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Abstract: Exploring the local influencing factors and sources of soil arsenic (As) is crucial for reducing
As pollution, protecting soil ecology, and ensuring human health. Based on geographically weighted
regression (GWR), multiscale GWR (MGWR) considers the different influence ranges of explanatory
variables and thus adopts an adaptative bandwidth. It is an effective model in many fields but has
not been used in exploring local influencing factors and sources of As. Therefore, using 200 samples
collected from the northeastern black soil zone of China, this study examined the effectiveness of
MGWR, revealed the spatial non-stationary relationship between As and environmental variables,
and determined the local impact factors and pollution sources of As. The results showed that 49% of
the samples had arsenic content exceeding the background value, and these samples were mainly
distributed in the central and southern parts of the region. MGWR outperformed GWR with the
adaptative bandwidth, with a lower Moran’s I of residuals and a higher R2 (0.559). The MGWR model
revealed the spatially heterogeneous relationship between As and explanatory variables. Specifically,
the road density and total nitrogen, clay, and silt contents were the primary or secondary influencing
factors at most points. The distance from an industrial enterprise was the secondary influencing
factor at only a few points. The main pollution sources of As were thus inferred as traffic and fertilizer,
and industrial emissions were also included in the southern region. These findings highlight the
importance of considering adaptative bandwidths for independent variables and demonstrate the
effectiveness of MGWR in exploring local sources of soil pollutants.

Keywords: arsenic; multiscale geographically weighted regression; adaptative bandwidth; local
influencing factor; spatial heterogeneity

1. Introduction

In recent years, soil arsenic (As) pollution caused by industrialization, agricultural
production, and urbanization has become an important threat to soil ecology, food security,
and human health [1–3]. The 2014 Chinese Soil Pollution Survey Bulletin reported that
As is one of the main pollutants in the soil of arable land, mining areas, industrial parks,
and both sides of trunk roads. High concentrations of As will disrupt soil microbial
metabolism and plant growth, leading to the soil’s ecological deterioration and reduced
food production [4,5]. More importantly, crops can absorb and enrich soil arsenic, posing a
threat to human health [6,7]. Therefore, exploring the main sources and influencing factors
of soil As is crucial for reducing soil arsenic pollution, protecting soil ecology, and ensuring
human health.
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The Kriging model [8], principal component analysis/cluster analysis [9], multiple
linear regression (MLR) [10], geographical detectors [11,12], spatial lag models [13], and
machine learning methods [14–16] have been used to explore the main influencing factors
of As. These studies revealed that the main sources of As include mineral mining, industrial
smelting, agricultural production, fossil energy combustion, traffic emissions, and some
As-rich minerals (e.g., hutchinsonite and arsenopyrite). However, these global models
assume that the relationship between the dependent and independent variables is the same
in different subregions. This assumption may lead to the poor fitting performance of these
models in areas with strong landscape heterogeneity [10,17]. Moreover, the global regres-
sion model can only reveal the average relationship between As and covariates throughout
the entire study area and thus cannot provide data support for local As pollution treatment.

Geographically weighted regression (GWR) is a local spatial regression model that can
determine the local impact factors of soil pollution at different locations [18]. It has been
widely used to reveal the spatially heterogeneous relationships between soil pollutants
and environmental variables [19–21]. The bandwidth is the core parameter of the GWR
model, which reflects the influence range and scale effect of the independent variable on
the dependent variable. However, GWR applies a fixed bandwidth to all covariates [22],
which ignores that the impact scales of different covariates often vary in space. For ex-
ample, climate factors and parent material typically control the spatial distribution of soil
properties on a large scale, whereas human activities such as agricultural production and
industrial emissions mainly affect the local soil [23,24]. To address this deficiency, Fother-
ingham et al. (2017) (Fotheringham, et al. [25]) proposed the multiscale GWR (MGWR)
model, which fits an appropriate bandwidth for each explanatory variable. MGWR has
been successfully used in the analysis of local impact factors on housing prices [26], the
urban built environment [27], COVID-19 incidence rates [28], landslide susceptibility [29],
ecological environment quality [30], and soil carbon storage [31]. Therefore, MGWR has
great potential in determining the local pollution sources of As and proposing targeted
pollution control measures.

Kuancheng District is located in the northeastern black soil zone of China and has a
large area of fertile farmland. However, as a regional transportation hub, it undergoes rapid
urbanization and industrialization, and its soil is at risk of arsenic pollution [32]. Therefore,
this study aimed to evaluate the effectiveness of MGWR by comparing it with MLR and
GWR, investigate the spatial non-stationary relationship between As and environmental
variables, and explore the local impact factors and pollution sources of As.

2. Materials and Methods
2.1. Study Area

The study area (43◦57′~44◦7′ N, 125◦11′~125◦24′ E) is located in the central southern
part of Kuancheng District, Changchun City (Figure 1), and is typical suburban cultivated
land affected by urbanization in the main grain-producing area of Northeast China. The
research area is approximately 240 km2, with flat terrain and elevations ranging from 187 m
to 246 m. Its climate is a typical continental monsoon climate, with an average annual
precipitation of 550 mm and an average annual temperature of 4 ◦C. The research area
mainly comprises cropland and construction land, with a small amount of forest, grassland,
and water areas. The main lithology is a Holocene system, which contains sandstone and
pebble sand wedge. The main soil types are meadow soil, phaeozem, and chernozeme,
which are highly fertile.
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Certified Reference Materials of China (GBW07424) to ensure analytical accuracy [34,35]. 

  

Figure 1. Location of study area and spatial distribution of sampling points.

2.2. Soil Sampling and Measurement

The urban–rural transition zone selected for the study includes different cultivated
land utilization environments from urban to rural. Based on the land use map, the sampling
locations were pre-determined to keep the sample density at 1 per km2, considering the land
use type and the topographic conditions to ensure a uniform distribution of the sampling
sites. Finally, 200 topsoil samples (0–20 cm) were taken in September 2017 (Figure 1).

Each sample was composited by mixing three to five subsamples within a 1 m2 area.
A stainless-steel spade was used for soil sampling and was washed with deionized water
and wiped dry with paper towels between each use to avoid cross-contamination. The
collected soil samples were air-dried to a constant weight, passed through a 2 mm sieve,
and ground before being stored in the laboratory until soil As content analysis.

For the analysis of total As, 0.25 g aliquots of the dried soil were digested in aqua
regia (65% HNO3 to 37% HCl as 1:3) and analyzed using atomic fluorescence spectrometry
(AFS200T, Skyray Instrument, Suzhou City, Jiangsu Province, China). Soil organic carbon
(SOC) content was analyzed for all the samples following the Walkley–Black method [33],
and soil organic matter (SOM) was determined by the van Bemmelen conversion factor
along with the SOC concentration. Total nitrogen (TN) was determined using the Kjeldahl
method. Soil pH was measured for a 1:2.5 soil/water ratio using a pH meter (PHS-3E,
Leici, Shanghai, China). All sample analyses included batch replicates, reagent blanks, and
standard reference materials from the National Research Center for Certified Reference
Materials of China (GBW07424) to ensure analytical accuracy [34,35].

