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Received: 28 June 2021

Accepted: 26 August 2021

Published: 7 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

IAAM (International Association of Advanced Materials), Gammalkilsvägen 18, 59053 Ulrika, Sweden;
casesnoves.research.emailbox@gmail.com

Abstract: Total hip metal arthroplasty (THA) constitutes an important proportion of the standard
clinical hip implant usage in Medical Physics and Biomedical Engineering. A computational nonlin-
ear optimization is performed with two commonly metal materials in Metal-on-Metal (MoM) THA.
Namely, Cast Co-Cr Alloy and Titanium. The principal result is the numerical determination of the K
adimensional-constant parameter of the model. Results from a new more powerful algorithm than
previous contributions, show significant improvements. Numerical standard figures for dual opti-
mization give acceptable model-parameter values with low residuals. These results are demonstrated
with 2D and 3D Graphical/Interior Optimization also. According to the findings/calculations, the
standard optimized metal-model parameters are mathematically proven and verified. Mathematical
consequences are obtained for model improvements and in vitro simulation methodology. The wear
magnitude for in vitro determinations with these model parameter data constitute the innovation
of the method. In consequence, the erosion prediction for laboratory experimental testing in THA
adds valuable information to the literature. Applications lead to medical physics improvements for
material/metal-THA designs.

Keywords: dual nonlinear optimization; metal artificial implants (MAI); hip implants; total hip
arthroplasty (THA); MoM (Metal-on-Metal hip implant); objective function (OF); prosthesis materials;
wear; biomechanical forces

1. Introduction

In general, there are currently three material groups widely used in total hip metal
arthroplasty (THA). Namely, ceramic, metal, and polyethylene. The principal components
of a THA are cup and head. Clinically, head-cup combinations could be even (CoC,
MoM) or uneven (PoM, CoM, PoC). When a polyethylene cup constitutes at least one
component of the THA, the bearing is considered soft [1–4], otherwise the bearing is
hard. The wear of the THA implant occurs in-between the head and cup, specifically
in erosion and abrasion biotribological phenomena. This biotribological wear-interface
is based on complex biomechanical forces distribution and was presented in previous
publications [1,2].

Biomaterials in orthopaedics have evolved significantly along several generations [4–8].
Ceramic materials is the generic group whose hardness magnitude is highest. It is followed
in order of magnitude by the metal group and then the polyethylene one. In THA research,
the wear/changes during post-operational and implant lifetime in patient can be clinically
measured in vivo by using a number of imaging techniques available [3,9]. These are usually
conventional XR, RSA (radiostereometric analysis), CT (computerized tomography), MRI
(magnetic resonance imaging), and variants/combinations of these. Computational geometry,
based on imaging systems, can obtain THA post-surgical and long-term evolution, checking
the implant fit with radiomarkers. There are geometrical methods based on radiomarkers
positioning to get precise evaluations of the implant up-to-date condition(s). For instance,

Standards 2021, 1, 53–66. https://doi.org/10.3390/standards1010006 https://www.mdpi.com/journal/standards

https://www.mdpi.com/journal/standards
https://www.mdpi.com
https://doi.org/10.3390/standards1010006
https://doi.org/10.3390/standards1010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/standards1010006
https://www.mdpi.com/journal/standards
http://www.mdpi.com/2305-6703/1/1/6?type=check_update&version=2


Standards 2021, 1 54

radiomarkers for pre- and post-surgical positioning determination of lumbar artificial disks
were clinically/industrially developed [2].

For in vitro THA wear simulations, the methods conjoin experimental work with mod-
elling optimization. The correlation between in vitro and in vivo data-matching is rather
difficult. Since the biomechanical loads are combined with almost continuous/variant
daily moving and personal dynamics habits at any physical activity, the THA erosion wear
constitutes a biomedical complicated factor. The approximate magnitude of its wear along
usage-time has to be determined when manufacturing/designing any THA—no matter
metal, ceramic, or polyethylene. Metal prostheses/materials are subject, in general, to
erosion and corrosion physical of chemical phenomena, and tribocorrosion happens on
human plasma medium, when corrosion, due to plasma free radicals, becomes synergic
with erosion. Other types of complications are caused by debris particles of the eccentric
wear in the acetabular cup or the cup dislocation [10] when bone hardness is weak and
screws cannot hold sufficiently. The in vitro experiment of THA devices to obtain tenta-
tive/precise erosive data is an important stage in the manufacturing process. However,
and additionally, the in vivo measurements differ from the lab experiments. If the THA
prostheses fail, post-operative complications could be a serious surgical problem.

