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Abstract: The characterization of dissolved organic matter (DOM) is important for better understand-
ing of the migration and transformation mechanisms of DOM in water bodies and its interaction
with other contaminants. In this work, fluorescence characteristics and molecular compositions of the
DOM samples collected from the mainstream, tributary, and sewage outfall of the Inner Mongolia
section of the Yellow River (IMYR) were determined by using fluorescence spectroscopy and Fourier
transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In addition, concentrations of
potentially toxic elements (PTEs) in the relevant surface water and their potential relationships
with DOM were investigated. The results showed that the abundance of tyrosine-like components
increased significantly in downstream waters impacted by outfall effluents and was negatively
correlated with the humification index (HIX). Compared to the mainstream, outfall and tributaries
have a high number of molecular formulas and a higher proportion of CHOS molecular formulas.
In particular, the O5S class has a relative intensity of 41.6% and the O5-7S class has more than 70%.
Thirty-eight PTEs were measured in the surface water samples, and 12 found above their detective
levels at all sampling sites. Protein-like components are positively correlated with Cu, which is
likely indicating the source of Cu in the aquatic environment of the IMYR. Our results demonstrated
that urban wastewater discharges significantly alter characteristics and compositions of DOM in
the mainstream of IMYR with strongly anthropogenic features. These results and conclusions are
important for understanding the role and sources of DOM in the Yellow River aquatic environment.

Keywords: dissolved organic matter; fluorescence characteristics; FT-ICR MS; heavy metal; interaction;
source

1. Introduction

Dissolved organic matter (DOM—a list of all abbreviations could be found at the end)
is widely distributed in aquatic environments such as wastewater, rivers, and lakes [1].
The dissolved organic carbon in DOM accounts for approximately 50% of the total carbon
in inland waters and is one of the largest carbon pools [2,3]. DOM is a complex organic
mixture containing phenolic, aliphatic, aromatic, and polysaccharide groups, and its geo-
chemical cycling significantly affects the aquatic environment, which also has important
implications [4,5]. Microorganisms utilize carbohydrates and amino acids more readily,
while humic and fulvic acids are relatively more difficult to be degraded [6,7]. At the same
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time, DOM also interacts with some nutrients, potentially toxic elements (PTEs), and other
contaminants, affecting the transport and transformation processes, bioavailability, and
toxicity of these contaminants [8–11]. Therefore, the effect of DOM on the transport and
transformation of PTEs, especially heavy metals in water bodies has received much atten-
tion. The binding behavior between DOM and metals binding behavior mainly depends
on the nature and type of PTEs [10,12,13].

The sources of DOM has strong heterogeneity, due to the DOM could be gener-
ated from the natural environment, such as plant and animal residues [14], and the
DOM could be also generated from human activities, such as domestic and industrial
wastewater [15–17]. Therefore, the molecular compositions, concentrations, and trans-
formations of these DOMs have shown significant differences in spatial and temporal
variations in river ecosystems, and which spectral features are effective indicators to
identify and characterize the composition and environmental behavior of DOMs [18–20].
Among them, the most used methods for DOM compositional characterization include
ultraviolet absorption, three-dimensional excitation-emission matrix (3D-EEM), and par-
allel factor (PARAFAC) analysis, etc. 3D-EEM PARAFAC analysis has been widely used
to study DOM and other pollutants in the aquatic environment, including the migration
and transformation of organic matter, degradation, and source tracing [21–23]. At present,
some advanced analytical methods, such as FT-ICR-MS, are also increasingly and widely
used in the characterization of DOM in the aquatic environment [24–26], which can reveal
the compositional characteristics of the whole DOM components and the differences of
DOM from various sources at the molecular level compared with 3D-EEM PARAAFA
analysis [27–29]. However, the convenience and cost of FT-ICR MS detection are limited.
Therefore, their joint application is expected to provide a more comprehensive and in-depth
analysis of the sources of some pollutants and mechanisms of DOM-metals interactions
in watersheds.