2.3. Sources and Pre-Processing of Environmental Variables

A total of 14 possible explanatory variables were selected from two aspects (Table 1) [36,37]:
(i) possible sources of As, including distance from an industrial enterprise (Dis_IE), road
density (RD), population density (PD), land use types (LU), total nitrogen (TN), total
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phosphorus (TP), and soil types (ST); (ii) migration-related factors of As, including clay
content, silt content, pH, soil organic matter (SOM), elevation, and topographic wetness
index (TWI).

Table 1. Possible influencing factors of As and their data sources.

Aspect Possible Influencing Factor Data Sources and Links

Possible sources of As

Distance from an industrial
enterprise

Crawled data from Amap, POI data,
https://map.amap.com, accessed on 1 September 2023

Land use type
China Land Cover Dataset, Raster data

(30 m), https://zenodo.org/, accessed on
1 September 2023

Population density
LandScan Global Population Data, Raster

data (1000 m), https://landscan.ornl.gov/, accessed on
1 September 2023

Road density
Open Street Map, Vector data,

https://www.openstreetmap.org/, accessed on 1
September 2023

Total nitrogen Measured in the laboratory

Total phosphorus
National Earth System Science Data Center of China,
Raster data (90 m), http://soil.geodata.cn/ztsj.html,

accessed on 1 September 2023

Soil type
Chinese Resource and Environment Science and Data
Center, Raster data (1000 m), https://www.resdc.cn/,

accessed on 1 September 2023

Migration-related factors of As

Clay and silt content SoilGrids, Raster data (250 m), https://soilgrids.org/,
accessed on 1 September 2023

pH and SOM Measured in the laboratory

Elevation and topographic
wetness index (TWI)

NASA’s Earth data website, Raster data
(12.5 m), https://nasadaacs.eos.nasa.gov/, accessed on

1 September 2023

We crawled the locations of industrial enterprises in the study area from Amap, as
shown in Figure 2a. We calculated the distance from each sample point to the nearest
industrial enterprise (Dis_IE). The land use type was derived from the China Land Cover
Dataset (https://zenodo.org/, accessed on 1 September 2023), with a resolution of 30 m.
The main land use types in the research area are cropland and construction land, as well
as a small number of water bodies and a greenbelt (Figure 1). Road data were obtained
from OpenStreetMap (https://www.openstreetmap.org/, accessed on 1 September 2023),
including highways, city roads, suburban rural roads, and road density, which were
determined using a 1 km raster, as shown in Figure 2a. The population density data were
derived from LandScan Global Population Data (https://landscan.ornl.gov/, accessed on
1 September 2023), with a resolution of 1 km, as shown in Figure 2b. Total nitrogen and
phosphorus and soil type are agricultural As sources. Total nitrogen was measured in the
laboratory, and Figure 2c was obtained by ordinary Kriging interpolation with a resolution
of 30 m. The total phosphorus from the National Earth System Science Data Center of
China (http://soil.geodata.cn/ztsj.html, accessed on 1 September 2023), with a resolution
of 90 m, is shown in Figure 2d. The soil type represents the natural source of As. The soil
type data were obtained from the Chinese Resource and Environment Science and Data
Center (https://www.resdc.cn/, accessed on 1 September 2023) with a resolution of 1 km.
Soil types in the study area include phaeozem, chernozem, and meadow soil, as shown in
Figure 2e.

https://map.amap.com
https://zenodo.org/
https://landscan.ornl.gov/
https://www.openstreetmap.org/
http://soil.geodata.cn/ztsj.html
https://www.resdc.cn/
https://soilgrids.org/
https://nasadaacs.eos.nasa.gov/
https://zenodo.org/
https://www.openstreetmap.org/
https://landscan.ornl.gov/
http://soil.geodata.cn/ztsj.html
https://www.resdc.cn/
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Figure 2. Spatial distribution maps of possible explanatory variables. (a) Spatial distribution map
of industrial enterprises and road density. (b) Spatial distribution map of population density.
(c) Spatial distribution map of total nitrogen. (d) Spatial distribution map of total phosphorus.
(e) Spatial distribution map of soil types. (f) Spatial distribution map of silt content. (g) Spa-
tial distribution map of clay content. (h) Spatial distribution map of soil organic matter content.
(i) Spatial distribution map of pH. (j) Spatial distribution map of elevation. (k) Spatial distribution
map of topographic wetness index. TN: total nitrogen; TP: total phosphorus; SOM: soil organic matter
content; TWI: topographic wetness index.
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The clay and silt contents were collected from SoilGrids (https://soilgrids.org/, ac-
cessed on 1 September 2023) with a resolution of 250 m. The silt content ranges from 0 to
52.7%, and the clay content ranges from 0 to 30.2%, as shown in Figure 2f,g, respectively.
The data sources of SOM and pH are the same as that of total nitrogen, which was measured
in the laboratory. The raster maps were obtained by Kriging interpolation with a resolution
of 30 m, as shown in Figure 2h,i. The elevation data were obtained from NASA’s Earthdata
website (https://nasadaacs.eos.nasa.gov/, accessed on 1 September 2023) with a resolution
of 12.5 m, as shown in Figure 2j. The TWI was calculated based on the elevation data with
a resolution of 30 m (Figure 2k). The ArcGIS software platform was used to complete all
the environmental variable grid statistics, distance calculation, and spatial interpolation
pre-processing work (version 10.7).

2.4. Spatial Local Regression Model
2.4.1. GWR

GWR is an effective local spatial regression model [18,38]. It assumes that the rela-
tionship between dependent variables and covariates has spatial heterogeneity and thus
establishes local linear regression equations at each sampling point. The formula of the
GWR of the ith point with the coordinates (ui, vi) is as follows:

yi = β0(ui, vi) + ∑m
j=1 β j(ui, vi)xi,j + εi, (1)

where yi is the dependent variable, xi,j is the jth explanatory variable, β j(ui, vi) is the corre-
sponding coefficient of xi,j, β0(ui, vi) is a constant term, and εi is the stochastic error term.

The bandwidth is the kernel function’s coverage range and is the GWR model’s core
parameter. It determines the parameter estimation of the local regression equation using
samples within a certain spatial range based on the scale effect of the independent variable’s
influence on the dependent variable. An excessive bandwidth can lead to excessive bias
in regression parameter estimation, whereas too small a bandwidth can lead to excessive
variance in regression parameter estimation. Therefore, determining the optimal bandwidth
size is crucial. However, GWR applies a fixed bandwidth to all covariates, which ignores
that the impact scales of different covariates often vary in space. This assumption results in
a biased estimation of regression parameters. In addition, GWR cannot robustly deal with
parameter instability caused by outliers, multicollinearity, and spatial autocorrelation [39].