Therefore, the use of mathematical models represents a useful/efficacious tool for
these predictions. The continuous improvements in modelling, both analytical and in finite
elements, is performed with the combination of computational bioengineering meshed
with experimental data. In previous contributions [1,2], a number of optimization models
were developed with computational-mathematical methods. In consequence, the principal
objective of this study was to obtain advances in an analytical model. This result is the
numerical determination of the K adimensional-constant parameter of the model.

Formerly [1], a classification of clinical factors related to THA surgery were presented.
Namely, the PF-TCF Hip Arthroplasty Functional Treatment Classification [1]. PF are
factors depending on the patient, and TCF are technical-clinical factors of the hospital
and/or traumatology-orthopedics service.

In summary, this study presents and demonstrates a mathematical optimization
method(s) for in vitro wear prediction in dual metal THA, titanium, and cast Co-Cr alloy.
A 3D algorithm is developed and then fitted to experimental data. Computational software
method(s) are explained and proven. Applications on Medical Physics and Biomedical
engineering emerge from the mathematical results.

Theoretical and Clinical Biomechanics THA Modelling Pathogenesis with Physics Fundamentals

The pathogenesis of hip articulation malfunction is caused statistically mostly by
the high incidence/prevalence of femur neck fracture due to osteoporosis. This happens
usually in elderly patients. This incidence/prevalence increases in developed countries
in correlation with the increment of the average population age and lifetime expectancy.
According to statistics in the European Union and Europe, Germany and Switzerland are
the countries where a higher number of THA are surgically implanted/fixed [11,12].

Given a femur neck with osteoporosis [11], as shown in Figure 1, the fracture happens
because the head and trochanter are united by the neck, which is the weakest and thinnest
bone zone. In addition, the hip load over the femur head causes a mechanical torque
whose arm is along the neck and fixed on the trochanter. In other words, the extremes
of this physical arm are the femur head and the trochanter. The hip biomechanical-load
that makes the torque-magnitude is exerted over the head. Therefore, summing up all
these causes, the pathological and biomechanical conditions become synergic in an elderly
patient with osteoporosis, whose ligaments and muscles are also weak. When the patient
moves abruptly or falls for any reason, the fracture could occur.
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torque τ and formulation inset. On the right, pictured inset, the biomechanical forces distribution that make wear and
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In these clinical-surgical circumstances, when a THA is implanted, the medical device
is subject to a number of biomechanical forces/parameters. These act on the THA material
components and cause mainly wear by erosion and abrasion. The mathematical-physical
modelling to determine/measure them precisely is essential, both in vitro (at laboratory
with a number of apparatus) and/or in vivo (through several imaging with/without
computational geometry methods).

Grosso modo, for in vitro, there are two types of methods, analytical and numerical.
Analytical models could involve integral-differential calculus [13–16], and are usually based
on these model variants. The numerical group involves finite element techniques, both
linear and nonlinear. In these finite element models, the element wear can be formulated
using Archard’s variants [15,17]. A classical analytical method is based on modified
Archard’s model Equation (1), which is the focus of this study [1,14–16].

Analytical models could be linear and nonlinear [1,14–16]. The linear models integrate
the hardness within the K parameter. In this study, hardness is considered as an important
separated parameter for optimization [1,2,14–16]. In the literature, some authors begin
developing the nonlinear model through integral-differential calculus and perform finite
element calculations [15]. Figure 1 shows a sketch of biomechanical theoretical base for the
analytic model. The principal cause of wear in THA is abrasive wear type or three body
abrasive wear [14,16].

