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Abstract: This article discusses the need for standards for the assignment of importance to criteria
and the measurement of interaction between them in multiple criteria analyses of complex systems.
A strategy for criteria evaluation is considered that is suitable to account for the interaction among
a wide variety of imprecisely assessed criteria applied simultaneously. It is based on the results of
collecting sample information on preferences according to the specified criteria instead of merely
an abstract comparison of the criteria. The comparison of alternatives is based on objectives that
determine the formation of preferences. It is facilitated by a rating in terms of preference probabilities.
Probabilistic standards grant homogeneity of measurements by different criteria, which is useful
for the combination of the criteria. These standards apply to a sampling evaluation conducted via
pairwise trichotomic comparison of the alternatives according to each criterion, followed by the
combination of these multiple evaluations into a single global score by means of the Choquet Integral
with respect to a capacity determined by applying preference concentration to the sets of probabilistic
assessments. Examples of practical application are discussed.
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1. Introduction

The main motivation for this study comes from the need for standards for the assign-
ment of importance to criteria and for the modeling of the interactions between them in a
multiple criteria decision analysis (MCDA) dealing with a large variety of criteria subject to
random disturbances and interacting with each other. The abundance of distinct methods
in the field [1,2] makes the search for such standards more relevant. Standards streamline
decisions, for instance, in situations such as making an emergency health decision [3],
facing a sudden enemy military attack [4], offering advice regarding stock trading under
volatile market conditions [5], or choosing a supplier for a failing critical component [6].

Another aspect of situations that makes the establishment of standards important
is the complexity and subjectivity of the application of the related criteria [7,8]. As a
consequence, it is important not only to simplify the measurements but also to make them
comparable and to ensure that the relations between the measurements according to differ-
ent criteria, the forms of criteria importance assessment, and the criteria combination rules
can be easily explained. In these situations, combining a large variety of criteria, avoiding
arbitrarily assigning unequal importance to them, and accounting for the complexity of
their relations necessitates a set of simple and well-defined standards governing the key
analysis procedures.

One situation involving complex and subjective decisions is that of the prediction of
electoral preferences. Electoral preference prediction models can be classified into two
categories: fundamental models and polling models. Fundamental models attempt to
derive votes from economic and social explanatory variables. Polling models address only
the final voting preferences. They pose the single question: “if the election were today, who
would you vote for?”
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Due to a low predictive power observed in the models of the first category, the cur-
rently prevailing models tend to combine variables from poll models with other variables,
which mostly serve to evaluate the personal qualities of the candidates or the approval
of parties’ incumbents [9–11]. Formulating the choice in terms of individual preferences
regarding individual qualities strengthens individualistic motives.

Behind such an assessment model for individuals is the rational choice assumption that
the members of the sample weigh their reasons mentally. In contrast, by making explicit the
multiple objectives that interact in the formation of personal preference, complex MCDA
models emphasize these objectives themselves. In an assessment of the preferences of the
population, this has the effect of strengthening the pursuit of the common good. To project
a long-term goal, a nation must have it as a collective target.

Collective objectives that lose importance in the modeling of preferences also lose
importance in the culture in which those preferences are formed. In contrast, the modeling
of preferences based on matters of collective interest will favor the prevalence of a culture
of collaboration around collective goals. If elicited in preference assessments, the posi-
tioning with respect to civil rights, the size of the government, environmental protection,
development goals, and other objectives of high importance will, in turn, be more present
in the political scenery.

In recent years, modern economic growth theory has shifted from the classical theory
emphasizing capital and labor productivity to a theory emphasizing the roots of produc-
tivity in the form of ideas and institutions [12]. Countries that are open to ideas invest in
education and create efficient institutions. The predictions based on economic and social
objectives supply the motivation for these efforts.

From a parsimony perspective, a small number of variables with high predictive
power for certain aspects of the decision can make a prediction model more efficient. To
become competitive, models encompassing a large set of interacting variables must be
supported by efficient fitting strategies.

The standard procedures in MCDA provide for the safe consideration of a large
number of objectives that drive the choice of a model. These standards should be simple
but comprehensive to allow for models that capture the complexity of the reality to be
addressed.

The development of such standards is, then, an important research issue, and the lack
of a reliable set of standards constitutes a serious gap in the MCDA research area. The
present study fills this gap.

