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Abstract: The use of washing machines to wash textiles gradually breaks down synthetic fibers like
polyethylene terephthalate (PET) or polyester (PES) in diverse clothing materials, a process that is
growing in notoriety because it generates microplastics (MPs). In this study, we investigated the
emission of microfibers, including both microplastic fibers (MPFs) and natural fibers (MFs), from top-
loading washing machines. Our investigation focused on four popular textiles with prevalent weave
structures (plain, satin, and twill): (i) PES, (ii) tetron cotton (TC), (iii) chief value cotton (CVC), and
(iv) cotton (CO) fabrics. This study also examined the effects of textile weight and detergent dosage
on MF emissions. After washing, MFs were collected through filtration, and their concentrations
were determined using micro-Fourier Transform Interferometry (µFTIR). The results showed varying
concentrations of MFs in the washing effluent depending on the type of textile. Specifically, CVC
exhibited the highest emission at 4022 particles/L, followed by TC, PES, and CO at 2844 particles/L,
2382 particles/L, and 2279 particles/L, respectively. The hydrophobic nature of PES makes this type
of textile prone to rapid degradation in detergent-rich environments, leading to high MF emissions.
Additionally, the mechanical properties of textiles, such as tensile and bending strengths, may play a
crucial role in the generation of MFs in washing machines. Textiles made of CO with twill weaves
demonstrated superior strength and correlated with lower emissions of MFs. In comparison, textiles
made of CVC and satin weave exhibited lower mechanical properties, which could explain their high
emissions of MFs. Finally, the MF emissions of textiles composed of PES and TC, which are plain
weaved, could be attributed to their intermediate mechanical properties compared with those of CVC
and CO.

Keywords: microplastics; laundry; fabric; detergents; water treatment

1. Introduction

Microplastics (MPs) are small plastic particles ranging in size from 1 to 5000 µm.
They have become a major environmental concern due to their widespread presence in
various ecosystems. MPs are potentially harmful to organisms because they can cause
oxidative stress, cytotoxicity, and can be easily translocated to other tissues [1–4]. The
negative impacts of MPs to the environment, biota, and organisms are exacerbated by
their small particle size, hydrophobic surface, and abundant organic surface functional
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groups. Their small size enables easy transport and migration through wind and water,
while their hydrophobic nature and surface functional groups facilitate the adsorption of
inorganic and organic pollutants. These properties make MPs ideal carriers of harmful mi-
croorganisms and potentially toxic chemicals in the environment [5]. Moreover, MPs have
been found to carry lead, cadmium, chromium, barium, copper, cobalt, arsenic, aluminum,
iron, manganese, and zinc, persistent chemical pollutants (PCPs) like phthalate esters (e.g.,
dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DnBP), benzylbutyl
phthalate (BBZP), di(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP)),
and organic pollutants (e.g., polycyclic aromatic hydrocarbons (PAHs), polychlorinated
biphenyls (PCBs), and organochlorine pesticides (OCPs)) [6–10].

The release of MPs into the environment is influenced by various sources and an-
thropogenic activities. These include processes in various sectors such as manufacturing,
energy generation, chemical production, and resource extraction. Additionally, plastics
from improperly disposed of municipal solid and liquid wastes naturally degrade in the
environment, releasing MPs. Generally, the occurrence of MPs is categorized into primary
and secondary based on their origin. Primary MPs are directly released into the environ-
ment, such as microbeads found in many cosmetic products and microplastic fibers (MPFs)
generated from washing clothing and textiles. In contrast, secondary MPs are by-products
resulting from the natural weathering and degradation of larger plastic materials and
wastes in the environment [11].

MPs originating from inland areas enter water bodies through various pathways,
including domestic wastes, wastewater treatment plants (WWTPs), industrial effluents,
surface run-offs, wind currents, and improper plastic disposal practices [12–16]. According
to Meijer et al. [17], the Philippines is the top contributor among the top 10 countries
generating ocean plastic wastes, estimated at 0.356 million metric tons (Mt). Following the
Philippines are India (0.127 Mt), Malaysia (0.073 Mt), China (0.071 Mt), Indonesia (0.056 Mt),
Brazil (0.038 Mt), Vietnam (0.028 Mt), Bangladesh (0.025 Mt), Thailand (0.023 Mt), and
Nigeria (0.019 Mt). These findings highlight the significant role these nations play in
mitigating the global ocean MP pollution problem.