2. Materials and Methods

Materials selected for dual optimization are cast Co-Cr alloy and titanium. There
are several generations of titanium varieties [2,7,8]. Modern beta titanium alloys have
metastable physical-chemical useful properties for THA. Their physical characteristics are
detailed in Table 1. The material and corresponding experimental in vitro erosion data in
this study were taken from the literature [3,9]. However, for THA ceramic modelling opti-
mization in previous studies [1], other authors’ and publications were considered [17–20].
The in vitro wear rates published in [3] constitute acceptable approximated data for model
optimization intervals, although in this study the interval-standards published in [9] were
implemented in programming. The criteria for testing measurements/units and exper-
imental apparatus varies in the literature [3,9,17–21]. For instance, in [19], the depth of
wear for a unit of sliding distance is selected. Other authors [20] chose the criteria in
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mm3/year, (volumetric wear), or mm/year (linear wear). This research selection is mainly
practical for getting precise optimization. In this line, if experimental wear is measured
in mm3, it is straightforward guessed that K in Equation (1) becomes adimensional. In all
cases, units are adapted on Section 2.1 criteria. Mathematical method(s) and algorithms
are explained in Section 2.2. The software implemented constitutes an improvement stage
from a former ceramic and metal THA modelling contribution and related publications
whose programming tools are similar [1,2,6,22–25].

Table 1. Computational implementation numerical data and intervals for optimization.

Programming Numerical Data

Material Hardness (Hv) and Histocompatibility Head Diameter (mm)

Cast Co-Cr alloy 300 Average/good 28 [22, 28]

Titanium alloy 362 (approx)/excellent 28 [22, 28]

Optimization Data Intervals

Hardness (GPa) [2.7, 4.0]

Experimental
Erosion (mm3/Mc) [0.01, 1.8]

Complementary Data
ElasticityModulus and Fracture Thoughness are useful for other type of calculations. The

standard femoral head used diameter is 28 mm. Cast Co-Cr alloy hardness varies in literature.
There are a large number of Titanium alloys available with closely hardness.

2.1. Material and Computational Data

Table 1 shows the material selection data and computational intervals. Provided the
units are set in mm, mm3, kg, and s, the standard K parameter of the model becomes
adimensional [1,2]. This constitutes an advantage for simplicity/easy calculations with
experimental data in vitro.

The hardness of cast Co-Cr alloy is 300 Hv (approximately 3.00 GPa); it is an average
value since there are several types of this material. Titanium materials are also manufac-
tured in a number of variant chemical compositions. The average is 362 Hv (approximately
3.62 GPa). The head diameter of the THA is selected as the most frequent standard of
28 mm. Therefore, to make a suitable range of hardness optimization, these hardness
values are slightly extrapolated to enlarge the interval extremes, that is, in GPa [2.7, 4.0].
Experimental values are taken from published data [3], and the same technique as hardness
interval construction was performed. That is, [0.01, 1.8] mm3 per Mc. Additional material
parameters such as elasticity modulus and fracture toughness are important to characterize
the material, but not useful for this type of optimization.

2.2. Optimization Algorithms and Programming-Software Design

The algorithms implemented are based on classical Archard’s model [1,2,14,16], but
with vector-matrix and units modifications [1,2]. A variant from this model with evolution
algorithms was developed in previous contributions [1,2,24]. The classical equation for
wear optimization of hip implants reads,

W = K
L× X

H
; (1)

where K is the wear constant specific for each material, L is the biomechanical load (N,
passed here to kg and mm), X is the sliding distance of the acetabular semi-sphere of
the implant (mm), W is the wear (mm3), and H is the hardness of the implant material
(MPa, here it is used always as kg and mm). X is measured as the number of rotations of
the implant multiplied by half the distance of its circular-spherical length. However, in
this study it is better approximated according to human biomechanics and kinesiology.
The average rotation of femur head cannot reach 180◦ at any biomechanical movement in
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common patients. This is valid for flexion, extension, flexion-rotation, extension-rotation,
abduction, adduction, and external/internal rotation [3,19,20]. For the program settings,
one cycle is taken as the length corresponding to the maximum kinesiologic rotation angle.
The maximum femur rotation angle value is 145◦ in flexion. In the software, this magnitude
is implemented.

