured aerosol light-scattering co-
efficients and backscattering coefficients to estimate the ALWC [33]. It should be noted
that the methods above are often complicated and expensive, and some of them are not
applicable for the measurement of real air, therefore limiting their widespread use.

In this regard, our group previously established a novel, simple, and low-cost method [34]
that showed that the “bias” in the measured PM2.5 mass concentration caused by a high
RH in a turbidimeter from that measured at dry air conditions can be used to determine
the ALWC. In this work, we further improved this method and for the first time, applied
it to directly quantify the ALWC in ambient PM2.5 in Nanjing during the summer of
2023. Our findings are also insightful for our understanding of ambient aerosol chemistry
and toxicology in similar large cities like Nanjing with relatively significant air pollution
issues [35–37].

2. Sampling Site and Instrumentation

The field campaign was conducted inside the campus of Nanjing University of In-
formation Science and Technology (NUIST) (32◦12′20.82′′ N, 118◦42′25.46′′ E), located in
Nanjing, Jiangsu Province, China (Figure 1). The measurement period was from 30 July
2023 to 1 September 2023 (34 days). Two identical aerosol monitors (Thermo Scientific™
(Waltham, MA, USA) Personal DataRAMTM pDR-1500) (a type of nephelometric monitor,
referred to as PDR hereafter) and one Thermo Scientific™ (Waltham, MA, USA) Model
5030i SHARP (Synchronized Hybrid Ambient Real-time Particulate Monitor, referred to
as 5030i hereafter) were used. The sampling site is located west of an expressway (Jiang-
bei Expressway) and an industrial area (including Nanjing Iron & Steel United Co., Ltd.
(Nanjing, China), Yangtze Petrochemical Co., Ltd. (Nanjing, China), and a number of other
chemical and petrochemical engineering companies as well as power plants). The site
is also surrounded by a residential area, and it is representative of the typical suburban
environment with intense anthropogenic emissions.
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Figure 1. Location and surroundings of the sampling site.

The 5030i monitor combines the light-scattering nephelometry and beta attenuation
technique and provides accurate, fast, and real-time PM2.5 mass concentrations with low
detection limits. It reports the dried PM2.5 mass concentration, denoted as 5030i_PM. The
two PDRs were placed parallel to one another and share a sampling line with a PM2.5
cyclone placed about 10 m above the ground. The sample air was dried (typically to an RH
under 20%) and fed into a PDR, which measured the PM2.5 mass concentration, denoted as
PDR_dry. We used a dryer filled with silica gel to remove the moisture from the air before
entering into the PDR_dry. In order to keep the dryer operating effectively, we changed
the silica gel at least every 2 days (sometimes more frequently according to the weather
conditions). Another PDR was directly connected with the ambient air flow without the
removal of moisture. Thus, the determined PM2.5 mass concentration was denoted as
PDR_wet_original, and this PDR also recorded the temperature and RH of the ambient air.
For consistency, the time resolution was set to 1 min for both the PDRs and 5030i. Other
instrumental details about the PDR can be found in previous works [34,38,39].

The concentrations of common gaseous pollutants (NO2, SO2, O3, CO) were acquired
simultaneously using a series of Thermo Scientific monitors. Meteorological parameters
such as the wind speed (WS) and wind direction (WD) were obtained from an automated
weather station (Vaisala WXT520) located at the same sampling site. Visibility data were
obtained from a nearby national environmental monitoring station. Note all the data
reported here are shown in Beijing time (UTC + 8).

3. Results and Discussion
3.1. Improvement of ALWC Measurement

First, to ensure the consistency of the acquired data between the two PDRs, we
compared the measured PM2.5 concentrations at an RH < 50% for the two PDRs, as shown
in Figure 2. The correlation between them is very tight, with a Pearson’s r2 of 0.98; the slope
of the linear fit is 1.3, denoted as c in Equation (1). This value represents the instrumental
deviation of these two monitors and is therefore used as a calibration factor to derive the
real ambient wet PM2.5 mass concentration (PDR_wet), as shown in Equation (2). The
reason that we used data at an RH < 50% rather than a smaller RH threshold (for example,
20%) is due to the fact that the RH during the measurement period was mostly higher
than 40% (as shown in Figure 3a). Moreover, the regression of the very few data with
an RH < 40% yielded a slope of 1.28 and r2 of 0.96, which are almost similar to those
obtained under an RH < 50%; therefore, we used the calibration factor obtained at an RH
< 50% for consistency with our previous work [34] as well as for a broader coverage of
the measurement data and thus robustness of the regression. Note that this systematic
difference is instrument-dependent; we thus recommend that users perform this calibration
for each pair of PDRs that are used in users’ specific ALWC measurements. If there are
enough data, we also recommend obtaining the calibration factor by comparing data at a
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smaller RH (such as 20% or 30%) to reduce the influence of possible absorbed water on the
PDR_wet_original.