Here, standards for combining preferences established by multiple criteria whose
importance is derived from their ability to identify the most preferred alternatives are
discussed. Included are standards for the comparison of alternatives according to each
criterion [13,14], standards for the combination of evaluations based on separate criteria into
a global score [15,16], and standards for the measurement of the importance of interacting
criteria [17–19]. The development of an analysis applying these standards will always
serve as a basis for the comparison of the results of the application, in every case, of any
MCDA method recommended by the peculiarities of the case.

The article is structured as follows. After this introduction, Section 2 sets the founda-
tions for establishing standards for data collection, criteria comparison, and evaluations
combination. Desirable properties of the decision rules are then established. Section 3
deals with the application of the principles and procedures advanced in the preceding
section. Section 4 discusses the results obtained in Section 3 based on the analysis of
practical situations. A set of conclusions on the viability and the usefulness of the standards
established is presented in Section 5.

2. Materials and Methods

To be able to account for a wide variety of criteria, the assessment of preferences must
be simple. By reducing the opportunities for the occurrence of errors in the measurement,
simplicity engenders reliability.
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Another important quality is comparability. To combine preferences among the alter-
natives being evaluated according to diverse criteria to obtain global scores, it is necessary
to determine measurement standards that make the preferences assessed comparable in
accordance with the different criteria.

An even more fundamental feature is representativeness. Alternatives must be evalu-
ated based on their degree of commitment to an objective that is considered relevant to
sustaining a criterion. How can such degrees of commitment be measured in a simple and
comparable form?

The sampling of pairwise trichotomic comparisons exhibits all the desired properties.
This assessment standard consists of assessing a sample of randomly selected represen-
tatives, either of the population or of experts, to determine, for every pair of alternatives,
whether each of them is more capable than the other of reaching the desired objective. In
the case of a tie, the preference measure is equal for both.

The small number of possible values, namely three, enhances robustness [20,21]. For
instance, if, in a more detailed preliminary assessment, a distorted “very high” preference
classification is given to one alternative, this alternative shares, in the comparison with
an alternative with a “small” initial evaluation, the same preference assessment with any
other alternative with a “high” classification.

If different scales of measurement of a single attribute have different meanings for
different objectives, this same attribute may be used in different criteria with different
roughness [22,23]. For instance, a complementary criterion can be built by imposing a
transitivity requirement on experts’ ratings to tie more pairs of alternatives.

In the same sense, if considering more precise distances between alternatives is found
to be useful, additional criteria can be created to represent narrower levels of variance. For
instance, in a first criterion, two alternatives may be considered equivalent if the difference
between their values in a certain attribute is smaller than 10, whereas, in a second criterion,
they may be considered equivalent only if the difference is smaller than 1.

Counting the number of pairs exhibiting a preference for each alternative serves
as the basis for calculating preference probabilities. Shifting from attribute measures to
probabilities of preference has the benefit of unifying all evaluations to the same scale of
measurement. This property of the commensurability is an essential condition to enable
the combination of the criteria by means of the Choquet Integral [24].

From assessments of preference based on diverse criteria, we need to move to a
measure of preference that considers all the criteria collectively. Counting favorable cases in
pairwise trichotomic comparisons may still be useful to measure joint preference. However,
this count does not consider the interactions between criteria. For such a calculation, the
Choquet Integral of the preference probabilities according to each criterion is the simplest
form. It will be calculated with respect to a capacity designed to adequately measure the
relevance of each criterion considering their interactions.

The principle of concentration of preferences [19] makes it possible to derive such
capacity. This principle, consistent with aversion to uncertainty in the decision-making
process, leads a decision-maker to seek the maximization of the ability to discriminate
the most preferred alternative. It leads, in the case of determining capacities of sets of
criteria, to assign greater importance to those sets that exhibit a higher ability to point to
an alternative as the most preferred. The importance of criteria is related to the personal
aim of the decision-maker to choose the best among the available alternatives, and, barring
possible gross mistakes, high measurements provide more reliable information about
differences in preference than low measurements do.

Assuming an absence of interaction, the principle of preference concentration allows
for the use of weighted averages with weights indirectly extracted from the results of the
application of the criteria to the alternatives. In this case, the weights will be proportional
to the maximal probabilities. However, by allowing for interaction, the combination
via the Choquet Integral provides a more general standard. In the opposite direction,
assumptions of generalized additive independence and other forms of modeling relations
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among criteria [25] are even less restrictive, but, compared to such approaches, the Choquet
Integral has the advantage of simplicity.