The 2030 United Nations (UN) agenda includes 17 Sustainable Development Goals
(SDGs) designed to address fundamental sustainability issues faced by humanity and the
planet. One of these goals, SDG 14 “Life below water”, focuses on the impacts of MP
emissions on marine environments, reflecting the growing social awareness surrounding
this issue. As a result, there has been a rapid increase in research related to MPs, not
only in understanding their environmental and biological impacts but also the modes of
their release into marine ecosystems. In fact, the number of publications on MPs and their
emissions in Scopus has grown exponentially since 2016 [18], with 4309 articles published
by the year 2023. This rapid increase in research highlights the significance and urgency of
addressing the impacts of MP pollution on society and the environment.

Domestic wastewater streams, both treated (from wastewater treatment plants (WWTPs))
and untreated, are a significant source of MPs. Magni et al. [19], for example, reported that
influents of WWTPs contain MPs ranging from 0.43 to 1030 particles/L, and their treatment
could reduce the concentration of MPs to between 0.31 and 30.3 particles/L. However,
conventional technologies employed by WWTPs have MP removal efficiencies as low as
60%, with an average of around 84% [19–30]. This means that approximately 16% of MPs are
inevitably released into the environment from domestic wastewaters even after treatment.
MP contamination also arises from the use of sludge as fertilizer in agriculture, contributing
to the presence of MPs in water bodies [31]. Synthetic fibers in sludge, sludge products,
and WWTP effluents have been discovered by the pioneering works of Habib et al. [32]
and confirmed by Zubris et al. [33], highlighting the contribution of these materials to
MP pollution. In Thailand, Tadsuwan and Babel [34] found that a representative WWTP
influent contained an average of 77 ± 7.21 particles/L of MPs, which was reduced to
an average of 10.67 ± 3.51 particles/L after treatment. These authors also highlighted
that MPFs were the most dominant type of MPs found in WWTP influent, constituting
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over 60% of the total. Due to their very small size and fibrous morphology, MPFs are
not effectively captured by conventional WWTPs, leading to their release into rivers and
oceans [35]. Browne et al. [36] conducted pioneering research that clearly demonstrates the
potential contribution of washing synthetic clothing to the accumulation of MPFs in marine
environments.

A significant portion of MPFs found in domestic wastewater streams come from
washing textiles made from natural and plastic or synthetic fibers. As the population has
grown, the global production of synthetic and natural fibers for textiles has also increased
to meet the demand. Textile manufacturing uses a variety of fiber types, including natural,
synthetic, and blends of both, such as polyester–cotton (PES–CO). Synthetic fibers have
become increasingly integrated into textiles over the past 50 years, alongside traditional
materials like cotton (CO), wool, and linen, due to abundance and lower costs. Between
2000 and 2020, the demand for synthetic fibers nearly doubled from 57 Mt to 111 Mt,
with projections suggesting it will reach 145 Mt by 2030 [18]. As of 2021, synthetic fibers
dominate the global fiber production, accounting for approximately 64% of the market.
Among the synthetic fibers, polyester (PES) or polyethylene terephthalate (PET) holds
the majority share at 54%, followed by polyamide (PA) at 5%, while the remaining 5.2%
comprises other fibers like polypropylene (PP), acrylics, and elastane [37].