c =
PDR_wet_original

PDR_dry
(1)

PDR_wet =
PDR_wet_original

c
(2)
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Figure 3. (a) Relative humidity (RH) and air temperature (T); (b) wind speed (WS) and wind direction
(WD); mass concentrations of gaseous pollutants of NO2, CO (c), SO2 and O3 (d); (e) PM2.5 mass
concentration measured by the 5030i and the calibration factor (CF = PDR_dry/5030i_PM); (f) derived
ALWC values and measured visibility.
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In our previous work [34], we used an Aerodyne high-resolution time-of-flight aerosol
mass spectrometer (AMS) as a reference instrument to correct the readings of the PDR_dry
to reflect the true fine PM concentrations. However, in practical terms, an AMS is a highly ex-
pensive and sophisticated instrument, requiring well-trained personnel to operate it [40,41],
and it is not an instrument conventionally employed for atmospheric environmental mon-
itoring. Moreover, an AMS typically measures submicro-meter particles (30~1200 nm)
rather than PM2.5 due to the transmission efficiency of its inlet system [42], unless the
PM2.5 lens system is adopted [43,44]. Therefore, instead of an AMS, we used the 5030i,
which is broadly equipped as the routine PM2.5 mass monitor worldwide, as the reference
instrument in this work. Similarly, we introduced the calibration factor (CF) (calculated as
CF = PDR_dry/5030i_PM) to correct the PDR_dry and then to calculate the PM2.5 mass
concentration under real ambient conditions (PDR_wet_ct) using Equation (3).

PDR_wetct =
PDR_wet

CF
(3)

Next, the ALWC is simply the difference between the PDR_wet_ct and 5030i_PM, as
shown in Equation (4). The flow chart of the improved ALWC measurement method is
shown in Figure 2b.

ALWC = PDR_wetct − 5030i_PM (4)

3.2. ALWC Results and Correlations with Other Variables

Figure 3 shows the meteorological parameters, concentrations of gaseous pollutants,
dry PM2.5 (from 5030i), and ALWC over the measurement period. The averaged diurnal
patterns of relevant variables are shown in Figure 4. The campaign-averaged temperature
was 31.19 ◦C, and the mean RH was 63.42%, indicating hot and mildly humid weather
overall. The temperature peaked in the afternoon while the RH was relatively high at night
(Figure 4a,b). The wind was often from the southeast (with an average of 148.6◦). Its speed
was low (an average of 1.11 m s−1 and a maximum of 3.22 m s−1) and it was particularly
weak at night (~0.75 m s−1), coinciding with a high RH. This indicates that stagnant and
humid air conditions therefore were unfavorable for pollutant dispersion.
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The SO2, NO2, O3, and CO concentrations were averaged to be 5.76, 16.64, 94.56 µg m−3,
and 0.53 mg m−3, respectively. The daily variations in SO2 and CO are quite similar
(Figure 4g,e), likely indicating their similar sources from the nearby industrial area. The
daily NO2 pattern was a bit different as it remained high after midnight (Figure 4d). The
daily trends of O3 were opposite to those of NO2 (Figure 4h), reflecting the consumption
of NO2 to produce O3 [45]. The average PM2.5 mass loading was 19.50 µg m−3, ranging
from 1.87 µg m−3 to 68.65 µg m−3. On a daily basis (Figure 4f), the PM2.5 concentration
peaked in the morning (24.60 µg m−3 at ~7:00 am) and reached a minimum of 16.12 µg m−3

at ~18:00 pm, partially owing to influences from the WS, RH, and variations in planetary
boundary layer height.