2.4.2. MGWR

To address this deficiency, Fotheringham et al. (2017) (Fotheringham, Yang and
Kang [25]) proposed the MGWR model. MGWR relaxes the assumption that all modeling
processes are conducted on the same spatial scale. It adopts adaptative bandwidths for all
explanatory variables to describe the scale effects of different covariates on the dependent
variable. Thus, this model can reduce over-fitting with adaptative bandwidths and mitigate
the concurrency of GWR [40]. The formula of MGWR is as follows:

yi = β0(ui, vi) + ∑m
j=1 βbw,j(ui, vi)xi,j + εi, (2)

where bw in βbw,j is the adaptative bandwidth of xi,j, and the meanings of other parameters
are the same as those in Formula (1). When estimating local parameters, MGWR first sets
the parameters of the GWR model as the initial parameters using the weighted least-squares
method. Then, it uses the back-fitting algorithm to optimize the model parameters. Given
the uneven distribution of sampling points, an adaptive bi-square kernel function and the
Akaike information criterion (AIC) were used to obtain the optimal bandwidth of each
explanatory variable.

This study used MLR, GWR, and MGWR models to explore the relationships between
As and the explanatory variables. Their modeling and parameter estimation were con-
ducted using SPSS (version 24.0) and MGWR software (version 2.2). Before modeling, the
Moran’s I value of the As dataset was calculated using Geoda software (version 1.16) [41].

https://soilgrids.org/
https://nasadaacs.eos.nasa.gov/
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The use of GWR and MGWR spatial models is only meaningful if Moran’s I is significant.
The log-likelihood, AIC, determination coefficient (R2), and residual Moran’s I were used
to evaluate the performance of the three models. A well-performing model has a low AIC
and residual Moran’s I and high log-likelihood and R2 values [42].

3. Results
3.1. Descriptive Statistics of As

Table 2 exhibits the descriptive statistics results of As, TN, SOM, and pH. The As
content ranged from 6.239 mg/kg to 15.966 mg/kg. Its mean and median values were
10.241 mg/kg and 10.088 mg/kg, respectively, close to the local background value of As
(i.e., 10.25 mg/kg) [34]. The mean values of TN, SOM, and pH were 1.495 g/kg, 26.45 g/kg,
and 7.085, respectively. The coefficients of variation of the four soil properties were 18.3%,
39.8%, 45.5%, and 13.2%.

Table 2. Descriptive statistics of measured soil properties.

Soil Properties Mean ± Std Minimum Median Maximum CV (%)

As (mg/kg) 10.241 ± 1.870 6.239 10.088 15.966 18.3
TN (g/kg) 1.495 ± 0.595 0.300 1.459 7.175 39.8

SOM (g/kg) 26.45 ± 12.03 3.76 25.35 138.0 45.5
pH 7.085 ± 0.937 4.81 7.31 9.05 13.2

CV: coefficient of variation.

Table 3 shows the one-way ANOVA results of soil and land use types. The mean As
content among different soil and land use types was different, but they did not pass the F
test (p > 0.05). The least significant difference test results showed that the mean As content
of meadow soil was higher than that of black soil and significantly higher than that of
chernozem. The mean As content of construction land was higher than that of cropland.
These results indicated that soil and land use types affect the As content.

Table 3. One-way ANOVA results of soil and land use types.

Soil Types Mean As Content Land Use Types Mean As Content

Meadow soil 10.389 ± 1.593 a Construction land 10.593 ± 1.759 a

Phaeozem 10.266 ± 2.106 ab Cropland 10.104 ± 1.890 a

Chernozem 9.324 ± 1.920 b

F test: p > 0.05 F test: p > 0.05
a,b indicate significant differences via least significant difference test.

3.2. Spatial Distribution and Pollution Levels of As

Figure 3 shows the spatial distribution of As content. The As content was higher in
the central southern part of the study area, which is close to residential and industrial areas.
It is lower in the northern part of the study area, which is close to agricultural areas. The As
content in 49% of the samples exceeded the background value (10.25 mg/kg) [34]. However,
none reached the risk screening value recorded in “Soil environmental quality—Risk control
standard for soil contamination of agricultural land and development land” (Chinese
GB36600-2018 [43] and GB15618-2018 [44]), indicating that agricultural production is still
within a safe range. These samples are mainly distributed in the central and southern parts
of the study area.
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3.3. Model Comparison

The Moran’s I value of As content was 0.477 (p < 0.01), which confirms that As content
has spatial autocorrelation and should be fitted via the GWR and MGWR models. Figure 4
exhibits the optimal bandwidth of explanatory variables for GWR and MGWR models. The
optimal bandwidth in GWR was 169. In MGWR, the optimal bandwidths of land use, TN,
TP, soil type, clay and silt contents, elevation, and TWI ranged from 181 to 199, which were
close to the whole study area. SOM had the smallest optimal bandwidth of 43, followed by
road density, Dis_IE, and pH. These results demonstrate the importance of considering an
adaptative bandwidth in the MGWR model.
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Figure 5a displays the model evaluation results of MLR, GWR, and MGWR. MGWR
outperformed GWR and MLR, with a higher R2 and log-likelihood and lower AIC and
Moran’s I of residuals. In particular, the residuals’ Moran’s I of MLR and GWR was
significant, whereas the residuals’ Moran’s I of MGWR was not significant. These results
indicated that MGWR was the optimal model. Thus, we only show the regression results
of MGWR in the following sections.
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Figure 5. Results of model evaluation and spatial distribution map of local R2. (a) Results of model
evaluation. (b) Results of spatial distribution map of local R2.

The local R2 of the MGWR model ranged from 0.445 to 0.631. Its spatial distribution is
shown in Figure 5b. The local R2 was highest in the western region and decreased from
west to east.

3.4. Spatial Distribution of MGWR Regression Coefficients

Table 4 shows the descriptive statistics of the standardized regression coefficients of the
explanatory variables for the MGWR model. The absolute value of the mean standardized
coefficient is the highest for road density, which was 1.521, followed by silt content, clay
content, TN, and TP, which were 0.383, 0.305, 0.286, and 0.219, respectively. The absolute
values of the mean standardized coefficient of other factors were relatively small, all below
0.200. The significant number of explanatory variables was also counted. The silt and clay
contents were substantial at all 200 locations. The RD, land use, TP, and pH were significant
at 116 to 198 locations. Dis_IE, TN, and SOM were only significant at several locations,
whereas other variables were not significant at any locations.

Table 4. Standardized regression coefficients of explanatory variables for the MGWR model.