The Yellow River is one of the longest rivers in the world and the second-largest river
in China. The Yellow River Basin is known for its high sand transport and suspended
sediment concentration. It discharges 14.7 billion m3 of runoff and 245 million tons of
marine sediment annually (1987–2020), accounting for 6% of the total sediment flux from
rivers to the ocean worldwide [30,31], and is considered one of the representative watershed
systems. Many studies have been conducted on heavy metals and organic pollutants from
the Yellow River Basin [32–35]. Compared with the economically developed watersheds in
southern China (i.e., the Yangtze River Basin and the Pearl River Basin), there are fewer
systematic studies and reports on the compositional characteristics of DOM in the aquatic
environment from the Yellow River. Especially based on the analysis of the compositional
characteristics of DOM, few studies have further analyzed the relationships between DOM
and the dissolved heavy metals in the water body. The Inner Mongolia section of the Yellow
River (IMYR) is located in the middle and upper reaches of the Yellow River basin, where
coal mining, coal chemical industry, metal smelting, etc., are the main industrial industries
in the region [36,37], At the same time, the Hetao Plain is a crucial irrigated area for grain
production and a significant source of agricultural surface pollution [38,39]. The annual
wastewater discharge of the Yellow River Basin is 3.376 billion m3, and only 48.6% of the
Yellow River Basin’s main channels and major tributaries meet water quality standards [40].
The degradation of the basin affects various ecosystem services, and the fragile ecological
environment severely restricts the sustainable development of the regional socio-economy.

Therefore, in this study, samples were collected from typical agricultural surface water,
sewage outfall, and other water bodies in the IMYR, assuming that there are specific differ-
ences in the composition of DOM in these water bodies, which may also have a significant
impact on the migration and transformation of PTEs in the Yellow River and may help to
analyze and evaluate the sources of pollutants to a certain extent and provide a scientific
basis for the management of the water environment. Therefore, the objectives of this study
are (1) to characterize the DOM and PTEs compositions of different typical water bodies
in the continuous water environment of the IMYR; (2) to analyze the differences in the
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compositions and distribution characteristics of DOM and PTEs and their interrelationships
of the different typical waters; and (3) to explore the possible influence of DOM on the
migration and transformation of PTEs in the major rivers as well as the feasibility of tracing
the source.

2. Materials and Methods
2.1. Study Area and Sampling Sites

The IMYR is located in the middle and upper reaches of the Yellow River Basin,
entering from Shizuishan City in Ningxia Province and exiting from Jungar Banner, Inner
Mongolia, China, with a length of about 843.5 km, accounting for about one-sixth of the
total length of the Yellow River. The temperate continental monsoon climate dominates
the IMYR, and the region is characterized by low precipitation and high evaporation. The
average multi-year temperature is about 9 ◦C, and rainfall ranges from 150–450 mm/a,
mainly concentrated in July to September every year. Due to its unique geographical
location, the IMYR is a vital drainage channel for water receding from the local irrigation
area and a source of industrial and domestic water for neighboring cities. It plays a vital
role in the life and production of the region.

Water sampling in the IMYR was conducted in July 2022, and the location and number
of sampling points are shown in Figure 1. A total of 31 surface water samples were collected,
including 28 points (a01–a28) in the mainstream of the IMYR (from Wuhai City to Hohhot
City, China) and three typical sites (b01–b03) in the tributaries. The coordinate information
of the sampling sites is given in the Supporting Information (Table S1). Site b01 is the
cross-section of the Zongpaigan River, site b02 is the cross-section of the Kundulun River,
and site b03 is the outlet of the Tailrace Project and sewage treatment plant of Baotou City
located in the Erdaosha River. The Kundulun River was in a flow interruption during
the sampling period. Thus, it was not included in the subsequent analysis. Water from
the Yellow River main channel through the Sanshenggong Water Conservancy Center
Project into the Hetao Plain Irrigation, after irrigation, flows through Wuliangsu Lake and,
following the Zongpaigan River, rejoins the Yellow River. As a part of the Baotou City
water system, Erdaosha River is currently the centralized discharge channel of Baotou
City’s domestic and industrial wastewater, such as rare earth metal smelting and other
tailrace projects, which is mainly involved in the production and domestic wastewater of
Wanshuiquan Wastewater Treatment Plant and Baotou Rare Earth Hi-Tech Zone. Therefore,
in this study, sites b01 and b03 are proposed to be taken as the dividing points of the
upstream, midstream, and downstream of the IMYR, i.e., the upstream (a01–a11, n = 11),
midstream (a12–a17, n = 6) and downstream (a18–a28, n = 11) of the IMYR, respectively.