The determined ALWC varied from 0.003 to 23.84 µg m−3, with an average of
3.85 µg m−3. The ALWC occupied on average 16.5% of the total aerosol mass
(23.35 µg m−3). The visibility varied from 0.51 to 30 km, with a campaign mean of 14.37 km.
The temporal trends of the ALWC and visibility are the opposite of one another as illus-
trated in Figure 3f, demonstrating the significant role of ALWC in visibility degradation (see
our further discussion in Section 3.4). The diurnal trend of the ALWC (Figure 4i) naturally
resembled that of the RH (Figure 4b); it peaked at ~6:00 am (7.88 µg m−3), reached the low-
est value at 15:00 pm (0.90 µg m−3), and then began to rise in line with the increase in RH
and decrease in temperature (Figure 4a,b), which favored the partitioning/condensation of
water vapor onto particles [23,26].

Figure 5 further presents the cross-correlation coefficients among the temporal varia-
tions in the measured variables. The ALWC correlated positively with the RH (r of 0.60)
and PM2.5 (0.60) as expected, but negatively with the WS (−0.42) and T (−0.48) as well
as O3 (−0.34). The results show clearly that the PM2.5 concentration and RH govern the
ALWC, while high temperatures and winds accompanied by high O3 values on the contrary
promoted the evaporation of the ALWC into the gas phase. The visibility mainly showed
positive correlations with the WS (r of 0.48) and T (0.28), indicating that the visibility is great
in hot weather with high wind speeds. However, the visibility was negatively correlated
with the ALWC (r of −0.57), RH (−0.54), and PM2.5 (−0.45), indicating heavy impacts from
the ALWC and PM2.5 loadings.
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In Table 1, we compare a few key studies regarding the ALWC in the Yangtze River
Delta (YRD) region. Note that all these ALWC values are estimated from thermodynamic
models. Xian et al. [20] calculated an average ALWC of 5.33 µg m−3 in Nanjing during
the summer of 2021. Considering the higher RH (69.05% vs. 63.42%) and similar PM
concentration (18.88 vs. 19.50 µg m−3) in their study, a higher ALWC is reasonable and
vice versa. Their work validates the measured values in this study. The ALWC levels in
Shanghai, Jiaxing, and Huangshan areas were all higher than the values in this work, due
to both higher PM2.5 concentrations and higher RH values. Of course, other meteorological
factors and more importantly aerosol compositions can affect the ALWC too [4].

Table 1. Representative ALWC levels in the YRD region, China.

Site Sampling Period Method
PM2.5 ALWC

RH (%) Reference
µg m−3

Shanghai 23 October 2018 to 5 August 2019 ISORROPIA–II 38.60 14.80 70.00 [46]
Huangshan 14 September to 26 October 2012 AIM-II 21.28 9.98 64.50 [47]

Jiaxing 1 January to 31 December 2021 ISORROPIA–II 24.45 46.65 78.38 [48]
Nanjing 18 July to 26 August 2021 E-AIM 18.88 (PM1) 5.33 69.05 [20]

3.3. Characteristics of ALWC under Different Pollution Scenarios

According to the current China ambient air quality standard (CAAQS), we classified
the sampled period into “clean” (24 h averaged PM2.5 < 35 µg m−3) and “polluted” periods
(24 h averaged PM2.5 ≥ 35 µg m−3). Figure 6a displays the distribution of the PM2.5,
ALWC, O3, CO, NO2, and SO2 concentrations as well as the key meteorological parameters
under the two scenarios. The meteorological conditions were more stagnant during the
polluted period than the clean period, with a lower mean WS (0.73 vs. 1.14 m s−1), higher
mean RH (65.65% vs. 63.24%), and lower mean T (30.83 vs. 31.22 ◦C). The four gaseous
pollutants increased in varying degrees from the clean to the polluted periods too. The
average PM2.5 concentration was 17.79 µg m−3 during the clean period and increased to
41.95 µg m−3 during the polluted period, which was lower than the PM2.5 levels in the
summer of 2014 in Nanjing, indicating an improvement in air quality [47]. Correspondingly,
the ALWC during the polluted period was 3.15 fold that of during the clean period (10.55 vs.
3.35 µg m−3); the mass fraction of the ALWC to the total PM2.5 mass also increased to 20.1%
from 15.85%.
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Furthermore, we investigated the relationships between the ALWC and RH under
different PM2.5 levels, which show non-linear exponential correlations as seen in Figure 6b.
At low RH levels, the ALWC increased slowly with the RH, but much rapidly in regions with
a high RH. This is likely due to the fact that the key hygroscopic aerosol components like
nitrate and sulfate do not uptake water at a RH that is lower than their deliquescence points,
but can uptake water exponentially when the RH exceeds the deliquescent RHs [23,25,26],
though no clear threshold RHs can be directly observed in Figure 6b since ambient aerosols
are a complex mixture of hygroscopic salts and a wide range of organics, etc. (many of them
have no definite deliquescent RH values). The increase in ALWC become more rapid with
the elevation in the PM2.5 levels, likely due to a two-way coupling effect between the ALWC
and PM2.5, as an increased ALWC may promote aqueous/heterogeneous oxidation and the
gas-to-particle condensation of some species, therefore increasing the PM2.5 mass, which
in turn leads to more water uptake and further increases the ALWC [49–52]. Moreover,
since large amounts of ALWC can increase the dissolution of metal ions or other toxic and
hazardous substances, this result indicates that the same toxic species might be released
more effectively in polluted than in clean air. CO can be considered as a tracer of the
primary combustion source, and the ratio of PM2.5/CO can be used to qualitatively infer the
contribution of secondary aerosols [53,54]. The mean value of PM2.5/CO in this experiment
was 0.04 (0.004~0.190) which is consistent with that of a previous study [55]. From Figure 6c,
it can be seen that the content of ALWC in general increased with the increase in the
PM2.5/CO ratio (2.36~5.95 µg m−3), suggesting the possible presence of more accumulation-
mode particles and secondary species during the polluted period, which indeed enhanced
the water uptake of the aerosols [56,57].