When interaction is assumed to be absent and weighting average of the preference
probabilities for isolated criteria is performed, the global preferences still add to 1, while,
when the preferences are combined via the Choquet Integral with respect to a nonadditive
capacity, this sum can vary. Nevertheless, the possibility of interaction being present must
always be considered.

When pairs of criteria are evaluated, instead of isolated criteria, if two criteria agree
in giving high preference to an alternative, even if it is not the most preferred by either of
them, their high joint preference for this alternative results in a high capacity for the union
of the two corresponding unitary sets. The capacities of sets of more than two criteria are
determined similarly.

Why does this construction suitably consider interactions? Interaction is present in the
selection process if a choice of an alternative according to a given criterion either increases
or decreases the effect of the preference according to other criteria. A preference criterion
interacts with others in the selection of the best alternative if its inclusion in addition to the
others in the evaluation process increases or reduces the probability that the best alternative
will be identified.

The same applies to groups of criteria regardless of the reason for the influence. Such
reasons may include exchangeability, complementarity, substitutability, or preferential de-
pendence [26], but only the effect, not the origin, of the interaction needs to be established.

This application of the principle of preference concentration is similar to maximum
likelihood estimation. It attributes to a criterion a capacity proportional to the preference
value that this criterion assigns to the alternative to which it assigns the highest preference.

Finally, and more importantly in the search for standards, extracting information
on preferences for criteria from available information about preferences for alternatives
according to those criteria is simpler and more reliable than asking directly for information
about the relative importance of the criteria in abstract comparisons.

Figure 1 highlights the benefits of the introduction in MCDA of the approaches
advocated here.
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3. Results

This section presents a set of procedures that constitute standards for (i) calculating
the preference probabilities according to each criterion, (ii) deriving the capacities of the
sets of criteria, and (iii) ranking the alternatives by the Choquet Integral.

3.1. Standards for the Individual Assessments

The probability of preference for each alternative according to each criterion is ob-
tained from evaluations by a sample of the population whose preference is to be measured.
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Preference probabilities are derived from the values of the trichotomic pairwise compar-
isons that they produce.

The preference counts are transformed into probabilities by dividing the counts by
the total number of evaluations. Let us denote by Cij the count of preferences for the i-th
alternative according to the j-th criterion and by A(k, j, i, u) the result of the trichotomic
comparison between alternatives i and u according to the j-th criterion by the k-th evaluator.
This result has three possible values: 1 if the k-th evaluator declares i preferable to u, 0 if
the evaluator declares u preferable to i, and 1

2 if the evaluator declares indifference between
i and u.

The preference count for i according to the j-th criterion, Cij, is the sum

Cij = ∑
ku

A(k, j, i, u) (1)

for k varying across all the raters evaluating according to criterion j and u ranging over all
the alternatives that i is compared with.

This count is, therefore, the sum of the number of pairwise comparisons where i is
preferred with half the number of comparisons where i is considered equivalent to another
alternative. The estimate of the probability of preference for i is the quotient

Pij = Cij/Cj (2)

of the count Cij by the number of comparisons

Cj = Kj·N·(N − 1)/2, (3)

for Kj, denoting the number of evaluators by the j-th criterion, and N, the total number of
alternatives.

The sum of these probabilities is exactly 1.
It is interesting to note that

A(k, j, i, u) = 1− A(k, j, u, i), (4)

granting antisymmetry.
However, the trichotomic pairwise comparison approach avoids the requirement for

transitivity [27]. Transitivity need not hold, generally, in the evaluation of preferences.
Consider, for instance, the case of ranking a group of tennis players when a criterion may
be based on the observation of matches in some number of tournaments. In pairwise
comparisons, the evaluator declares a player better than another by looking at the result
of a match. It is possible to observe player i1 beating player i2, who beats player i3, while
player i3 beats player i1.

3.2. Standards for the Initial Joint Assessments

Once the preference probabilities according to each criterion have been obtained, the
criteria capacities that will be used to combine these preference probabilities according to
the individual criteria into a global score can be calculated.