Before sampling, polyethylene plastic bottles and samplers were well moistened with
river water, and samples were collected below the water surface 0.2 m at each site and
stored in sealed containers. Samples were refrigerated and transported to the laboratory
as quickly as possible. Water samples were filtered through a 0.45 µm membrane filter,
refrigerated, and analyzed for DOM characterization and concentrations of PTEs.

2.2. DOM Fluorescence

FDOM in DOM of filtered water samples was determined using an F-7000 fluorescence
spectrometer (Hitachi High-Technologies, Tokyo, Japan) with a 1-cm quartz colorimetric
tube and Milli-Q water as a blank. The scanning parameters of the instrument were set as
follows: the excitation power of the xenon lamp light source was 450 W, the PMT voltage
was 700 V, and the scanning speed was 1200 nm/min; the excitation wavelength (Ex) was
set to 200–450 nm, the emission wavelength (Em) was set to 250–550 nm, and the slit widths
of both the excitation and emission wavelengths were 5 nm.
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All raw EEM processing was performed using the drEEM toolbox [21] in MATLAB
software 23.2 (The MathWorks Inc., Carlsbad, CA, USA). The EEM calibration process
included blank EEM subtraction and scatter removal, correction for internal filter effects [41],
and normalization of Raman units (RUs) before PARAFAC analysis. Raman and Rayleigh
scattering peaks were removed from the spectra within the drEEM toolbox, as well as
wavelengths below λex = 250 nm and λem = 300 nm to limit the spectral noise region of the
matrix. Raman normalization factors were calculated at λex = 350 nm using a Milli-Q blank
EEM [42]. The resulting corrected and normalized EEM data set was subjected to PARAFAC
analysis using the drEEM toolbox. Least squares models with three to six components
were tested by running 30 iterations with non-negativity and a convergence criterion of
1 × 10−8 [22], and the most appropriate number of PARAFAC components was found
using a combination of split halves and residuals. The resulting fluorescent components
were uploaded to the OpenFluor database [43] (https://openfluor.lablicate.com/, accessed
on 30 May 2023) for comparison, limiting the identity coefficient to 0.95, searching for
spectral data similar to the present study and plotted (Figure S1).

In addition, several fluorescence indices were calculated. The fluorescence index
(FI), commonly used to indicate DOM sources [44] (1.8: microbial sources, 1.2: terrestrial
sources [45]), was calculated by the ratio of the fluorescence intensity at Em = 470 nm to
that at Em = 520 nm when Ex =370 nm [46]. The humification index (HIX), which is used
to assess the degree of DOM humification [47], was defined as the fluorescence intensity
in the region from 300 to 345 nm divided by the sum of the intensity in the areas from
300 to 345 nm and from 435 to 480 nm. The biological index (BIX), used to assess the
relative contribution of endogenous substances to DOM [23], was calculated by dividing
the fluorescence intensity at Em = 380 nm by that at Em = 430 when Ex = 310 nm [48].

https://openfluor.lablicate.com/
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2.3. FT-ICR MS

To characterize DOM composition at the molecular level, six typical samples were
selected for FT-ICR MS analysis, including four mainstream sites (a04, a14, a17, a23) and two
major tributary sites (b01, b03). Before analysis, an estimated volume of acidified (pH = 2)
sample was prepared to achieve a target concentration of 45 µg-C/mL [49], and solid-
phase extraction (SPE) of DOM was performed using PPL Bond Elut resin (Agilent) [50].
SPE-DOM was eluted with 2 mL methanol and dried under nitrogen. The methanol
extract was redissolved in 1 mL and analyzed using a 9.4 T SolariX XR FT-ICR MS (Bruker,
Berlin, Germany).

The decomposition analysis converted the mass spectral peaks to the corresponding
molecular formulas. The modified aromaticity index (AImod) [29], double bond equivalents
(DBE), the island of stability (IOS) [24], the molecular lability boundary for more labile
contributions (MLBL) [25], H/C and O/C ratios were calculated. The molecular compo-
nents in the mass spectrometry data were classified into different types of compounds
according to the previous classification method, which was limited by different parameter
ranges [51–53]: polycyclic aromatics (PA, AImod > 0.66); highly aromatic compounds (HA,
0.5 < AImod ≤ 0.66); highly unsaturated compounds (HU, AImod ≤ 0.5, H/C < 1.5); unsatu-
rated aliphatic compounds (UA, 1.5 ≤ H/C ≤ 2, N = 0); peptides (1.5 ≤ H/C ≤ 2, N > 0)
and carboxyl-rich alicyclic molecules (CRAM; 0.3 < DBE/C < 0.68, 0.2 < DBE/H < 0.95,
0.77 < DBE/O < 1.75) [54].