Explanatory Variables Mean Std Min Median Max Number of Significant Results

Dis_IE 0.029 0.137 −0.171 0.011 0.354 18
RD 1.521 3.072 −3.589 0.547 6.407 126
LU 0.146 0.004 0.135 0.146 0.154 198
PD −0.024 0.030 −0.073 −0.025 0.027 0
TN 0.286 0.113 0.105 0.299 0.432 36
TP 0.219 0.052 0.133 0.226 0.291 186
ST1 0.095 0.02 0.063 0.092 0.130 0
ST2 0.004 0.018 −0.027 0.002 0.035 0

Slit content 0.383 0.016 0.367 0.377 0.427 200
Clay content 0.305 0.030 0.248 0.308 0.350 200

SOM 0.031 0.402 −0.556 −0.023 1.164 47
pH −0.164 0.046 −0.232 −0.171 −0.064 116

Elevation 0.045 0.037 −0.019 0.050 0.099 0
TWI 0.026 0.031 −0.031 0.026 0.075 0

Dis_IE: distance from an industrial enterprise; RD: road density; LU: land use type; PD: population density;
TN: total nitrogen; TP: total phosphorus; ST1, ST2: dummy variable for soil type; SOM: soil organic matter content;
TWI: topographic wetness index.
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Figure 6 displays the spatial distribution of significant standardized coefficients. Vari-
ables that were not significant at any location are not shown. Dis_IE was only significant
at some points in the southeastern part of the study area. The highest absolute values of
RD, silt content, and SOM all occurred in the southeast of the region and decreased along
the southeast–northwest direction. However, the RD and SOM were not significant in the
central region. The coefficients of TN and TP showed a decreasing trend from north to
south, but TN was only significant in the northwest of the region. The spatial distribution
of the clay content coefficient was symmetrical with the spatial distribution of silt content.
It decreased in the northeast–southwest direction. The coefficient values of pH and LU
had relatively small spatial differences, with an overall trend of high values in the west
and east.
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To sum up, the coefficients of industrial and traffic factors were higher in the south-
eastern part of the study area, whereas the coefficients of agricultural factors were higher
in the northern part of the region. The coefficients of soil environmental factors varied less
spatially in the study area.

3.5. Local Influencing Factors and Sources of As

The absolute values of the coefficients of each variable were sorted from highest to
lowest, and the primary and secondary influencing factors for As content at each sampling
point were determined (Figure 7). The primary influencing factor of As content for most
points is road density. The primary influencing factor of As content for some samples in
the southwestern region was SOM, silt content, or TN. The second influencing factor of
As content for most points was SOM, silt content, or TN, whereas the second influencing
factor of As content for only a small number of points was clay content, Dis_IE, or RD.
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Based on the relative importance of source-related variables, the main sources of As at
each point were inferred and are exhibited in Figure 8. The traffic source characterized by
the road density was the primary or secondary source of As for almost all locations. The
agricultural source, represented by TN and TP, was the second source for most points and
the primary source for a small number of points located in the southwest of the region. The
primary or secondary source, with only a few points located in the southeast of the region,
was industrial emissions, characterized by Dis_IE.

To sum up, the main influencing factors and sources of As varied greatly at different
locations. Traffic, fertilization, and industrial emissions were the primary sources of As in
the study area, and soil environmental factors were crucial for soil As accumulation.
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4. Discussion
4.1. Impact of Environmental Variables on As Accumulation

Based on the mean absolute standardized coefficients, the road density, silt content,
clay content, TN, and TP were the main influencing factors of As content, and traffic and
agricultural sources were the main sources of As.

Kuancheng District is the transportation hub of Changchun City, with two railway
stations, long-distance bus stations, and a high road density within the territory [32,34].
With rapid urbanization, the road density and residential car ownership in the study area
are rapidly increasing. Given that road surface materials and vehicle components contain
As, an increasing road density will lead to more As accumulation in soil [45]. Zechmeister
et al. (2005) [46] found that friction between heavy-duty vehicle tires and the road is particularly
conducive to the accumulation of pollutants such as As in roadside soil and moss. Many studies
have observed arsenic pollution in the soil on both sides of the road [47–50]. In this study,
we found that As was positively related to the road density, which is consistent with the
research of Seker et al. (2022) (Seker, et al. [51]) and Qiao et al. (2022) (Qiao, et al. [52]).

Using arsenical animal feed and phosphorus fertilizers in agricultural production is
another important source of soil arsenic [53–56]. For example, arsenic compounds such
as roxarsone are commonly used as feed additives in livestock farming and enter the soil
through livestock manure [57,58]. In addition, several studies found As in phosphate and
compound fertilizers [59,60]. Using these feeds and fertilizers increases total nitrogen, total
phosphorus, and arsenic contents in the soil. As a result, TN and TP showed a positive
relation with As content.

The emissions from non-ferrous metal smelting and fossil fuel combustion are com-
monly considered the most important sources of arsenic pollution [61,62]. Arsenic diffuses
outward with industrial waste gas and wastewater. As a result, As is often negatively
correlated with the distance to a factory [63,64]. The present study also found such a
relationship, but the mean absolute standardized coefficient of Dis_IE was relatively small.
The reason may be that most enterprises in the research area are food processing, weaving,
and clothing factories, while mining and metal smelting factories are fewer.

Soil properties, including pH, clay content, and silt content, affect As accumulation
by affecting the adsorption/desorption of arsenic [65,66]. Specifically, the increase in pH
causes the soil to carry more negative charges and repel arsenate, leading to the desorption
of solid arsenic in the soil [67,68]. This increase will lead to an increase in available arsenic
content and a decrease in soil arsenic content. As the soil particles become smaller, the
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specific surface area increases, and the charge density increases, which enhances the soil’s
ability to adsorb arsenic [69,70]. As a result, pH was negatively related to As content, while
clay and silt contents were positively related to As content.

4.2. Scale Effect of Explanatory Variables

The results of MGWR show great differences in the optimal bandwidth for different
explanatory variables, indicating that the adaptative bandwidth is the main reason that
MGWR outperforms GWR. This result also reflects the significant differences in the range
of influence of different explanatory variables on As, which may be related to the spatial
heterogeneity and inherent properties of the explanatory variables.

Natural factors such as elevation, TWI, pH, clay content, and silt content have larger
bandwidths, whereas road density and Dis_IE have smaller bandwidths. On the one hand,
natural factors typically control the spatial distribution of soil attributes on a larger scale,
whereas human activity factors typically affect soil spatial patterns on a smaller scale [23,24].
On the other hand, the number of local factories is small, and no heavily polluting industries
are identified. Thus, the pollution impact range of industrial enterprises is relatively small.

The proper bandwidth of SOM was the smallest of all variables, only 43. The reason
may be that farmers often adopt different cropping strategies. After long-term cultiva-
tion, the spatial dependence of SOM decreases, while spatial heterogeneity increases
(Figure 2i) [71,72]. Therefore, the impact range of SOM on As is relatively small.

These results emphasize the importance of considering adaptative bandwidths for
independent variables and confirm the effectiveness of MGWR.

4.3. Limitations

Although the 14 explanatory variables can explain 55.9% of As variation, some im-
portant factors were not included in the MGWR model due to data acquisition limitations.
For example, iron minerals, aluminum oxides, and soil sulfur cycling all affect the ad-
sorption/desorption of As [65,73,74]. In future research, combining parent materials,
high-resolution lithology, and Fe, Al, and S contents may further enhance the R2 of the
regression model.

The MGWR model assumes that the relationship between As and a covariate was
linear. However, several studies have used machine learning methods to reveal non-linear
correlations between soil properties and covariates [14–16]. How to combine MGWR with
machine learning to obtain an MGWR–machine learning model remains to be explored.