A Mc is defined as the length of the femur head circumference during the hip artic-
ulation movement (X). That is the standard for many in vitro experimental studies. If at
the laboratory the erosion for 1 Mc is determined, then several million cycles (Mcs) can be
approximated with the model. Arithmetically, a Mc (a million cycles of femur head during
movement) of rotation length is calculated: circumference implant-head radius R by π

for a factor of angle of 145◦ and by 106. Therefore, the erosion in vitro data resulted from
this optimization always has to be considered as the maximum possible. Figure 2 shows
the biomechanical kinetics for rotation angles implemented in programming. Number
of rotations also depends on the daily physical activity of the patient, age, race, genetic
heritage, associated diseases, country, sport habits, profession, climate, physical-activity
culture, etc.
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and drawn by author).

The load magnitude to be implemented is rather difficult because usually the load is
divided in X, Y, Z components [25,26]. Average values and/or forces resultant values are taken.
For nonlinear optimization, the average values will be implemented in the program [1,2,26].
In this study, a load of around 200% of body weight (200%BW) is applied for optimization
constraints, according to the most usual values of literature [2,3,19,20,26,27]. Constraints for
load are set from a 50 kg patient to a 80 kg patient. Fifty kilograms corresponds, for example,
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to the body weight of elderly women, who present a high incidence/prevalence of femur
head fractures.

Model (1) is also used in integral form for finite elements techniques in hip implants.
K is a parameter, although in previous contributions, [1,2] this algorithm was implemented
for more parameters, such as optimal hardness or number of rotations.

The algorithm is based on vectorial and matrix calculus. These vectors and matrices
are set into the software. The parameters such as hardness, load, and experimental wear
are set as vectors of 103 elements within the data interval set. The mathematical operations
of these vectors when setting into the model require a careful and precise method to obtain
the objective function ready for the subroutine. Least squares optimization method was
widely applied in previous studies [2,18,22,24,26–34].

Least squares method with L2 norm is widely used and has the advantage that the
OF is always positive. For setting the inverse optimization problem, this technique can be
considered acceptable [30–33].

Therefore, the least squares OF with L2 norm that is used, [1], without fixed con-
straints reads,

Minimize,

‖
→
W−

→
K

→
L ×

→
X

→
H
‖

2

2

∼= 0 ;

subject to (generically), 
a
b
c
d
e

 ≤

|Ki|
|Li|
|Xi|
|Hi|
|Wi|

 ≤


a1
b1
c1
d1
e1

 ; (2)

The software and mathematical methods of this contribution constitute both an improved
evolution and completely different programs from previous publications [2,22,25,34–36] with
Matlab and L2 norm. 2D, Figures 3 and 4, and 3D graphical subroutines have been used in pre-
vious contributions [31,33]. In [37], biomechanical data was used to design software. Fortran
90 [22,32] was used to check/validate the numerical precision of the results. Freemat [18,22,32]
was used to verify 3D Interior Optimization, as shown in Figures 5–9. The variations/ im-
provements are usage of 2D Graphical Optimization and 3D Interior Optimization meth-
ods [2,22,35,36]. The software is different in every case. The least-squares OF inverse algo-
rithm [1,2,22,24,32,34] implemented reads,

minimize,

‖ F
(→

W,
→
K,
→
H,
→
L,
→
X
)
‖

2

2

∼= . . .

. . . ∼=
i=N
∑

i=1

j=N
∑

j=1
. . .

. . .
k=N
∑

k=1

(
Fijk

(
Wijk, Kijk, Hijk, Lijk, Xijk

)2
+ . . .