2.4. Potentially Toxic Elements

Water samples obtained after filtration through a 0.45 µm membrane were analyzed
by inductively coupled plasma mass spectrometry (7800 ICP-MS, Agilent, Santa Clara, CA,
USA) for all-element metal screening and systematically analyzed for validly detected PTEs
above the detection limit.

The detection limits of the tested elements are shown in Table S2. In order to ensure
the quality and accuracy of the elemental detection, Rh, Re and Th were added as internal
standards in the experimental process, and the recoveries of the different internal standards
were (90.1~120.9%), (98.6~113.5%) and (93.9~107.7%), respectively; in addition, some
repeated analytical tests were carried out in the middle of sample testing as well as after
the end of sample testing, and the standard deviation of each element in two repeated
analytical tests was calculated. In addition, some samples were repeatedly analyzed in the
middle and at the end of the sample testing, and the standard deviation of each element in
the two repeated analytical tests was calculated, which is shown in Table S2.

2.5. Statistical Analyses

Sampling site locations were plotted using ArcGIS 10.8. Statistical analyses were
performed using IBM SPSS Statistics 27 (IBM Corp., Armonk, NY, USA), and plots were
generated using Origin 2022 with MATLAB and other software. Pearson correlation
analysis was used to identify PTEs with characteristics closely related to DOM. Linear
regression analysis examined the linear relationships between fluorescence indices and
fluorescence components. Principal component analysis (PCA) was used to analyze the
fluorescence components, fluorescence indices, and PTEs. Additionally, PTEs below the
detection limit and those with poor correlation were excluded from the PCA analysis.

3. Results and Discussion
3.1. Fluorescence Characteristics of DOM

Five fluorophore components were identified using PARAFAC analysis (Figure 2).
These include three humic-like components (C1–C3) and two protein-like compo-
nents (C4–C5). According to the fluorophore species classification by Coble [55,56],
C1 [Ex/Em = 250(335)/415] and C2 [Ex/Em = 265(365)/465] consist of a combination of UVC
humic-like peak A and UVA humic-like peak C. These components predominantly feature
peak A, associated with abundant natural humic acids and fulvic acid fluorophores [57,58].
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The component C3 [Ex/Em = 250(295)/380], corresponding to peak M, is identified as
a microbial humic-like component [57,59]. C4 [Ex/Em = 265/305] corresponds to the
tyrosine-like component related to peak B [58]. Additionally, C5 [Ex/Em = 275/330]
is analogous to the tryptophan-like component, corresponding to peak T [55]. Both
protein-like components, C4 and C5, are commonly observed in water bodies influenced
by wastewater [45,60].
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Yellow River Basin.

