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Abstract: Inverse least squares numerical optimization, 3D/4D interior optimization, and 3D/4D
graphical optimization software and algorithm programming have been presented in a series of pre-
vious articles on the applications of the BCS theory of superconductivity and TC dual/multiobjective
optimizations. This study deals with the comparison/validation of the optimization results using
several different methods, namely, classical inverse least squares (ILS), genetic algorithms (GA),
3D/4D interior optimization, and 2D/3D/4D graphical optimization techniques. The results com-
prise Tikhonov regularization algorithms and mathematical methods for all the research subjects.
The findings of the mathematical programming for optimizing type I chrome isotope superconduc-
tors are validated with the genetic algorithms and compared to previous results of 3D/4D interior
optimization. Additional rulings present a hypothesis of the new ‘molecular effect’ model/algorithm
intended to be proven for Hg-cuprate-type high-temperature superconductors. In molecular effect
optimization, inverse least squares and inverse least squares polynomial methods are applied with
acceptable numerical and 2D graphical optimization solutions. For the BCS isotope effect and molec-
ular effect, linearization logarithmic transformations for model formula software are implemented
in specific programs. The solutions show accuracy with low programming residuals and confirm
these findings. The results comprise two strands, the modeling for the isotope effect and molecular
effect hypotheses and the development of genetic algorithms and inverse least squares-improved
programming methods. Electronic physics applications in superconductors and high-temperature
superconductors emerged from the rulings. Extrapolated applications for new modeling for the
theory of superconductivity emerged from the numerical and image data obtained.

Keywords: interior optimization methods (IO); genetic algorithms (GA); graphical optimization;
systems of nonlinear equations; Inverse Tikhonov regularization (ITR); objective function (OF);
inverse least squares (ILS); electronic superconductors; high-temperature superconductors (HTSC);
BCS theory

1. Introduction

A superconductor can be defined as any material type whose electrical resistance is
approximately null under specific thermodynamic and electromagnetic conditions. The es-
sential thermodynamic conditions needed to reach the superconductivity state are given by
a critical temperature TC, beyond which, toward lower temperatures, a superconductivity
effect takes place and interactions with magnetic fields constitute an important modifying
factor. The TC magnitude is around absolute zero Kelvin for conventional superconductors
and approximately 100 degrees higher for high-temperature ones. Apart from this crucial
condition, there are other physical ones. Namely, the maximum critical current, lower
critical magnetic field H, and upper critical magnetic field H. Other factors are pressure and
resistivity [1–10]. In general, the large variety of models and formulations within the theory
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of superconductivity, cause a multiple factor dependence that constrains the material super-
conductivity transition/effect [1–10]. The superconductor’s principal physical-engineering
advantage is its zero-energy loss for electrical currents. However, this excellent property for
saving energy is not electromagnetically optimal. The benefit of null-conductivity energy
loss is reduced by the necessary energy to cool the material to −273◦. These antagonist
constraints have to be optimized to obtain the most efficient total energy savings.

The current research/theoretical advances in superconductivity are profuse and wide-
ranging [1–10]. Their mathematical background is extensive with several theoretical models,
approximations, and equation variants [1–10]. At the atomic and molecular level, quantum
mechanics and chemistry play a significant role in the basis for the theory of superconduc-
tivity [1–10].

High-temperature superconductors are those whose TC is higher than 80 K. They have
an unusually complex molecular composition and several varieties. In the classical BCS
theory of superconductivity, the isotope effect model equation reads,

[Mi]
αTCi −K ∼= 0 ;

for i = 1, . . . . . . n ;
(1)

where

K: Constant parameter. Range specific for every element.
Mi: Atomic mass (AMU) of any element isotope of (n) isotopes.
α: Constant parameter. Range specific for every element.
TC: Critical temperature (K (usually) or C). Range specific for every element isotopes.
i: Corresponding isotope for every element.

In previous publications, the ILS method was used [1–12] and was based on the
Tikhonov regularization theory. The principal difficulty of ILS in TR is the possibility
of ill-posed matrices. This can be overcome automatically using modern programming
systems, for example, singular value decompositions. The ILS with the L2 norm set as the
Tikhonov functions commonly reads

minimize functional J(α),
Jα(u)u∈< = ‖Au−K‖2

2 + αJ(u);
(2)

where

Jα (u): Functions with regularization parameter alpha.
R: Real space.
u: Searched parameter solution.
A: Model matrix vector data.
K: Constant parameter matrix. Range specific for every element.
α: Constant parameter. Range specific for every element.
α1: Constant parameter. Tikhonov regularization parameter.
‖ • ‖2: L2 Norm (at algorithm power 2).