5. Conclusions

This study explored the effectiveness of MGWR, revealed the spatial non-stationary
relationship between As and environmental variables, and determined the local impact
factors and pollution sources of As in the Kuangcheng District. The results showed that 49%
of the samples had arsenic content exceeding the background value, and these samples were
mainly distributed in the central and southern parts of the region. The optimal bandwidth
of different variables varies greatly in the MGWR model. MGWR outperformed GWR
and MLR, and its R2 reached 0.559. The MGWR model revealed spatially heterogeneous
relationships between As and the explanatory variables. In particular, the road density,
TN, clay, and silt content were primary or secondary influencing factors at most points,
whereas Dis_IE and SOM were secondary influencing factors at only a few points. The
main pollution sources of As were thus inferred as traffic and fertilizer, and industrial
emission was also included in the southern region. These findings highlight the importance
of considering adaptative bandwidths for independent variables and demonstrate the
effectiveness of MGWR in exploring local sources of soil pollutants.



Toxics 2024, 12, 229 14 of 17

Author Contributions: Conceptualization: Y.Z. and G.J.; Methodology: Y.Z. and Z.W.; Resources: Y.Z.
and D.W.; Formal Analysis: Y.Z. and Z.W.; Investigation: Y.Z.; Writing—Original Draft: Y.Z.; Data
Curation: B.L.; Validation: B.L.; Visualization: B.L.; Software: B.L.; Writing—Review and Editing: G.J.
and Z.W.; Supervision: G.J.; Funding Acquisition: D.W.; Project Administration: D.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Jilin Province, China (Grant
No. 20170101076JC). The authors have no relevant financial or non-financial interests to disclose.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhou, C.; Wang, J.; Wang, Q.; Leng, Z.; Geng, Y.; Sun, S.; Hou, H. Simultaneous adsorption of Cd and As by a novel coal

gasification slag based composite: Characterization and application in soil remediation. Sci. Total Environ. 2023, 882, 163374.
[CrossRef] [PubMed]

2. Siddiqui, M.F.; Khan, Z.A.; Jeon, H.; Park, S. SPE based soil processing and aptasensor integrated detection system for rapid on
site screening of arsenic contamination in soil. Ecotoxicol. Environ. Saf. 2020, 196, 110559. [CrossRef]

3. Zecchin, S.; Wang, J.; Martin, M.; Romani, M.; Planer-Friedrich, B.; Cavalca, L. Microbial communities in paddy soils: Differences
in abundance and functionality between rhizosphere and pore water, influence of different soil organic carbon, sulfate fertilization,
and cultivation time, and contribution to arsenic mobility and speciation. FEMS Microbiol. Ecol. 2023, 99, fiad121. [CrossRef]

4. Zhu, T.; Feng, L.; Cao, C. Effects of arsenic on bioelectricity output and anode microbial community of soil microbial fuel cells in
arsenic-petroleum hydrocarbon-contaminated soils. J. Chem. Technol. Biotechnol. 2023, 98, 77–85. [CrossRef]

5. Ivy, N.; Bhattacharya, S.; Dey, S.; Gupta, K.; Dey, A.; Sharma, P. Effects of microplastics and arsenic on plants: Interactions, toxicity
and environmental implications. Chemosphere 2023, 338, 139542. [CrossRef] [PubMed]

6. Golui, D.; Raza, M.B.; Roy, A.; Mandal, J.; Sahu, A.K.; Ray, P.; Datta, S.P.; Rahman, M.M.; Bezbaruah, A. Arsenic in the
Soil-Plant-Human Continuum in Regions of Asia: Exposure and Risk Assessment. Curr. Pollut. Rep. 2023, 9, 760–783. [CrossRef]

7. Rehman, M.U.; Khan, R.; Khan, A.; Qamar, W.; Arafah, A.; Ahmad, A.; Ahmad, A.; Akhter, R.; Rinklebe, J.; Ahmad, P. Fate of
arsenic in living systems: Implications for sustainable and safe food chains. J. Hazard. Mater. 2021, 417, 126050. [CrossRef]

8. Muhammad, A.M.; Tang, Z.; Xiao, T. Evaluation of the factors affecting arsenic distribution using geospatial analysis techniques
in Dongting Plain, China. Front. Environ. Sci. 2022, 10, 1024220. [CrossRef]

9. Kun, Z.; Cai, Y.; Chen, W.; Peng, P. Source identification and spatial distribution of heavy metals in soil of central urban area of
Chongqing, China. Soil Sediment Contam. 2023, 32, 771–788. [CrossRef]

10. Zheng, M.; Luan, H.; Liu, G.; Sha, J.; Duan, Z.; Wang, L. Ground-Based Hyperspectral Retrieval of Soil Arsenic Concentration in
Pingtan Island, China. Remote Sens. 2023, 15, 4349. [CrossRef]

11. Shi, B.; Cai, K.; Yan, X.; Liu, Z.; Zhang, Q.; Du, J.; Yang, X.; Luan, W. Spatial Distribution and Migration Mechanisms of Toxic
Elements in Farmland Soil at Nonferrous Metal Smelting Site. Water 2023, 15, 2211. [CrossRef]

12. Zeng, J.; Ke, W.; Deng, M.; Tan, J.; Li, C.; Cheng, Y.; Xue, S. A practical method for identifying key factors in the distribution and
formation of heavy metal pollution at a smelting site. J. Environ. Sci. 2023, 127, 552–563. [CrossRef]

13. Nigra, A.E.; Cazacu-De Luca, A.; Navas-Acien, A. Socioeconomic vulnerability and public water arsenic concentrations across
the US. Environ. Pollut. 2022, 313, 120113. [CrossRef]

14. Jia, X.; Hou, D. Mapping soil arsenic pollution at a brownfield site using satellite hyperspectral imagery and machine learning.
Sci. Total Environ. 2023, 857, 159387. [CrossRef]

15. Kumar, S.; Pati, J. Assessment of groundwater arsenic contamination level in Jharkhand, India using machine learning. J. Comput.
Sci. 2022, 63, 101779. [CrossRef]

16. Kumar, S.; Pati, J. Machine learning approach for assessment of arsenic levels using physicochemical properties of water, soil,
elevation, and land cover. Environ. Monit. Assess. 2023, 195, 1–23. [CrossRef] [PubMed]

17. Yang, L.; Meng, F.; Ma, C.; Hou, D. Elucidating the spatial determinants of heavy metals pollution in different agricultural soils
using geographically weighted regression. Sci. Total Environ. 2022, 853, 158628. [CrossRef] [PubMed]

18. Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically weighted regression: A natural evolution of the expansion
method for spatial data analysis. Environ. Plan. A 1998, 30, 1905–1927. [CrossRef]