Leaving aside the weighting of the criteria and the interactions between them, global
scores can be obtained by using the preference counts to directly estimate the preference
probabilities for each alternative. Extending the case of only one criterion, in the case of
a set J of two or more criteria, a preference score PiJ for alternative i according to J will
then be obtained by adding the Cij given by Equation (1) along the criteria j in J. To avoid
implicitly overvaluing those criteria j with a large Kj, it will instead be employed thusly:

Pi J = ∑
j∈J

Pij. (5)
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This initial assessment assumes additivity. Other forms of additive composition are
described in [28]. They include probabilistic rules to obtain the preference according to
at least one of the criteria in J. Assuming, respectively, the maximum dependence and
independence between the indicators involved, Pi J will be given by max j∈J Pij or by
1 − Πj∈J(1 − Pij). Nevertheless, counting is the easier form of evaluating the effect of
joining the criteria.

These counts give all the criteria and all the experts equal importance, although
weights can be included if there is sufficient information to consider the ratings differently
by distinct criteria or by distinct experts. For instance, to control the effect of any factor
unduly raising the preference according to some criteria, when translating the counting Cij
into the probabilities of preference Pij, the importance of any criterion j may be corrected
by applying a proportional reduction to the vector of probabilities of preference according
to j (for instance, dividing all Pij by Kj j).

3.3. Standards for Considering Interactions

A capacity on S is a nondecreasing function µ defined on the power set of S with
values of 0 at ø and 1 at S. Capacities are not-necessarily additive measures that express,
for each subset of S, the subjective importance associated with that subset.

Estimates of the capacities of the criteria can be obtained directly from the experts’
evaluations. However, it is simpler to extract them from the preference counts.

Starting with the preferences according to each subset of criteria above denoted Pi J ,
the principle of concentration of preferences leads to the measurement of the capacities as
proportional to the vector of maxima along these preferences. The exact capacity values
will be obtained by scaling such that a capacity of 1 is assigned to the set of all the criteria.

Formally, the capacity assignment algorithm for the subset J will have the central step
of computing, along all the alternatives, the maximum of the joint preference probabilities

M(J) = maxiPi J . (6)

The final value of the capacity is achieved with the final standardization that consists
of dividing by the largest value. Thus, the capacity of J is

µ(J) = M(J)/M(S). (7)

3.3.1. Simplified Capacities

In the case of a large number of criteria, the above derivation of capacities may be
limited to sets with a small number L of criteria, while capacity 1 is assigned to all the sets
of a larger size. That, is, while the sets of more than L criteria receive capacity 1, the sets J
of 1, 2, . . . L criteria have the capacity given by

µ(J) = M(J)/maxM(H) (8)

for H varying along the sets of criteria of cardinality L.
This simplification may reduce the importance of the final score of criteria with strong

interactions with large sets of criteria. To prevent distortions, computation for a few other
small values of L is advisable if the scores for L = 2 do not present a clear preference for a
best alternative.

3.3.2. Combination via the Choquet Integral

To consider in the global scores, in addition to the preferences between the criteria, the
interactions between them, the preference probabilities according to the isolated criteria
are combined via the Choquet Integral.

The Choquet Integral is a form of aggregation used in place of the weighted average
when it is possible that interactions between criteria may invalidate the use of compensatory
addition.
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For any function x = (x1, ..., xt), of domain S = {1, ... , t} and values in R+, the Choquet
Integral of x with respect to the capacity µ on S associates with x the non-negative real
number

Cµ(x) = ∑
j∈S

(
xτ(j) − xτ(j−1)

)
·µ{τ(j) , ... , τ(t)}, (9)

for τ denoting a permutation of S such that

xτ(1) ≤ xτ(2) ≤ ... ≤ xτ(t−1) ≤ xτ(t) and xτ(0) = 0. (10)

The Choquet Integral is equivalently given replacing (9) by

Cµ(x) = ∑
j∈S

xτ(j)·[µ(Zτ(j))− µ(Zτ(j+1))] (11)

for
Zτ(j) = {τ(j), ... , τ(t)}, (12)

for all j from 1 to t, and
Zτ(t+1) = ø. (13)

When combining preferences via the Choquet Integral, one is also following the
principle of concentration of preferences. In fact, the Choquet Integral assigns greater value
to the highest preferences if they are obtained by applying a criterion with greater positive
interactions with other criteria and lesser value otherwise.