The abundance of each fluorescent component in the IMYR showed a general in-
creasing trend from upstream to downstream, as shown in Figure 3. It is noteworthy that
the protein-like components (C4, C5) showed a strong spatial variability, especially the
abundance of the tyrosine-like component C4 was much higher in the downstream than
in the upstream and midstream (Figure 3d), with a mean value of approached 15 times
higher than that observed in the upstream and midstream (Table S3). Differences in flu-
orescent components and fluorescence indices between the upstream and midstream of
the IMYR were not pronounced, with the value changes of each index generally falling
within the same range (Figure 3). This suggests that the water from Zongpaigan River,
after being used for irrigation and discharged into the mainstream via Wuliangsu Lake,
probably had minimal impact on the DOM Characteristics of the mainstream in the sam-
pling period. Erdaosha River, where the b03 site is located, is the boundary between the
midstream and downstream of IMYR divided in this study. It is also a tributary of the
Yellow River but receives sewage effluents from the wastewater treatment plant in Baotou
City as described in Section 2.1. The b03 site was excluded as an outlier in the PARAFAC
analysis due to its higher fluorescence peak intensity (Σpeak of 12.89) compared to the
upstream (4.80 ± 0.44), midstream (5.06 ± 0.79), and downstream (7.98 ± 0.43) (Table S3).
Studies using the excitation-emission matrix (EEM) have identified distinct fluorescence
characteristics in sewage effluents compared to unaffected rivers [61,62]. Tryptophan-like
and tyrosine-like components (C4 and C5 in this study) are commonly used to indicate an-
thropogenic influences such as wastewater treatment plants [63,64]. Therefore, it could be
concluded that the DOM abundance, especially protein-like components, in the Erdaosha
River, where the b03 site is located, has increased significantly due to wastewater inputs.
Meanwhile, since the wastewater discharged from the Erdaosha River outfall contains
domestic and industrial wastewater, it is difficult to identify the specific source using
fluorescence spectroscopy without other analytical tools.
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The abundance of protein-like components increased considerably in the downstream
waters, leading to higher ΣFmax than the upstream and midstream (Figure 3f). This shift is
further elucidated by the ratio of humic-like to protein-like components [26], which revealed
that humic-like components predominated upstream and midstream, while protein-like
components were more prevalent downstream (Figure 3g). This finding is consistent with
the results of the H: P ratio. Notably, the effluents of underutilized wastewater treat-
ment plants often contain unprecipitated bioflocs composed of microorganisms and their
extracellular polymers [65,66]. These bioflocs may, under certain conditions, undergo
cell hydrolysis accompanied by lysis of cell [67], producing soluble microbial products
(SMP) [68], which have been identified as biomass-associated products (BAP) [69], lead-
ing to an increase in the abundance of protein-like components. Therefore, it can be
hypothesized that the increase in abundance of C4 and C5 components may be related
to incompletely decomposed components from wastewater [70]. A comprehensive anal-
ysis suggests that the substantial increase in the abundance of protein-like components
in downstream waters is likely linked to the discharge of Baotou’s urban domestic and
industrial wastewater, which is likely inadequately treated. The results indicate that urban
production and domestic wastewater discharge are significant point sources of protein-like
components in the water from IMYR.

For all water samples from IMYR, FI values ranged from 2.2 to 2.9, suggesting a
significant microbial contribution to DOM in the IMYR (Figure 3h). Duan et al. [71] pointed
out a positive correlation between fluorescence index (FI) and point source pollution, and
which concluded that FI can be used to realize the qualitative analysis of pollution sources.
However, the opposite situation was observed in this study, FI was negatively correlated
with protein-like components (C4, C5) representing point source pollution (Figure 4). The
HIX values at all sites were below 0.8, indicating the humification of DOM was low in
water from IMYR, Especially, HIX values in the downstream (0.46 ± 0.03) was lower than
that in the upstream (0.76 ± 0.02) and midstream (0.76 ± 0.01) (Table S3). The present study
found a significant negative correlation between HIX and tyrosine-like components (C4)
(Figure 4). In response to this finding, the linear relationship between HIX and tyrosine-like
components was further explored (Figure 5). In contrast to the Pearson correlation analysis
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performed for the whole mainstream from IMYR, the linear regression analysis performed
by different divided section of the IMYR in this study showed more clearly that the linear
relationship between HIX and tyrosine-like C4 is significant in the downstream (Figure 5c).
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Aggregative results showed that HIX and tyrosine-like substances are more strongly
associated in the effluent-impacted downstream than that less impacted in the upstream
and midstream of the IMYR. Thus, this study indicated that the linear relationship be-
tween tyrosine-like substances and the humification index could be used to assess water
pollution levels.

3.2. Molecular Characteristics of DOM

In the comprehensive review of the results from the molecular analysis of DOM across
the mainstream and tributary sampling sites, as shown in Table 1, no obviously differences
in molecular characterization parameters were found among the four mainstream sampling
sites (a04, a14, a17, a23), which is likely representing general results from the mainstream.
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However, notable differences were observed between the mainstream and tributary sites.
Specifically, the tributary sites exhibited a higher number of molecular formulas than that
in the mainstream sites. The b03 site at the Erdaosha River showed distinct characteristics
from other sites: The molecular weight (MW) was lower than the average value from
mainstream, which potentially due to enhanced microbial degradation of effluent leading
to an increase in the low molecular weight of DOM [72]. Additionally, the values of DBE
and AImod were lower than those average values from the mainstream, suggesting that
the DOM is less unsaturated and aromatic in the effluent. In addition, higher MLBL and
lower IOS indicated that wastewater input to the water contributes to the increased DOM
instability of the water in the IMYR.