19. Li, H.; Fu, P.; Yang, Y.; Yang, X.; Gao, H.; Li, K. Exploring spatial distributions of increments in soil heavy metals and their
relationships with environmental factors using GWR. Stoch. Environ. Res. Risk Assess. 2021, 35, 2173–2186. [CrossRef]

https://doi.org/10.1016/j.scitotenv.2023.163374
https://www.ncbi.nlm.nih.gov/pubmed/37030369
https://doi.org/10.1016/j.ecoenv.2020.110559
https://doi.org/10.1093/femsec/fiad121
https://doi.org/10.1002/jctb.7226
https://doi.org/10.1016/j.chemosphere.2023.139542
https://www.ncbi.nlm.nih.gov/pubmed/37474031
https://doi.org/10.1007/s40726-023-00279-2
https://doi.org/10.1016/j.jhazmat.2021.126050
https://doi.org/10.3389/fenvs.2022.1024220
https://doi.org/10.1080/15320383.2022.2141684
https://doi.org/10.3390/rs15174349
https://doi.org/10.3390/w15122211
https://doi.org/10.1016/j.jes.2022.06.026
https://doi.org/10.1016/j.envpol.2022.120113
https://doi.org/10.1016/j.scitotenv.2022.159387
https://doi.org/10.1016/j.jocs.2022.101779
https://doi.org/10.1007/s10661-023-11231-8
https://www.ncbi.nlm.nih.gov/pubmed/37145302
https://doi.org/10.1016/j.scitotenv.2022.158628
https://www.ncbi.nlm.nih.gov/pubmed/36087662
https://doi.org/10.1068/a301905
https://doi.org/10.1007/s00477-021-01986-2


Toxics 2024, 12, 229 15 of 17

20. Qu, M.; Liu, H.; Guang, X.; Chen, J.; Zhao, Y.; Huang, B. Improving correction quality for in-situ portable X-ray fluorescence (PXRF) using
robust geographically weighted regression with categorical land-use types at a regional scale. Geoderma 2022, 409, 115615. [CrossRef]

21. Ye, M.; Zhu, L.; Li, X.; Ke, Y.; Huang, Y.; Chen, B.; Yu, H.; Li, H.; Feng, H. Estimation of the soil arsenic concentration using a
geographically weighted XGBoost model based on hyperspectral data. Sci. Total Environ. 2023, 858, 159798. [CrossRef]

22. Yu, H.; Fotheringham, A.S.; Li, Z.; Oshan, T.; Kang, W.; Wolf, L.J. Inference in Multiscale Geographically Weighted Regression.
Geogr. Anal. 2019, 52, 87–106. [CrossRef]

23. Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their
implications: A review. Geoderma 2019, 352, 395–413. [CrossRef]

24. Shary, P.A. Environmental Variables in Predictive Soil Mapping: A Review. Eurasian Soil Sci. 2023, 56, 247–259. [CrossRef]
25. Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017,

107, 1247–1265. [CrossRef]
26. Zhang, Z.; Li, J.; Fung, T.; Yu, H.; Mei, C.; Leung, Y.; Zhou, Y. Multiscale geographically and temporally weighted regression with

a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in
Beijing. Int. J. Geogr. Inf. Sci. 2021, 35, 2262–2286. [CrossRef]

27. Xu, J.; Jing, Y.; Xu, X.; Zhang, X.; Liu, Y.; He, H.; Chen, F.; Liu, Y. Spatial scale analysis for the relationships between the built
environment and cardiovascular disease based on multi-source data. Health Place 2023, 83, 103048. [CrossRef]

28. Mansour, S.; Al Kindi, A.; Al-Said, A.; Al-Said, A.; Atkinson, P. Sociodemographic determinants of COVID-19 incidence rates in
Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR). Sustain. Cities Soc. 2021, 65, 102627.
[CrossRef] [PubMed]

29. Li, Y.; Huang, S.; Li, J.; Huang, J.; Wang, W. Spatial Non-Stationarity-Based Landslide Susceptibility Assessment Using PCAMGWR
Model. Water 2022, 14, 881. [CrossRef]

30. Wang, T.; Zhao, M.; Gao, Y.; Yu, Z.; Zhao, Z. Analyzing Spatial-Temporal Change of Vegetation Ecological Quality and Its Influencing
Factors in Anhui Province, Eastern China Using Multiscale Geographically Weighted Regression. Appl. Sci. 2023, 13, 6359. [CrossRef]

31. Wen, X.; Zhang, Z.; Huang, X. Heavy metals in karst tea garden soils under different ecological environments in southwestern
China. Trop. Ecol. 2022, 63, 495–505. [CrossRef]

32. Yang, Y.; Wang, D.; Yan, Z.; Zhang, S. Delineating Urban Functional Zones Using U-Net Deep Learning: Case Study of Kuancheng
District, Changchun, China. Land 2021, 10, 1266. [CrossRef]

33. Nelson, D.W. Total Carbon, Organic Carbon, and Organic Matter; American Society of Agronomy Inc.: Madison, WI, USA; Soil
Science Society of America Inc.: Madison, WI, USA, 1996; pp. 961–1010.

34. Zhu, Y.; Wang, D.; Li, W.; Yang, Y.; Shi, P. Spatial distribution of soil trace element concentrations along an urban-rural transition
zone in the black soil region of northeastern China. J. Soils Sediments 2019, 19, 2946–2956. [CrossRef]

35. Meng, X. Study on Background Values of Soil Elements in Jilin Province; Beijing Science Press: Beijing, China, 1995.
36. Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Fahad, S.; Farhad, W.; Cerda, A. A review of soil

carbon dynamics resulting from agricultural practices. J. Environ. Manag. 2020, 268, 110319. [CrossRef] [PubMed]
37. Xu, J.; Xiao, P. Influence factor analysis of soil heavy metal based on categorical regression. Int. J. Environ. Sci. Technol. 2022, 19,

7373–7386. [CrossRef]
38. Fotheringham, A.S.; Brunsdon, C.F.; Charlton, M.E. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships;

Wiley: Hoboken, NJ, USA, 2002.
39. Farber, S.; Páez, A. A systematic investigation of cross-validation in GWR model estimation: Empirical analysis and Monte Carlo

simulations. J. Geogr. Syst. 2007, 9, 371–396. [CrossRef]
40. Iyanda, A.E.; Osayomi, T. Is there a relationship between economic indicators and road fatalities in Texas? A multiscale

geographically weighted regression analysis. GeoJournal 2020, 86, 2787–2807. [CrossRef]
41. Dray, S.; Legendre, P.; Peres-Neto, P.R. Spatial modelling: A comprehensive framework for principal coordinate analysis of

neighbour matrices (PCNM). Ecol. Model. 2006, 196, 483–493. [CrossRef]
42. Wu, Z.; Chen, Y.; Han, Y.; Ke, T.; Liu, Y. Identifying the influencing factors controlling the spatial variation of heavy metals in

suburban soil using spatial regression models. Sci. Total Environ. 2020, 717, 137212. [CrossRef] [PubMed]
43. Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land; China Environment Publishing Group:

Beijing, China, 2018.
44. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land; China Environment Publishing Group:

Beijing, China, 2018.
45. Hiller, E.; Pilkova, Z.; Filova, L.; Jurkovic, L.; Mihaljevic, M.; Lacina, P. Concentrations of selected trace elements in surface soils

near crossroads in the city of Bratislava (the Slovak Republic). Environ. Sci. Pollut. Res. 2021, 28, 5455–5471. [CrossRef]
46. Zechmeister, H.G.; Hohenwallner, D.; Riss, A.; Hanus-Illar, A. Estimation of element deposition derived from road traffic sources

by using mosses. Environ. Pollut. 2005, 138, 238–249. [CrossRef]
47. Mama, C.N.; Igwe, O.; Ezugwu, C.K.; Ozioko, O.; Ugwuoke, I.J. Statistical aproach to unravelling heavy metal contamination on

sub-soils and roadside dust. Int. J. Environ. Anal. Chem. 2021, 103, 6596–6612. [CrossRef]

https://doi.org/10.1016/j.geoderma.2021.115615
https://doi.org/10.1016/j.scitotenv.2022.159798
https://doi.org/10.1111/gean.12189
https://doi.org/10.1016/j.geoderma.2019.05.031
https://doi.org/10.1134/S1064229322602384
https://doi.org/10.1080/24694452.2017.1352480
https://doi.org/10.1080/13658816.2021.1912348
https://doi.org/10.1016/j.healthplace.2023.103048
https://doi.org/10.1016/j.scs.2020.102627
https://www.ncbi.nlm.nih.gov/pubmed/33288993
https://doi.org/10.3390/w14060881
https://doi.org/10.3390/app13116359
https://doi.org/10.1007/s42965-022-00218-0
https://doi.org/10.3390/land10111266
https://doi.org/10.1007/s11368-019-02294-7
https://doi.org/10.1016/j.jenvman.2020.110319
https://www.ncbi.nlm.nih.gov/pubmed/32510455
https://doi.org/10.1007/s13762-021-03640-4
https://doi.org/10.1007/s10109-007-0051-3
https://doi.org/10.1007/s10708-020-10232-1
https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.1016/j.scitotenv.2020.137212
https://www.ncbi.nlm.nih.gov/pubmed/32062284
https://doi.org/10.1007/s11356-020-10822-z
https://doi.org/10.1016/j.envpol.2005.04.005
https://doi.org/10.1080/03067319.2021.1958801


Toxics 2024, 12, 229 16 of 17

48. Mama, C.N.; Nnaji, C.C.; Igwe, O.; Ozioko, O.H.; Ezugwu, C.K.; Ugwuoke, I.J. Assessment of heavy metal pollution in soils: A
case study of Nsukka metropolis. Environ. Forensics 2022, 23, 389–408. [CrossRef]

49. Davis, H.T.; Aelion, C.M.; Liu, J.; Burch, J.B.; Cai, B.; Lawson, A.B.; McDermott, S. Potential sources and racial disparities in
the residential distribution of soil arsenic and lead among pregnant women. Sci. Total Environ. 2016, 551, 622–630. [CrossRef]
[PubMed]

50. Kondo, M.C.; Zuidema, C.; Moran, H.A.; Jovan, S.; Derrien, M.; Brinkley, W.; De Roos, A.J.; Tabb, L.P. Spatial predictors of heavy
metal concentrations in epiphytic moss samples in Seattle, WA. Sci. Total Environ. 2022, 825, 153801. [CrossRef] [PubMed]

51. Seker, M.E.; Erdogan, A.; Korkmaz, S.D.; Kuplulu, O. Bee pollens as biological indicators: An ecological assessment of pollution
in Northern Turkey via ICP-MS and XPS analyses. Environ. Sci. Pollut. Res. 2022, 29, 36161–36169. [CrossRef] [PubMed]

52. Qiao, Y.; Wang, X.; Han, Z.; Tian, M.; Wang, Q.; Wu, H.; Liu, F. Geodetector based identification of influencing factors on spatial
distribution patterns of heavy metals in soil: A case in the upper reaches of the Yangtze River, China. Appl. Geochem. 2022, 146, 105459.
[CrossRef]

53. Hung, C.-C.; Lin, H.-T.; Chen, C.-Y.; Chen, K.-Y.; Lee, T.-Y.; Chiang, C.-F. Estimating arsenic biotransfer factors from feed to
chicken: A viable approach to animal feed risk assessment. Food Addit. Contam. Part A-Chem. Anal. Control Expo. Risk Assess. 2023,
40, 852–861. [CrossRef] [PubMed]

54. Fathi-Gerdelidani, A.; Towfighi, H.; Shahbazi, K. Kinetic studies on arsenic release from geogenically enriched soils under
oxidized and reduced conditions. J. Geochem. Explor. 2022, 242, 107083. [CrossRef]

55. Zhang, S.; Li, X.; Chen, K.; Shi, J.; Wang, Y.; Luo, P.; Yang, J.; Wang, Y.; Han, X. Long-term fertilization altered microbial community
structure in an aeolian sandy soil in northeast China. Front. Microbiol. 2022, 13, 979759. [CrossRef]

56. Zhao, Z.; Deng, X.; Zhang, F.; Li, Z.; Shi, W.; Sun, Z.; Zhang, X. Scenario Analysis of Livestock Carrying Capacity Risk in Farmland
from the Perspective of Planting and Breeding Balance in Northeast China. Land 2022, 11, 362. [CrossRef]

57. Wang, C.; Ren, G.; Tan, Q.; Che, G.; Luo, J.; Li, M.; Zhou, Q.; Guo, D.-Y.; Pan, Q. Detection of organic arsenic based on acid-base
stable coordination polymer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 299, 122812. [CrossRef]

58. Wang, X.; Wu, Q.; Wang, Z.-Z.; Ma, W.-J.; Qiu, J.; Fan, N.-S.; Jin, R.-C. Biotransformation-mediated detoxification of roxarsone in
the anammox process: Gene regulation mechanism. Chem. Eng. J. 2023, 467, 143449. [CrossRef]

59. Battaglia-Brunet, F.; Le Guedard, M.; Faure, O.; Charron, M.; Hube, D.; Devau, N.; Joulian, C.; Thouin, H.; Hellal, J. Influence of
agricultural amendments on arsenic biogeochemistry and phytotoxicity in a soil polluted by the destruction of arsenic-containing
shells. J. Hazard. Mater. 2021, 409, 124580. [CrossRef]

60. Islam, M.S.; Mostafa, M.G. Influence of chemical fertilizers on arsenic mobilization in the alluvial Bengal delta plain: A critical
review. AQUA-Water Infrastruct. Ecosyst. Soc. 2021, 70, 948–970. [CrossRef]

61. Mpewo, M.; Kizza-Nkambwe, S.; Kasima, J.S. Heavy metal and metalloid concentrations in agricultural communities around
steel and iron industries in Uganda: Implications for future food systems. Environ. Pollut. Bioavailab. 2023, 35, 2226344. [CrossRef]

62. Shabanov, M.V.; Marichev, M.S.; Minkina, T.M.; Mandzhieva, S.S.; Nevidomskaya, D.G. Assessment of the Impact of Industry-
Related Air Emission of Arsenic in the Soils of Forest Ecosystems. Forests 2023, 14, 632. [CrossRef]