. . . + FN(WN,N,N, KN,N,N, HN,N,N, LN,N,N, XN,N,N)
2);

subject generically to,
a
b
c
d
e

 ≤

|Ki|
|Li|
|Xi|
|Hi|
|Wi|

 ≤


a1
b1
c1
d1
e1

 ;

(3)

K is the principal variable for optimization. The reason is that with a multiobjective K
parameter it is possible to carry out in vitro simulations in the materials selection process.
The hardness for simulations in vitro, within the optimization hardness interval, could,
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therefore, be different than titanium and/or cast Co-Cr alloy [6]. Constraints are selected
as follows,

minimize OF, subject to,
N = 2× 106 ,

∀W ∈
→
W , H ∈

→
H , L ∈

→
L , X ∈

→
X ,

0.01 ≤ |W| ≤ 1.8 mm3 ,
2.7× 106 ≤ |H| ≤ 4.0× 106 kg, mm ;
7.5× 104 × 9.8066 ≤ |L| ≤ 2.0× 105 × 9.8066 (200% BW);

‖
→
X‖ = π× 28× (145 × 106)/180 (1 Million cycles) ;

(4)

Provided this OF and constraints, the running program time resulted in between
2–8 min, with a standard current microprocessor and pc memory. 3D Interior Optimization
takes a longer time because the number of nested arrays and patterns is higher than
2D Graphical Optimization. Scale factors are essential in both types of codes for sharp
visualization [1,2,22,24,32].

Figures 3 and 4 show flowcharts for 2D Graphical Optimization and 3D Interior
Optimization software design. Both programs demand a high level of precision and
systematic consistency. The 2D Graphical Optimization program has several variants
corresponding to the choice of the selected parameter for optimization, as visualized on
the graph.
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3. Results

The numerical results are obtained both from the optimization algorithm program numer-
ical output and 2D Graphical and Interior Optimization charts; Table 2 shows all the numbers.
The first figures that are obtained are the optimal K (local minimum) and the residual. With
these values, the search for optimal hardness commences. This numerical tentative exploration
is firstly done by using the Graphical Optimization plots—Figures 4 and 5. When plotting
hardness interval versus absolute difference between model and experimental results, the
concavity shows the optimal harness value with a cursor, as shown in Figure 6.

Table 2. Summary of numerical results.

Dual 2D Optimization Results and 3D Interior Optimization Results

Material Optimal K Adimensional Optimal Hardness (kg, mm)

Cast Co-Cr alloy
28.93 × 10−9 (truncated) 3.05 × 106 (truncated)

Titanium

Residual for Optimal K 660.44 × 103 (truncated)

3D Interior Optimization Results

3D matrix Program Validation of K optimal adimensional parameter.
In chart. Validation of erosion rises when Hardness decreases

Once the optimal K and hardness are obtained, the 3D Interior Optimization process
starts. Around the K optimal value, a wide interval is set on one axis. The other axis has
the dual hardness interval. The Z axis shows the model wear. These 3D plot patterns are
designed firstly with a 3D array (105 and 106 element matrices). These 3D volume matrices
contain the elements L, H, and K. The plotting result is a 3D Graphical Optimization chart
that verifies the optimal K value, since it is around the K optimal value. It is also clear that
the erosion is higher at lower values of hardness, and those stair intervals correspond to
the increasing loads for every K sub-interval of the array-matrix, as shown in Figures 7–9.
When doing a 106 array-matrix, the plot results as a solid block that shows the increased
erosion when hardness decreases.

3.1. Optimization Numerical Results

The numerical results are presented in Table 2 and can be read from graphics with
Matlab. Graphics software was designed to show the local minimum as a function of several
parameters. In Table 2, the dual nonlinear optimization for cast Co-Cr alloy and titanium is
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shown. The optimal K value obtained is 28.9295 × 10−9 with residual 660.4426 × 103. The
optimal hardness obtained is 3.054 × 106. Figures 4 and 5 show the model 2D Graphical
Optimization. The curves and areas correspond to the model objective function (Y axis)
related to parameter values (X axis). Nonlinear dual 2D optimization matrix was set
with 2 million functions. Running time was about 2–8 min to obtain local minima and
graphics. The 2D surfaces obtained are filled with all the OF values for 2 million functions.
As it occurred for THA ceramic modelling optimization [1], the exclusive existence of
local minima is demonstrated. Residuals are low considering the 2 million OFs of the
optimization matrix. 3D Interior Optimization graphs are shown in Figures 6–8. These
prove the consistency of 2D Graphical and Numerical Optimization. Freemat [22,24] was
used to verify 3D graphics and Fortran [5,24] for all numerical results. The Freemat images
for 3D Interior Optimization are high quality.