Table 1. Molecular characterization of DOM from FT-ICR MS (Intensity-weighted methods were
applied to calculate the average MW, DBE, AImod, and H/C and O/C ratios).

a04 b01 a14 a17 b03 a23

Number of formulas 4402 6719 4026 4194 6620 4166
Average MW (Da) 365.39 366.17 359.04 359.65 346.92 359.79
Average H/C 1.20 1.25 1.21 1.21 1.33 1.21
Average O/C 0.50 0.52 0.51 0.51 0.45 0.51
Average DBE 7.97 7.47 7.73 7.72 6.61 7.78
Average AImod 0.33 0.28 0.32 0.32 0.26 0.32
MLBL (%) 14.5 17.8 15.5 15.7 24.1 15.3
IOS (%) 7.3 6.8 7.5 7.4 6.1 7.2

Van Krevelen (V-K) plots, which visualize the FT-ICR MS data, revealed the distribu-
tions of four molecular groups, as shown in Figure 6. The proportions of six compounds
are illustrated in Figure S2. Within the 200 to 600 Da mass range, the molecular formulas at
the four sites from the mainstream predominantly consisted of CHO (46.57% ± 0.28%) and
CHON (39.39% ± 0.48%), accounting for over 85% of the total molecular ratio. The relative
intensities of CHO in these samples varied from 72.66% to 74.73%. In contrast, the tributary
sites (b01 and b03) exhibited significantly higher proportions of CHOS (16.33%, 18.16%) and
CHONS (8.78%, 8.05%) compared to the mainstream average (CHOS = 11.49% ± 0.44%,
CHONS = 2.56% ± 0.29%). Furthermore, the sites from midstream (a14, a17) appeared
unaffected by the tributary where site b01 is located, which is consistent with the results
from fluorescent components and abundance analysis. Notably, the relative intensity of
CHOS was highest at the b03 site that accounted for 28.09%, which was much higher
than that in the mainstream with an average value of 6.66% ± 0.28%. Previous studies
have indicated that CHOS molecular formulas could constitute 5% to 20% of the DOM in
natural water [73,74]. At site b03, the sulfur-containing molecular formula predominantly
belonged to the O1-13S class, with the O5S class showing a relative intensity of 41.6% and
the O5-7S class exceeding 70%. Previous research suggested that the O5S class in CHOS
was related to linear alkylbenzene-sulfonates (LAS) and their degradation products, sul-
fophenyl carboxylic acids (SPC) [75,76], which are synthetic surfactants commonly found
in detergents and personal care products and widely detected in wastewater and also
other anthropogenically impacted inland waters [77,78]. These observations indicated
that the increased proportion of CHOS in the DOM at the b03 site, particularly in the O5S
category, was attributable to wastewater discharge from the Erdaosha River outfall. Thus,
the aggregative results suggest that human activities significantly influence the variation in
CHOS levels between the mainstream and the tributary.
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Figure 6. The upstream point a04 (a) of the Inner Mongolia section, the dividing point between the
upstream and the midstream is b01 (b), the midstream point a14 (c) and a17 (d), the dividing site
between the midstream and the downstream b03 (e) and the downstream point a23 (f) Van Krevelen
diagram of the molecular formulas of CHO, CHOS, CHON, and CHONS.

The majority of molecular formulas in this study were classified as highly unsat-
urated compounds (HU, 57% ± 2.31%) and carboxyl-rich alicyclic molecules (CRAM,
49.99% ± 2.8%), with relative abundances of 76.3% ± 4.87% and 61.33% ± 3.36%, respec-
tively, as shown in Figure 7c,d. The CRAM, widely recognized in the DOM of natural
water that used as an indicator of stability of DOM [54,79], which was less abundant at
the tributary sites. This suggested lower stability of DOM at tributary sites, consistent
with the results from the IOS value. Unsaturated aliphatic compounds, typically derived
from microbial metabolites [80] and indicative of biologically unstable DOM sources [81],
were particularly abundant in the sample from b03 site. Here, the relative abundance
(16.96%) and intensity (23.03%) were much higher than those average values form the
mainstream (11.13% ± 0.35%, 8.19% ± 0.19%). These observations indicated that intense
microbial activity in wastewater discharged from the outfall would result in elevated levels
of unsaturated aliphatic compounds as microbial metabolites, as detailed in Table S4. These
results further suggested that the urban domestic and industrial wastewater would affect
the compositional characteristics, and thus also influence the transport and transformation
patterns of DOM in the IMYR.