63. Renco, M.; Cerevkova, A.; Hlava, J. Life in a Contaminated Environment: How Soil Nematodes Can Indicate Long-Term
Heavy-Metal Pollution. J. Nematol. 2022, 54, 20220053. [CrossRef] [PubMed]

64. Ma, Y.; Li, Y.; Fang, T.; He, Y.; Wang, J.; Liu, X.; Wang, Z.; Guo, G. Analysis of driving factors of spatial distribution of heavy metals
in soil of non-ferrous metal smelting sites: Screening the geodetector calculation results combined with correlation analysis.
J. Hazard. Mater. 2023, 445, 130614. [CrossRef] [PubMed]

65. Gerdelidani, A.F.; Towfighi, H.; Shahbazi, K.; Lamb, D.T.; Choppala, G.; Abbasi, S.; Bari, A.S.M.F.; Naidu, R.; Rahman, M.M. Arsenic
geochemistry and mineralogy as a function of particle-size in naturally arsenic-enriched soils. J. Hazard. Mater. 2021, 403, 123931.
[CrossRef] [PubMed]

66. Zou, Q.; Wei, H.; Chen, Z.; Ye, P.; Zhang, J.; Sun, M.; Huang, L.; Li, J. Soil particle size fractions affect arsenic (As) release and
speciation: Insights into dissolved organic matter and functional genes. J. Hazard. Mater. 2023, 443, 130100. [CrossRef]

67. Panthi, G.; Choi, J.; Jeong, S.-W. Evaluation of Long-Term Leaching of Arsenic from Arsenic Contaminated and Stabilized Soil
Using the Percolation Column Test. Appl. Sci. 2021, 11, 7859. [CrossRef]

68. Bei, Q.; Yang, T.; Ren, C.; Guan, E.; Dai, Y.; Shu, D.; He, W.; Tian, H.; Wei, G. Soil pH determines arsenic-related functional gene
and bacterial diversity in natural forests on the Taibai Mountain. Environ. Res. 2023, 220, 115181. [CrossRef]

69. Chang, C.; Li, F.; Wang, Q.; Hu, M.; Du, Y.; Zhang, X.; Zhang, X.; Chen, C.; Yu, H.-Y. Bioavailability of antimony and arsenic in a
flowering cabbage-soil system: Controlling factors and interactive effect. Sci. Total Environ. 2022, 815, 152920. [CrossRef]

70. Frascareli, D.; Gontijo, E.S.J.; Silva, S.C.; Melo, D.S.; de Castro Bueno, C.; Simonetti, V.C.; Barth, J.A.C.; Carlos, V.M.; Rosa, A.H.;
Friese, K. Statistical Approaches Link Sources of Sediment Contamination in Subtropical Reservoirs to Land Use: An Example
from the Itupararanga Reservoir (Brazil). Water Air Soil Pollut. 2022, 233, 142. [CrossRef]

71. Hou, T.; Filley, T.R.; Tong, Y.; Abban, B.; Singh, S.; Papanicolaou, A.N.T.; Wacha, K.M.; Wilson, C.G.; Chaubey, I. Tillage-induced surface
soil roughness controls the chemistry and physics of eroded particles at early erosion stage. Soil Tillage Res. 2021, 207, 104807. [CrossRef]

72. Dong, J.; Zhao, W.; Shi, P.; Zhou, M.; Liu, Z.; Wang, Y. Soil differentiation and soil comprehensive evaluation of in wild and
cultivated Fritillaria pallidiflora Schrenk. Sci. Total Environ. 2023, 872, 162049. [CrossRef] [PubMed]

https://doi.org/10.1080/15275922.2020.1850567
https://doi.org/10.1016/j.scitotenv.2016.02.018
https://www.ncbi.nlm.nih.gov/pubmed/26897405
https://doi.org/10.1016/j.scitotenv.2022.153801
https://www.ncbi.nlm.nih.gov/pubmed/35151745
https://doi.org/10.1007/s11356-021-18007-y
https://www.ncbi.nlm.nih.gov/pubmed/35060036
https://doi.org/10.1016/j.apgeochem.2022.105459
https://doi.org/10.1080/19440049.2023.2220413
https://www.ncbi.nlm.nih.gov/pubmed/37314990
https://doi.org/10.1016/j.gexplo.2022.107083
https://doi.org/10.3389/fmicb.2022.979759
https://doi.org/10.3390/land11030362
https://doi.org/10.1016/j.saa.2023.122812
https://doi.org/10.1016/j.cej.2023.143449
https://doi.org/10.1016/j.jhazmat.2020.124580
https://doi.org/10.2166/aqua.2021.043
https://doi.org/10.1080/26395940.2023.2226344
https://doi.org/10.3390/f14030632
https://doi.org/10.2478/jofnem-2022-0053
https://www.ncbi.nlm.nih.gov/pubmed/36457367
https://doi.org/10.1016/j.jhazmat.2022.130614
https://www.ncbi.nlm.nih.gov/pubmed/37056003
https://doi.org/10.1016/j.jhazmat.2020.123931
https://www.ncbi.nlm.nih.gov/pubmed/33264981
https://doi.org/10.1016/j.jhazmat.2022.130100
https://doi.org/10.3390/app11177859
https://doi.org/10.1016/j.envres.2022.115181
https://doi.org/10.1016/j.scitotenv.2022.152920
https://doi.org/10.1007/s11270-022-05574-0
https://doi.org/10.1016/j.still.2020.104807
https://doi.org/10.1016/j.scitotenv.2023.162049
https://www.ncbi.nlm.nih.gov/pubmed/36804984


Toxics 2024, 12, 229 17 of 17

73. Antonio, D.C.; Caldeira, C.L.; Freitas, E.T.F.; Delbem, I.D.; Gasparon, M.; Olusegun, S.J.; Ciminelli, V.S.T. Effects of aluminum and
soil mineralogy on arsenic bioaccessibility. Environ. Pollut. 2021, 274, 116482. [CrossRef] [PubMed]

74. Xu, N.; Zhang, F.; Xu, N.; Li, L.; Liu, L. Chemical and mineralogical variability of sediment in a Quaternary aquifer from Huaihe
River Basin, China: Implications for groundwater arsenic source and its mobilization. Sci. Total Environ. 2023, 865, 160864.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.envpol.2021.116482
https://www.ncbi.nlm.nih.gov/pubmed/33516126
https://doi.org/10.1016/j.scitotenv.2022.160864
https://www.ncbi.nlm.nih.gov/pubmed/36526174

	Introduction 
	Materials and Methods 
	Study Area 
	Soil Sampling and Measurement 
	Sources and Pre-Processing of Environmental Variables 
	Spatial Local Regression Model 
	GWR 
	MGWR 


	Results 
	Descriptive Statistics of As 
	Spatial Distribution and Pollution Levels of As 
	Model Comparison 
	Spatial Distribution of MGWR Regression Coefficients 
	Local Influencing Factors and Sources of As 

	Discussion 
	Impact of Environmental Variables on As Accumulation 
	Scale Effect of Explanatory Variables 
	Limitations 

	Conclusions 
	References