MPFs have been found in different environmental media globally, including seawater,
seafloor sediments, estuaries, wastewater treatment plants, shores, and various organ-
isms [38]. According to a report by Boucher and Friot [39], MPFs account for 34–35% of
the overall presence of MPs in marine environments. Belzagui et al. [40] estimated an
annual influx of approximately 1.4 × 1017 MPFs into oceans, while Yang et al. [41] identi-
fied laundry wastewater, particularly from washing machines, as the primary source of
MPFs. Because of these previous works, several commercially available devices have been
developed to capture and reduce the release of microfibers (MFs; including both MPFs
and natural MFs) from washing machines. These devices typically consist of filters that
can be installed either internally or externally. One example is the “Cora ball”, which is
designed to be placed alongside clothing in the washing machine. The ball incorporates
stalks equipped with hooks specifically designed to capture microfibers, taking inspiration
from the efficient filtering system observed in coral reefs. Other solutions include the
“Guppyfriend washing bag” and “Fourth element washing bag,” both of which aim to
reduce pilling and reduce fiber loss in washing machines. Additionally, there are external
filters such as “XFiltra” and “Planet care” that can be installed along the effluent pipe of
washing machines to capture MFs. Another relevant device in this context is the “Lint
LUV-R”. These innovations collectively represent efforts to address and mitigate the release
of MFs from washing machines [42]. However, it is important to note that these devices
have a limited effectiveness in capturing MFs, with a capture rate of approximately 78%,
leaving the remaining 22% to be released into the ecosystem [42].

To effectively mitigate the generation of MFs from household washing machines, it is
important to understand the factors and mechanisms controlling textile degradation during
washing. In this study, the effects of textile type and configuration, detergent concentration,
and textile weight were investigated. Four commonly used textiles in clothing—CO, two
ratios of PES–CO blends, and pure PES—were selected as representative samples. The
textile samples were washed in a top-loading washing machine with detergent using
various washing parameters. The initial washing machine effluent was then collected,
filtered and the amount of MFs generated was quantified using micro-Fourier Transform
Interferometry (µFTIR; sometimes called Fourier transform infrared microscopy (FTIR
microscopy)). It is worth noting that the term “microfiber” is used in the textile industry to
refer to fabrics made of fine PES or polyamine fibers. These fibers have measurements of
less than 1 denier (mass in grams of 9000 m) and a fiber cross-section smaller than 10 µm [43]
and should not be confused with MPFs. In this study, the term “microfibers (MFs)” is
defined as the synthetic and natural fibers released from fabrics during washing with sizes
of <5 mm. The results of this research will improve the current understanding of how MFs
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are generated in washing machines, including the key factors that influence MF release.
This study will also provide valuable insights to policymakers, industry stakeholders, and
the public in tackling MP pollution.

2. Materials and Methods

The experimental procedures in this study are illustrated in Figure 1, including sample
preparation, textile washing in a top-loading washing machine, washed water filtration
using a 2.7 µm pore filter (with a diameter of 47 mm), and MF collection, capturing the
filter images using µ-FTIR and performing manual counting for MF quantification and
calculation. Previous works have highlighted notable discrepancies in the quantification
of MFs during the laundry process, which are primarily attributed to inconsistencies in
research methods and counting methodologies. From our review of the literature, it is
evident that visual inspection with microscopes is the most commonly used approach for
recognizing and measuring MFs because it is easy, straightforward, and reliable [44].
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2.1. Samples

This study examined four distinct textile materials: (i) cotton (CO: 100% cotton),
(ii) chief value cotton (CVC: 70% cotton and 30% polyester), (iii) tetron cotton (TC: 35%
cotton and 65% polyester), and (iv) polyester (PES: 100% polyester). To ensure consistency
and represent typical clothing products, all textile samples were cut into dimensions of
50 cm × 50 cm. For the washing experiments, a widely used and commercially available
powder detergent in Thailand was purchased from a local supermarket. The detergent’s
main components, as listed on the label, include anionic surfactant, zeolite, sodium carbon-
ate, and sodium carboxymethyl cellulose.
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2.2. Textile Washing Using Top-Loading Washing Machine
2.2.1. Washing Step

In this study, a 7 kg top-loading washing machine with a 54-L container was used to
examine the factors that contribute to MF emissions. Each experiment involved using either
0.5 kg, 1.0 kg, or 1.5 kg of textile samples, 43 L of water, and the recommended dosage of
commercial powder detergent, which was provided by the merchants at concentrations of
0.35 g/L, 0.70 g/L, and 1.05 g/L as shown in Figure 2.
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Figure 2. Parameters in the washing experiments of four types of textiles.