3.3. Concentrations and Distribution Characteristics of PTEs in Water

Based on the PTEs screening and quantification in the IMYR waters, the total detection
rate for 15 rare earth elements was 6.7%. The detection rates for five heavy metals, namely
Ti, Ga, Ge, Zr, and Pb, were less than 20%. Pd (detection limit: 0.02 µg/L), Cd (detection
limit: 0.05 µg/L), Sn (detection limit: 0.08 µg/L), and Tl (detection limit: 0.02 µg/L) were
not detected in any of the samples. Concentrations of twelve PTEs could be detected in
the samples from all sites, with average concentrations (µg/L) in descending order that
Cr (4.109) > Mn (3.930) > As (3.154) > Mo (2.549) > Al (2.078) > V (1.819) > Zn (1.669) > Cu
(1.414) > Ni (1.309) > Sb (0.972) > W (0.191) > Co (0.146), as detailed in Table S5.
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Figure 7. The proportion of the number of different molecular formulas (a) and the proportion
of relative intensities (b), the proportion of the number of different molecular types (c) and the
proportion of relative intensities (d) of 6 DOM samples.

Spatial variations in PTEs concentrations were observed in the surface water of the
IMYR (Figure 8). The average concentration of Cu showed an increasing trend from up-
stream to downstream. Mo concentrations increased upstream but remained relatively
stable in the middle and downstream. Conversely, the average concentration of Cr de-
creased from upstream to downstream, with fluctuations in the upstream. Notably, sites
with higher concentrations of Mn and Co were in the upper reaches of the IMYR, with a
similar spatial distribution. A significant positive correlation between Mn and Co (r = 0.91,
p < 0.01) was identified (Figure 4), suggesting common sources of contamination or similar
migration and transformation processes for these two metals in the IMYR [82].

The upper reaches of the IMYR are rich in mineral resources, with numerous open-pit
coal mines. Dust from coal mining and transportation entering the Yellow River through
atmospheric deposition may contribute to fluctuations in concentrations of PTEs. Heavy
industries in the region, especially metal smelting and coal chemical industries, are known
for high pollution before [83]. Industrial wastewater discharges could explain the elevated
and fluctuating concentrations of Mn, Co, and Cr in the upper reaches. In addition, the
extensive agricultural practices in the Hetao Plain involve using fertilizers, pesticides, and
herbicides containing PTEs. These substances can accumulate in the soil and migrate to the
water of Yellow River via rainfall and irrigation [84]. Other PTEs, such as Ni and V, did not
show significant changes in concentration, suggesting that natural background levels and
the headwaters of the Yellow River is likely a primary influence factor for their presence.
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3.4. Implication for Interaction and Source of DOM and PTEs

The correlation matrix reveals significant relationships between various fluorescent
components and PTEs (Figure 4). The humic-like component C1 exhibited a significantly
positive correlation with the PTEs of As (p < 0.05). The microbial humic-like component
C3 negatively correlated with the PTEs of Mn, Co, and Ni (p < 0.05). A significant pos-
itive correlation was also observed between the humification index (HIX), Cr, and Mo.
The tyrosine-like component C4 was negatively correlated with the PTEs of Cr and Mo,
suggesting a potential fluorescence quenching effect of these metals on C4 or a complex
relationship with their sources, warranting further investigation.