To see how this happens, let us consider the case of only two criteria. If the interaction
between the two is positive, the capacity (equal to 1) of the set of both criteria is greater
than the sum of the capacities of each in isolation. Thus, the integral value is closer to the
highest value than the arithmetic mean is. In fact, the integral is the sum of the smallest
value and the product of the multiplication of the difference between the two values by the
complement of that smallest capacity, and this complement is higher than the capacity of
the second criterion if there is positive interaction and lower if there is negative interaction.
In the weighted average, this complement would be replaced by the capacity of the second
criterion.

4. Discussion

A discussion of the results is developed here based on the application of the proposed
standards to two numerical examples.

4.1. First Example

Let us first consider a case of 100 alternatives evaluated based on four criteria. For
illustrative purposes, this case may be thought of as a choice among 100 candidates for some
position in a representative democracy. They are evaluated according to four criteria, which
may be related to their commitment to objectives concerning fiscal balance, inducement of
economic development, social action, and environmental protection, for instance.

Table 1 presents the preference counts resulting from the trichotomic pairwise com-
parison of the alternatives. The first 11 numerical rows present the counts for the first
11 alternatives, A1 to A11. The other alternatives, of smaller preference, have all the same
counts shown in the last row. For the first two criteria, C1 and C2, the evaluations are
obtained from three experts, C11, C12, and C13 for the first criterion and C21, C22, and
C23 for the second criterion. The last two columns present unique counts C31 and C41
for the last two criteria, C3 and C4, possibly derived from comparisons of party platforms.
The score 89 for A11 according to each criterion may be associated to this alternative being
always evaluated as worse than the first 10 and better than the last 89, and the score 44 for
the last 89 alternatives, from A12 to A100, may be associated to them being tied and
evaluated as worse than the other 11.
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Table 1. Counts of preference by criterion.

Alternative C11 C12 C13 C21 C22 C23 C31 C41

A1 97.5 96.5 97 94 93.5 96.5 99 96
A2 97.5 96.5 97 94 98 96.5 96 97
A3 97.5 93 97 98 95.5 96.5 98 94
A4 97.5 96.5 97 96 98 96.5 94 95
A5 94 96.5 93 94 93.5 93 95 98
A6 94 96.5 97 98 98 96.5 93 93
A7 94 96.5 94 98 95.5 96.5 97 99
A8 92 91.5 91 91.5 91.5 91 90.5 91.5
A9 91 91.5 91 91.5 91.5 91 90.5 90
A10 90 90 91 90 90 91 92 91.5
A1 89 89 89 89 89 89 89 89

A12/A100 44 44 44 44 44 44 44 44

By dividing the count values by the total number of comparisons for each alternative,
of 4950 for the last two criteria and three times that number for the first two criteria, the
probabilities of preference for each alternative according to each criterion are obtained.
Their values are shown in Table 2. For each column of probabilities, the sum of the values
of the first 11 rows with 89 times the value of the last row is equal to 1.

Table 2. Probabilities of preference by criterion.

Alternative C1 C2 C3 C4

A1 0.019596 0.019125 0.020000 0.019394
A2 0.019596 0.019428 0.019394 0.019596
A3 0.019360 0.019529 0.019798 0.018990
A4 0.019596 0.019562 0.018990 0.019192
A5 0.019091 0.018889 0.019192 0.019798
A6 0.019360 0.019697 0.018788 0.018788
A7 0.019158 0.019529 0.019596 0.020000
A8 0.018485 0.018451 0.018283 0.018485
A9 0.018418 0.018451 0.018283 0.018182
A10 0.018249 0.018249 0.018586 0.018485
A11 0.017980 0.017980 0.017980 0.017980

A12 a A100 0.008889 0.008889 0.008889 0.008889

In Table 3, it can be seen how the capacities change with the ceiling L. In Table 3,
omitted is the capacity null for the empty set and 1 for the set of all four criteria.

Table 3. Capacities of the criteria by ceiling.

Criteria L = 2 L = 3 Full

{C1} 0.494898 0.331435 0.250323
{C2} 0.497449 0.333144 0.251613
{C3} 0.505102 0.338269 0.255484
{C4} 0.505102 0.338269 0.255484

{C1,C2} 0.988946 0.662301 0.500215
{C1,C3} 1 0.669704 0.505806
{C1,C4} 0.989796 0.662870 0.500645
{C2,C3} 0.993197 0.665148 0.502366
{C2,C4} 0.998299 0.668565 0.504946
{C3,C4} 1 0.669704 0.505806

{C1,C2,C3} 1 0.993166 0.750108
{C1,C2,C4} 1 0.992597 0.749677
{C1,C3,C4} 1 0.997722 0.753548
{C2,C3,C4} 1 1 0.755269
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It can be noted in Table 3 that, among the subsets of two criteria, the one with the high-
est capacity is formed by C1 and C3, which receives capacity 1 for L = 2. Notwithstanding,
C1 is out of the set of three criteria with the highest capacity.