The washing machine has 8 different washing modes: “Wash”, “Normal”, “Rinse”,
“Soak”, “Spin”, “Delicate”, “Tub dry”, and “Quick”. For this study, the “Normal” washing
mode was selected, which includes a 15-min washing step, followed by a 10-min rinsing
step, and a 3-min draining step. After completing the washing step, the washing effluent
was collected in a container, and then filtered for further analysis.

2.2.2. Draining of Washed Water and Microfiber Collection Step

After the washing stage, the washing effluent was collected during each draining
phase. The washed water was collected into a 10-L container using equally timed durations.
To ensure homogeneous distribution of the released MFs, the collected washing effluent
was continuously stirred. A 1-L sample of the washing effluent was then collected using a
filtration system. The filtration process involved using a vacuum pump to draw the washing
effluent through a 47 mm diameter filter paper with a pore size of 2.7 µm (Whatman
GF/D glass microfiber filters, Hangzhou, China), as suggested by Cai et al. [45] and
Wang et al. [46]. The choice of a 1 L filtration volume was to minimize the presence
of overlapping MFs on the filters [47]. After filtration, all the filters were individually
placed in petri dishes, covered with caps, and dried at 40 ◦C in an oven for 24 h. To
prevent contamination from previous experiments, all laboratory materials employed in
this study underwent a meticulous triple rinsing procedure with clean water before starting
subsequent experiments. This rigorous and consistent process was implemented to prevent
MF accumulation in the laboratory equipment.
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2.3. Fourier Transform Infrared Micro-Spectroscopy (µ-FTIR) Analysis

MFs collected by filtration were characterized using quantitative methods. To de-
termine the number of MFs, multiple photomicrographs of the filter paper from each
experiment were taken using a µ-FTIR (LUMOS II; Bruker Optics Inc., Ettlingen, Ger-
many). These images were taken following the four directional lines (L1, L2, L3, and L4)
as illustrated in Figure 3. MFs with dimensions of 1.50 mm × 1.42 mm that appeared in
all the microscope-captured images (totaling 150–160 representative microphotographs)
were manually counted. Finally, the number of MFs obtained in each image were used to
calculate the concentration of released MFs in terms of particles/L.
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3. Results and Discussion
3.1. Effect of Textile Weight and Detergent Dosage on MF Emissions

The amounts of MFs released from the textile washing experiments under various
conditions are summarized in Tables S1 and S2 while the influence of textile weight and
detergent dosage on MF emissions are presented in Figure 4. The observation revealed
that washing 0.5 kg of textile with different detergent dosages (0.35, 0.70, and 1.05 g/L)
yielded approximately 1780, 2196, and 1950 particles/L of MF emissions, respectively
(Figure 4(a-1)), with the arithmetic mean depicted as 1975 particles/L in Figure 4(a-2).
In addition, when the weight of the textile increased to 1.0 and 1.5 kg, the measured
concentrations of MFs in the term of arithmetic mean were 2692 and 3978 particles/L,
respectively. This suggests that there is a direct relationship between the concentration of
MFs released in washing machine and the weight of the textile, with higher textile weight
resulting in higher MF emissions.



Toxics 2024, 12, 210 7 of 13

Toxics 2024, 12, x FOR PEER REVIEW 7 of 14 
 

 

3. Results and Discussion 
3.1. Effect of Textile Weight and Detergent Dosage on MF Emissions 

The amounts of MFs released from the textile washing experiments under various 
conditions are summarized in Tables S1 and S2 while the influence of textile weight and 
detergent dosage on MF emissions are presented in Figure 4. The observation revealed 
that washing 0.5 kg of textile with different detergent dosages (0.35, 0.70, and 1.05 g/L) 
yielded approximately 1780, 2196, and 1950 particles/L of MF emissions, respectively (Fig-
ure 4(a-1)), with the arithmetic mean depicted as 1975 particles/L in Figure 4(a-2). In ad-
dition, when the weight of the textile increased to 1.0 and 1.5 kg, the measured concentra-
tions of MFs in the term of arithmetic mean were 2692 and 3978 particles/L, respectively. 
This suggests that there is a direct relationship between the concentration of MFs released 
in washing machine and the weight of the textile, with higher textile weight resulting in 
higher MF emissions.  