3.2. 2D Optimization Results

The first optimization program has two parts. The first one is related to numerical
results for K and optimal hardness. The second is the plotting of 2D Graphical Optimization.
Table 1 details numerical results. Figures 5 and 6 show the 2D Graphical Optimization
results for about 2 × 106 functions. Figure 5 demonstrates the optimization region and
the decrease of erosion when hardness increases and the difference between experimental
values and model figures. Figure 6 shows the optimal hardness obtained verification with
2D Graphical Optimization. The optimal K value obtained is 28.9295 × 10−9 with residual
660.4426 × 103. The optimal hardness obtained is 3.054 × 106. All numerical values are
expressed in mm, mm3, and kg. The K-metal magnitude results are higher than K-ceramic
standard parameters for ceramic THA optimization [1,2].

3.3. 3D Optimization Results

Second optimization program(s) are based on nested arrays and a 3D volume-matrix
with 105 elements (Figures 7 and 8, first program) and 106 elements (Figure 9, second
program). The X axis shows a K interval around the optimal value obtained with the
optimization program. The Y axis shows the hardness interval. All numerical values are
expressed in mm, mm3, and kg. The software design was rather complicated [1,2,22,24].

3.4. Optimization Numerical Results Verification

The numerical results verification can be checked in two ways. The first one is the
2D and 3D graphics parameters and intervals that provide numerical data distribution.
The second is, for instance, to check whether the model optimal values are within the
experimental interval. Hence, to verify the numerical results, the optimal values are
implemented in the model as follows,∣∣∣K(optimal)× Load (average)×Mc

Hardness (optimal)

∣∣∣
= 28.93× 10−9 × 1.10×106×Mc

3.05×106

= 0.7393 mm3 ∈ [0.01 , 1.8 ];

(5)

This was verified, since 0.7393 mm3 belongs to the experimental interval [0.01, 1.8],
approximately at its middle values. This implies that the theoretical model optimization is
acceptable and matches the experimental in vitro laboratory measurements.

4. Discussion and Conclusions

An inverse dual optimization study was presented with an improved classical wear
model and an original computational algorithm. The model was applied on material wear
for metal THA. The selected materials were titanium and cast Co-Cr alloy. The software
implemented for the algorithm [1,2] resulted in an acceptable standard K parameter and
optimal hardness for the model. It is designed based on previous contributions [38–40],
and THA/anatomical-physiological contributions [6,41]. The K parameter and optimal



Standards 2021, 1 64

hardness can be used for any material wear prediction within the interval model whose
parameters were computationally chosen. From a former contribution using this model,
the obtained K-metal magnitude is higher compared to K-metal standard parameter [1,2].
Residuals in optimization performance are acceptable. The graphs presented resulted in
being sharp with good magnitude visualization. The running time for programs was from
2 to 8 min. 2D Graphical Optimization graphs show the erosion distribution related to
hardness. That is useful for wear magnitude prediction when in vitro experiments are
carried out. The comparative study with previous research, namely THA erosion wear
with the same model, confirms the optimal K figure of this study. The main reason is that
the K order of magnitude, in ceramic one order lower, matches the in vitro experimental
data with the model. 3D Graphical Optimization gives a range of K values that are also
acceptable for wear at the hardness interval with low error dispersion.

The objective of the study was to obtain standard parameters for these two common
metal materials in THA. The utility of the results is mainly focused on extrapolated-
simulations/predictions of erosion rates for in vitro THA studies. Other variant materials
within the selected interval ranges can be implemented in the model whose optimal
parameters are determined. Improvements in algorithms, software, and model design
are feasible from these findings. The contribution of these results in predictive wear
methods is focused on in vitro experimental-computational erosion determinations. This
means that the obtained K and hardness values for this model could be used as a numerical
exact/approximated reference to get tentative data when planning an experiment. A useful,
complementary advantage of the algorithm-model is the setting of K as an adimensional
model-constant. That makes the experimental work easier with the units implemented into
the model.

In brief, an accurate and efficacious dual optimization to obtain functional modelling
parameters in metal THA erosion was presented. Applications in Medical Physics come
from all these biotribological modelling improvements.
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