Table 4 presents the final scores.

Table 4. Final Scores for 3 capacities.

Alternative L = 2 L = 3 Full

A1 0.079200 0.078661 0.078132
A2 0.078377 0.078156 0.078014
A3 0.078654 0.078243 0.077684
A4 0.078299 0.077788 0.077340
A5 0.077992 0.077452 0.076988
A6 0.078086 0.077117 0.076636
A7 0.079200 0.078842 0.078301
A8 0.073938 0.073889 0.073704
A9 0.073731 0.073530 0.073334

A10 0.074143 0.073765 0.073577
A11 0.071919 0.071919 0.071919

A12/A100 0.035556 0.035556 0.035556

In Table 4, it can be seen how the variation in the capacities affects the final decision.
Evident is the highest preference for alternative A7, with a tie with A1 if the simpler
capacity resulting from assigning capacity 1 to all the sets of more than two criteria is
employed.

4.2. Second Example

As our second example, we consider a real case with a number of criteria that is both
larger than usual and larger than the number of alternatives.

It is based on data from [29], of a study of failure mode and effects analysis (FMEA) in
the nuclear energy industry. In that study, a hybrid approach to FMEA was designed to
handle high-risk environments considering two human reliability dimensions of intelligi-
bility and stress in addition to the classical FMEA dimensions of severity, occurrence, and
detectability. This led to the consideration of a set of nine factors: severity of the impact
on people (S), on the facilities (F) and on the environment (E), frequency of occurrence
(O), undetectability (U), complexity (C), time to diagnosis (T), workload (W), and duration
of stressful tasks (D). In [30], ten main modes of human failure following a failure in the
external source of energy were identified, which characterized successive stages of risk
control. They are summarized in Table 5.

Table 5. Modes of failure situations.

Mode of Failure Situation

M1 align replacement generator
M2 manually activate water feed pump
M3 timely activate emptying tank prevention
M4 restore auxiliary feedwater system
M5 start bleed and feed
M6 close motorized isolation valve
M7 close manual valves
M8 establish safety injection
M9 start long-term refrigeration component

M10 align suction from containment well

In [29], these modes of failure were evaluated by a team of experts separately con-
sidering each of the nine factors. Here, instead, the aim is to employ the values of these
evaluations to rank the nine factors. The idea is to obtain information useful for the devel-
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opment of risk management strategies based on the actions taken to control the factors to
address the situations represented by the modes of failure.

The first step of this analysis is, then, the counting of pairs of factors with higher
evaluation for each factor. The approximate measurements of [29] are presented in Table
6, and the results of the trichotomic counts for each factor according to each mode of
failure, divided by the total of 36 comparisons, are presented in Table 7. As probabilistic
preferences for the modes of failures according to the factors, the values in each column of
Table 6 sum 1. The same is true for Table 7 since there the columns are filled by the vectors
of measures of preference for the factors, which are then compared with reference to the
modes of failure.

Table 6. Evaluation of 10 modes of failure according to 9 factors.

Mode of Failure P F E O D C T W D

M1 0.09 0.08 0.08 0.20 0.07 0.06 0.05 0.09 0.09
M2 0.03 0.03 0.03 0.10 0.09 0.05 0.04 0.03 0.03
M3 0.27 0.06 0.08 0.08 0.11 0.05 0.05 0.27 0.02
M4 0.06 0.03 0.03 0.13 0.09 0.05 0.04 0.06 0.03
M5 0.12 0.23 0.16 0.08 0.09 0.08 0.05 0.12 0.09
M6 0.06 0.04 0.04 0.06 0.14 0.19 0.28 0.06 0.26
M7 0.12 0.08 0.08 0.08 0.11 0.25 0.23 0.12 0.21
M8 0.07 0.12 0.19 0.10 0.11 0.16 0.15 0.07 0.21
M9 0.06 0.15 0.16 0.06 0.09 0.05 0.08 0.06 0.02
M10 0.12 0.19 0.16 0.08 0.11 0.06 0.06 0.12 0.04

Table 7. Evaluation of the 9 factors according to the 10 modes of failure.