  
(a-1) (a-2) 

  
(b-1) (b-2) 

Figure 4. Microfiber emissions as a function of textile weight and detergent dosage: (a-1) MF emis-
sions on textile weight in different detergent dosage, (a-2) arithmetic mean of all parameters that are 
equal in textile weight, (b-1) MF emissions on detergent dosage in different textile weight, and (b-
2) arithmetic mean of all parameters that are equal in detergent dosage. 

In contrast, detergent dosage did not significantly impact the concentration of re-
leased MFs. As illustrated in Figure 4(b-1), considering an equal textile weight of 1.0 kg, 
the results indicate that MF emissions were 2604, 2900, and 2573 particles/L when the de-
tergent dosage increased from 0.35, 0.70, to 1.05 g/L. A fluctuating trend was observed in 
the relationship between MF emissions and detergent dosage, reflected in the arithmetic 
mean evaluation as depicted in Figure 4(b-2); MF concentrations for detergent dosages of 
0.35, 0.70, and 1.05 g/L were 2927, 2850, and 2868 particles/L, respectively. These findings 

Figure 4. Microfiber emissions as a function of textile weight and detergent dosage: (a-1) MF
emissions on textile weight in different detergent dosage, (a-2) arithmetic mean of all parameters that
are equal in textile weight, (b-1) MF emissions on detergent dosage in different textile weight, and
(b-2) arithmetic mean of all parameters that are equal in detergent dosage.

In contrast, detergent dosage did not significantly impact the concentration of released
MFs. As illustrated in Figure 4(b-1), considering an equal textile weight of 1.0 kg, the results
indicate that MF emissions were 2604, 2900, and 2573 particles/L when the detergent
dosage increased from 0.35, 0.70, to 1.05 g/L. A fluctuating trend was observed in the
relationship between MF emissions and detergent dosage, reflected in the arithmetic mean
evaluation as depicted in Figure 4(b-2); MF concentrations for detergent dosages of 0.35,
0.70, and 1.05 g/L were 2927, 2850, and 2868 particles/L, respectively. These findings are
inconsistent with a previous study by Wang et al. [46], which found that the addition of less
than 1.5 g/L of detergent increased the emissions of MFs. This could be attributed to the
presence of hard, inorganic compounds and natural minerals like zeolite, which are added
to powder detergents as fillers and scrubbers. Because these materials are insoluble in
water, they create friction with textile surfaces during laundry cleaning, improving cleaning
efficiency but also promoting MF generation [35]. Lastly, it should be noted that the results
found in this study are relative results, not absolute results. Although the results revealed
the relationship of textile weight and detergent dosage on MF emissions, they may be an
overestimate due to the use of scissors for sample preparation without stitching [48].
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3.2. Effect of Textile Type on MFs Released in the Laundry Process

Figure 5 illustrates significant variations in MF emissions depending on the type of
textile. The average MF concentrations released were as follows: 2279 particles/L for 100%
CO, 4022 particles/L for CVC, 2844 particles/L for TC, and 2382 particles/L for 100% PES. It
is worth noting that textiles containing synthetic fiber PES (such as 100% PES, TC, and CVC)
had higher MF emissions compared to 100% CO. The higher MF generated by PES and
PES-blended textiles could be attributed to the inherent hydrophobic nature of PES, which
is a common property of plastics that makes them degrade more easily in the presence of
surfactants found in detergents during laundry washing [49–52]. Additionally, both CVC
and TC, which are PES-blended textiles, exhibited significant MF release, exceeding 76%
and 25% of the amount of microfiber released by 100% CO, respectively.
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3.3. Discussion on the Relationship of Woven Structure and Textile Type on Emission of MFs