Previous studies reported Cu complexation with DOM, leading to fluorescence
quenching [85–87]. However, a positive correlation between the PTEs of Cu and fluorescent
components was shown in this study (Figure 4), which could imply limited Cu-DOM
complexation due to competition with other ions. Or else, it might reflect a close rela-
tionship between the sources of Cu and protein-like components. The intense microbial
activity in the effluent from the Erdaosha River outfall, leading to an increase in protein-like
components, did not diminish with rising Cu concentrations, further suggesting a potential
link between Cu sources and protein-like components.
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Three potentially toxic elements, Cu, As, and Mo, showing significant correlations with
fluorescent components, were selected for principal component analysis (PCA) (Figure 9).
The cumulative variance explained by the principal components was 73.9%, with the first
principal component (PC1) accounting for 51.1% of the total variance. PC1 predominantly
comprised eight indicators: fluorescent components C2, C3, C4, C5, fluorescence indices FI,
HIX, BIX, and Cu. Compared to upstream sampling sites, the higher PC1 values at down-
stream sites in the IMYR are consistent with the observed higher abundance of fluorescent
components downstream (Figure 3a–e). PC1 also contained Cu that changes in its con-
centration were consistent with changes in the abundance of each fluorescent component
along the mainstream. No decrease in the abundance of the fluorescent components due to
Cu-DOM complexation was observed. This may suggest that some fluorescent components
(protein-like) could be the indicator for the source of Cu in the aquatic environment of the
IMYR. The negative loadings of FI and HIX in PC1 are consistent with previous analyses,
suggesting an increase in microbially derived DOM and a decrease in humification due to
intensely microbial activity in wastewater from the Erdaosha River outfall.
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Figure 9. Principal component analysis (PCA) for fluorescence components, related indexes, and
potentially toxic elements (Cu, As, and Mo).

PC2, contributing 22.8% to the total variance, included the humic-like component C1
and As and Mo. The component C1, characterized as ubiquitous terrestrial humic-like and
absent in wastewater DOM, which did not show a significant spatial distribution trend
in this study (Figure 3a) and was not notably elevated due to downstream wastewater
discharge. This observation is consistent with its absence in wastewater DOM. Although
the Zongpaigan River, where the b01 site is located, carries agricultural irrigation water, the
study could not conclusively link PC2 to agricultural influences. The spatial distribution
trends of As and Mo concentrations mirrored those of the C1 component; the humic-
like C1 component may indicate the sources of As and Mo in water form IMYR, further
investigation is needed to determine specific sources. In summary, PC1 appears more
influenced by anthropogenic factors, while PC2 may represent the Yellow River upstream
water sources and natural background influences.

4. Conclusions

The Zongpaigan River, which carries water from agricultural irrigation activities in
the Hetao Plain, has minimal impact on the characteristics and composition of the DOM
in the mainstream during sampling period in this study. However, urban industrial and
domestic wastewater, which is a significant point source of pollution in the IMYR, affects
the abundance of protein-like components, especially tyrosine-like components. The results
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of linear regression analysis showed a significant linear correlation between HIX and
tyrosine-like components in the water influenced by wastewater discharges, which linear
correlation can be used to assess the water pollution level. The FT-ICR MS analysis revealed
that the tributary DOM is characterized by higher instability, lower unsaturation, and
lower aromaticity. Especially the water from the Erdaosha River, the sulfur molecular
formulas in the O5S class accounted for 41.6%, and the O5-7S class accounted for exceeds
70%. This pattern may be a crucial indicator of concentrated urban industrial and domestic
wastewater discharge.

In the water from IMYR, twelve PTEs were detected in all sampling sites. Spatial
variations in the concentrations of some PTEs may occur due to dust from open-pit mining,
industrial discharges, and agricultural activities. Contrary to the traditional results of the
quenching of fluorescence by Cu, there was a significant positive correlation between Cu
and protein-like components in the waters of the IMYR. This correlation may be closely
related to the influx of protein-like substances in municipal wastewater and sources of
copper in regional sewage, such as metal smelting.

This study sheds light on the spatial variation of DOM components in the IMYR,
especially in downstream areas which were severely impacted by urban wastewater dis-
charges. The findings reported in this work are crucial for understanding the role and
sources of DOM in the Yellow River aquatic environment and helpful for further research
on the pollutants, such as PTEs, and their migration and transformation. As the IMYR is
characterized by high sediment loading and a substantial amount of suspended particulate
matter in the water body, a researchable scientific question is how these factors might
influence DOM composition and its interaction with pollutants. Future research should
address these issues to improve our understanding of organic matter characteristics in large
river systems and their impact on contaminant sources, migration, and transformation.
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DOM dissolved organic matter
IMYR Inner Mongolia section of the Yellow River
PTEs potentially toxic elements
PARAFAC parallel factor analysis
FI fluorescence index
BIX biological index
HIX humification index
AImod modified aromaticity index
DBE double bond equivalents
IOS island of stability
MLBL molecular lability boundary for more labile contributions
FT-ICR MS Fourier transform ion cyclotron resonance mass spectrometry
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