Mode of Failure P F E O U C T W D

M1 0.17 0.10 0.10 0.22 0.06 0.03 0.00 0.17 0.17
M2 0.06 0.06 0.06 0.22 0.19 0.17 0.14 0.06 0.06
M3 0.21 0.08 0.13 0.13 0.17 0.04 0.04 0.21 0.00
M4 0.15 0.03 0.03 0.22 0.19 0.11 0.08 0.15 0.03
M5 0.15 0.22 0.19 0.04 0.10 0.04 0.00 0.15 0.10
M6 0.08 0.01 0.01 0.08 0.14 0.17 0.22 0.08 0.19
M7 0.13 0.03 0.03 0.03 0.08 0.22 0.19 0.13 0.17
M8 0.01 0.11 0.19 0.06 0.08 0.17 0.14 0.01 0.22
M9 0.08 0.19 0.22 0.08 0.17 0.03 0.14 0.08 0.00
M10 0.15 0.22 0.19 0.08 0.11 0.04 0.04 0.15 0.00

It can be seen, comparing Tables 6 and 7, that, if a factor contributes with a high value
in the evaluation of a mode of failure, conversely, the mode of failure presents a high value
in the evaluation of the factor, but this is not an absolute rule as the evaluations are, in
both cases, relative to the whole set of alternatives. For instance, M9 provides the highest
evaluation for E in Table 7, while M8 is the mode of failure with the highest evaluation by
E.

The application of the composition by the Choquet Integral with respect to the ca-
pacities for the values of L from 2 to 9 and full use of the interaction indirect assessments
generates the final scores in Table 8.

The analysis of Table 8 reveals factors E, related to the severity of the environmental
impact, and O, occurrence, tied in the first position. E also ranks first for each of the
five highest values of L, whereas O is the first for the other three. These factors are thus
identified as the more relevant factors to be considered in the management of risks based
on the mitigation of the factors. This is consistent with the classical three-dimensional
FMEA analysis, which highlights severity and occurrence.
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Table 8. Final scores for the 9 factors applying 9 capacities.

Factor L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8 L = 9 Full

P 0.01840 0.01736 0.01700 0.01648 0.01582 0.01544 0.01494 0.01422 0.01366
F 0.02222 0.02095 0.01925 0.01793 0.01702 0.01644 0.01561 0.01465 0.01408
E 0.02083 0.02037 0.02021 0.01917 0.01828 0.01763 0.01673 0.01570 0.01508
O 0.02222 0.02222 0.02047 0.01884 0.01785 0.01725 0.01650 0.01564 0.01508
U 0.01944 0.01852 0.01791 0.01716 0.01652 0.01615 0.01568 0.01518 0.01477
C 0.01944 0.01852 0.01762 0.01602 0.01490 0.01435 0.01364 0.01291 0.01247
T 0.02049 0.01829 0.01753 0.01646 0.01524 0.01467 0.01399 0.01305 0.01249
W 0.01840 0.01736 0.01700 0.01648 0.01582 0.01544 0.01494 0.01422 0.01366
D 0.02066 0.01933 0.01839 0.01685 0.01545 0.01441 0.01354 0.01262 0.01208

5. Conclusions

This article brings a new approach to MCDA based on the application of standard
rules. A set of standards is proposed. Its validity is checked and its usefulness for practical
situations of large numbers of alternatives and of criteria is demonstrated.

The combination of preferences based on multiple criteria can be achieved via the
simple procedures developed here, which serve as standards for the analysis of complex
decisions with a high degree of subjectivity. The simplest standards comprise the combina-
tion via the Choquet Integral, the consideration of the interactions between the criteria by
assigning importance to the sets of criteria proportional to the highest preference that they
assign, and the employment of trichotomic pairwise comparisons in the data collection.

The strategy for criteria evaluation proposed is designed to concentrate preferences.
It is based on the information on preferences for the alternatives according to the criteria
instead of on the direct comparison of the criteria.

The results of the application of these standards may serve as a basis for comparison
with the application of any MCDA method recommended by the peculiarities of each case.
Variations in the capacities, which may amplify the basis of comparison, were studied in
practical applications, presenting consistent results.
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