To analyze the surface characteristics of 100% CO, CVC, TC, and 100% PES, obser-
vations were performed using a scanning electron microscope (SEM; JEOL JSM-IT300LV,
JEOL Ltd., Tokyo, Japan). As illustrated in Figure 6, 100% CO had a twill weave structure
(Figure 6a) while CVC had a satin weave structure (Figure 6b). Meanwhile, both TC and
100% PES had plain weave structures, as depicted in Figure 6c,d, respectively.
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Weaving is the process of intricately interlacing one-dimensional yarns to create
two-dimensional and occasionally three-dimensional structures, such as woven fabrics or
textiles. These fabrics have traditionally been used in clothing and apparel. In recent years,
however, weaving technology has advanced, allowing for the customization of woven
fabrics to meet specific performance requirements and technical applications. This is made
possible by the versatility of fabrics and automation of weaving technology, which enables
the use of various raw materials, including synthetic fibers like PES, to create products
of different geometrical forms. The woven structure of textiles plays a crucial role in
the generation of MFs during laundry washing because it directly affects the mechanical
properties of textiles, such as the exposed surface area of fibers to water, detergent, and
scrubbing/attrition action in washing machines. Figure 7 provides a schematic illustration
of common woven structures in textiles, including the plain weave structure (Figure 7a),
the twill weave structure (Figure 7b), and the satin weave structure (Figure 7c) [53,54].
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Based on the results, the weave structure had a significant impact on the generation
of MFs. This is to be expected because the mechanical properties of textiles, particularly
their tensile strength and bending strength, influence how the fabric reacts to attrition
and scrubbing forces during laundry cleaning in washing machines. Ferdous et al. [55]
conducted experiments to measure the tensile and bending strengths of different woven
structures and found that the twill weave structure exhibited the highest tensile strength,
followed by plain weave and satin weave structures. Textiles with lower tensile and
bending strength, such as CVC (satin weave), had the highest MF emissions, followed by
PES and TC, both with plain weave structures. Meanwhile, CO, with a twill weave structure
and the highest tensile and bending strengths, exhibited the lowest MFs emissions. This
suggests that woven structures with higher tensile strengths result in lower MF generation.
These differences could be explained by the way the threads are held in the different
weave structures. In the twill weave and satin structures, the threads are not tightly held,
allowing for better and faster dispersion of stress and strains across a greater number of
yarns, which prevents damage and breakage. In contrast, the fibers in the plain weave
structure are tightly held, limiting the dispersion of stress and strain. Additionally, the
satin weave structure contains larger floats, which decrease its tensile and bending strength
and promote mechanical degradation during laundry cleaning in washing machines.

The findings from this study emphasize the importance of conducting further research
to better understand the mechanisms behind the increasing release of MFs from various
types of textiles. Additionally, it is crucial to differentiate between MPFs and MFs from
natural materials, such as CO, in order to gain a better understanding of how MPFs are
released during laundry cleaning in washing machines. This classification will greatly
contribute to our knowledge of the sources and characteristics of MPF pollution originating
from domestic laundry washing.

4. Conclusions

In this study, the release of MFs during domestic laundry washing was investigated
under various washing conditions, textile types and detergent dosages. The results showed
that the concentrations of MFs varied depending on the type of textile. Specifically, textiles
made of 100% CO exhibited the lowest release of MFs, followed by textiles made of 100%
PES, TC, and CVC. The notably higher emissions of MFs from textiles made of 100% PES
and blended fabrics containing PES could be attributed to the hydrophobic properties of
this plastic-derived fiber, which enhanced its degradation due to the attachment of organic
surfactants found in detergents used during laundry washing. Additionally, our findings
revealed substantial release of MFs from textiles composed of blended natural and synthetic
fibers like CVC, exceeding the release observed in 100% PES. This highlights the complexity
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of MF emission mechanisms and the need for further research to better understand MF
generation and how it can be mitigated. Furthermore, the results showed that the dosage
of detergent had negligible effects on the generation of MFs from all four types of textiles
during laundry cleaning in washing machines. Finally, the woven structure of textiles
was found to be another important factor that inherently influences the generation of MFs
during laundry cleaning in washing machines. The results suggest that textiles with the
twill weave pattern (100% CO) exhibited lower emissions of MFs due to their higher tensile
and bending strengths compared to other woven structures like plain weave (100% PES
and TC) and satin weave (CVC).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics12030210/s1, Table S1: The summarized of experimental results
based on the effects of textile weight on MF emissions; Table S2: The summarized of experimental
results based on the effects of detergent dosage on MF emissions.
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