The air quality index (AQI) is a combined indicator considering both particular matter
and the major gaseous pollutants [58,59]. The mean AQI was on average 42.47, ranging
from 12 to 142 throughout the measurement period, and only 3.57% of the AQI values
were classified as “polluted”. Also, it should be noted that the AQI is mainly governed by
O3 levels, owing to strong photochemical reactions between volatile organic compounds
and nitrogen oxides during the summer in Nanjing, consistent with a previous analysis
during the summers of 2019 and 2020 in the YRD region [60]. Here, we further explored
the features of the ALWC under different AQI levels. First, the average concentrations
of PM2.5, gaseous pollutants, and the ALWC at different AQI categories are illustrated in
Figure 7a. The O3 concentrations continuously increased with the AQI, while the PM2.5
increased at an AQI < 75, but remained generally stable at an AQI > 75, showing that
relatively large AQI values (more polluted air) were mainly affected by O3 not PM2.5 in this
work. The behavior of the ALWC against the AQI resembled that of PM2.5 at an AQI < 75
(maximum of 5.49 µg m−3 for an AQI of 50–75), but decreased quickly and significantly at an
AQI > 75 (minimum of 0.30 µg m−3 for an AQI of 125–150). This can be expected as high
AQI values were associated with high O3 levels accompanied by high temperatures, strong
winds, and low RHs (the average RH dropped from 65.04% at an AQI < 75 to 42.17% at
an AQI > 75), which weakened the aerosol water uptake. Figure 7b shows the variation
in the mass share of the ALWC in the total PM2.5 under different AQI conditions, and it
can be seen that the average mass contribution of the ALWC in PM2.5 was 13.27~15.13%
at an AQI < 75, but decreased to 0.18~3.27% at an AQI > 75. Particularly, the ALWC only
contributed ~0.18% of the PM2.5 mass in the polluted air (AQI > 100), indicating that the
ALWC negligibly impacts the AQI, again due to the large AQI that was mainly caused by
O3 not PM2.5 during the summer. Yet, we expect the ALWC to play an important role in air
pollution events during the winter, when the AQI is mainly controlled by the PM pollution.
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3.4. Relationship between ALWC and Visibility

As is well known, ALWC is an important factor influencing atmospheric visibility.
Here, we further plotted the variations in visibility against the ALWC at different

PM2.5 and AQI levels, respectively, in Figure 8a,b. It is very clear that the visibility degraded
rapidly with the increase in PM2.5 levels and the exponential coefficients also increased with
the PM2.5 levels, indicating the same amount of ALWC can lower the visibility even more
significantly when the PM2.5 pollution is greater. As the ALWC increases, the aerosol size
increases due to the uptake of water and can lead to a large increase in the aerosol extinction
coefficient [61,62], which has been observed in various sites including Guangzhou, China
and Delhi, India [63,64]. Overall, when the PM2.5 concentration was higher than 30 µg m−3,
in most cases, the association with a very small amount of ALWC could lower the visibility
to less than 10 km, i.e., hazy conditions; when the PM2.5 mass loading was between 20 and
30 µg m−3, the ALWC increased to ~15 µg m−3 and the visibility decreased to near 10 km,
approaching hazy conditions. In other cases, the ALWC decreases the visibility but does not
induce hazy conditions. This result is similar to that of a previous study, which shows that
aerosols may have a great impact on visibility in summer when the PM2.5 concentration
reaches a certain threshold [65].
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On the other hand, Figure 8b shows the variation in visibility against the ALWC at
different AQI levels. The visibility shows an even faster decrease with the increase in AQI
levels, as can be roughly determined from the exponential coefficients in Figure 8b. The
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visibility can decrease to <10 km even at an AQI of 75–100, which means that the air quality
is categorized as good (“clean air”), but when the ALWC is taken into consideration, the
air can become hazy (“polluted air”) in many cases, highlighting the importance of the
ALWC. This finding has important implications, as the inclusion of ALWC can affect air
quality classifications, which should be taken into account in public health early warning
and protection systems. Another interesting result is that the visibility sometimes was
not less than 10 km when the AQI was larger than 100. This result was due to the reason
explained earlier: large AQI values in the summer are mainly attributed to large O3 not
PM2.5 levels; in addition, only a small portion of the data fell into the AQI > 100 range,
making the fitting less robust compared to that of other cases.

3.5. Changes in ALWC in Different Air Parcels

We explored the dependence of the ALWC on different air parcels, as PM2.5 with
different origins differs in chemical compositions, thus affecting the ALWC [66–68]. The
36 h backward trajectories (initialized at a height of 500 m) were calculated by the MeteoInfo
software (version 3.6) driven by the Global Data Assimilation System (GDAS) 1◦ × 1◦

reanalysis product [69]. The trajectories were grouped into three clusters: Cluster 1 (C1,
38.17% of the total) originated from the eastern sea; cluster 2 (C2, 35.08% of the total) began
from the Shandong peninsula but intercepted sea air; and cluster 3 (C3, 26.75% of total)
was the shortest, starting from Northern Zhejiang province. The mean values of the PM2.5,
ALWC, AQI, and visibility of the three clusters are shown in Figure 9b. C2 had the highest
ALWC (5.34 µg m−3), yet its visibility, PM2.5, and AQI were the lowest, mainly because C2
had the highest RH (64.36%) among the three clusters. On the other hand, the ALWC of
C3 (4.42 µg m−3) was higher than that of C1 (3.66 µg m−3), mainly owing to the higher
PM2.5 level of C3 (21.62 µg m−3) than C1 (19.48 µg m−3), as their RH values were very
close (62.68% vs. 62.77%). Both the PM2.5 and AQI were the highest in C3, as it originated
from an inland area and did not include clean sea air.
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4. Conclusions

In this work, we first improved on our previous simple and low-cost method for the
direct measurement of ALWC by replacing the highly expensive HR-AMS with a routine
PM2.5 mass monitor (5030i) and with two turbidimeters (PDRs) in parallel. The improved
suite of instruments was successfully applied to the ALWC measurement of PM2.5 in
Nanjing for the summer of 2023. The average PM2.5 concentration was determined to
be 19.50 µg m−3 and the ALWC was 3.85 µg m−3; therefore, the ALWC was ~16.5% of
the total PM2.5 mass. The mass fraction of the ALWC also increased with the increase in
the PM2.5 concentration, partially due to the increased mass contribution of hygroscopic
secondary species. The ALWC positively correlated with the RH and PM2.5 concentrations,
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but negatively with the wind speed and temperature as well as the O3 concentration;
correspondingly, it did not always increase with the air quality index (AQI) either, due to
the fact that large AQI values in summer are often governed by O3 not PM2.5 levels and
differ from those in winter.

Furthermore, we found that the ALWC also had a great impact on the visibility, which
decreased with the ALWC rapidly at all PM2.5 levels. The decrease in the visibility at higher
PM2.5 levels, however, appeared to be even quicker, dropping to <10 km when the PM2.5
was ~30 µg m−3 or the AQI was between 75 and 100. This result suggests that with the
consideration of the ALWC, some days with “good” air quality (classified by the CAAQS
PM2.5 standard or the AQI categories) might actually be “lightly polluted”. We also found
that the air mass originating from Northeast China (the Shandong peninsula) had the
lowest PM2.5 mass concentration yet the highest ALWC value mainly due to having the
highest RH. In general, our findings presented here advance our understanding of aerosol
chemistry and toxicology and may be valuable in future studies on air quality control in
densely populated cities.
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