These mathematical parameters have been described in [11–14]. A can be considered
in this specific optimization as a model operator matrix. The second term multiplied
by α is the regularization parameter. That is, J(u) is the regularization functional term
usually related to smoothness, sparsity, and other specific characteristics of the α J (u).
The norms are set as L1 or L2 for this research. Instead of using R (real numbers) spaces,
the Tikhonov function can be set in Hilbert spaces or C (complex numbers) spaces. A
matrix usually requires the decomposition of singular values for better calculations. Since
Matlab subroutines have incorporated smoothness, it is taken as α = 0 for this study.
This Tikhonov model function expressed in a simpler way was developed in previous
contributions [2–6,11–15] with acceptable results.

The GA method is a stochastic optimization with differences compared to the ILS
method. It is based on Darwin’s theory [16,17] of natural selection. The species (pa-
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rameters for OF minimization) whose genetic code (magnitudes) results in successful
survival/adaptation (OF minimum value) in the environment are selected (parameters for
following OF refinement). Therefore, at every step, a selective refinement is performed,
discarding the genetic codes (OF parameter numbers) that do not fit the constraints. This
process continues until the number of generations of and convergences to the constraints
are achieved.

The objectives and innovations of this study were twofold, with the additional aims of
the optimization of mathematical modeling and software engineering [1–5,18]. The first was
to validate/compare the interior optimization method of previous contributions to genetic
algorithm numerical and 3D graphical optimizations. The second was to attempt a tentative
application of the isotope effect model of BCS theory on molecular HT superconductors
with very similar compositions/molecular structures and critical temperatures. In that
case, the model was designated as the molecular effect model. The results for both models
were accurate and practical. The molecular effect model for the HTSC Hg-cuprates group
showed a parabolic shape, and the TC theoretical predictions based on this model were
obtained. The 2D/3D/4D interior and graphical optimizations showed acceptable imaging
and numerical results.

In summary, a comparative study of the different optimization methods was conducted
for the chrome and selected HTSCs. The findings were numerically and graphically
acceptable and accurate. The molecular effect model simulation results showed very low
errors/residuals.

2. Mathematical and Computational Methods

Mathematical methods were based on the Tikhonov regularization theory with L1
Chevyshev norms and L2 inverse least squares optimizations [1–11,18]. Numerical data for
the algorithm implementation is presented below followed by each method’s calculations.
Computational methods used were the classical inverse least squares (ILS) and genetic
algorithms. ILS was set using several techniques and two norms, L1 and L2. Genetic
algorithms method was implemented using an L1 norm. Both optimization methods
were intended to be used and the exponential model, logarithmic linearized model, and
molecular effect model were optimized with the ILS polynomial-type Equations (1)–(8).
The software structure and programming flow chart are explained in Diagram 1.

2.1. Numerical Data for Chrome and HTSC Hg-Cuprates

Table 1 shows the numerical data set for all the optimization methods and the two models
used. The isotope effect model was applied for the chrome, 3D interior, and GA optimizations.
The ILS method was used for the molecular effect model in the HTSC Hg-cuprates.

2.2. Mathematical Techniques and Inverse Least Squares Algorithms for Optimization Methods

The BCS isotope effect equation that was set for the optimizations based on Literature
and previous studies [1–15] reads

[Mi]
αTCi −K = 0; (3)

where

K: Constant parameter. Range specific for every element.
Mi: Atomic mass (AMU) of any element isotope of (n) isotopes.
α: Constant parameter. Range specific for every element.
TC: Critical temperature (K (usually) or C). Range specific for every element.
i: Corresponding isotope for every element.
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Diagram 1. Basic program structure for software. Optimization-specific programs differ for every
method/algorithm in Equations (1)–(8). Software, loops, patterns, arrays, and imaging options are
improved/developed and adapted on superconductor theory, from a long series of programming
subsequent developments [3–11,19–27].

Table 1. Numerical data for Cr and HTSC Hg-cuprates.

NUMERICAL OPTIMIZATION DATA CHROME [SUPERCONDUCTOR, ISOTOPE EFFECT]

Cr ISOTOPE TYPE BY ATOMIC MASS, (AMU) PERCENTAGE APPROXIMATE TC (Kelvin)

52 (NATURAL) 83.789% 3

53 9.501% 3

54 2.365% 3

50 4.345% 3

NUMERICAL OPTIMIZATION DATA FOR Hg-CUPRATES
[HT-SUPERCONDUCTOR, MOLECULAR EFFECT HYPOTHESIS]

FORMULATION MOLECULAR WEIGHT (UAM) APPROXIMATE TC (Kelvin)

HgBa2CuO4 602.7936 97

HgBa2CaCu2O6 738.42 126

HgBa2Ca2Cu3O8 874.0432 133
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Table 1. Cont.

NUMERICAL OPTIMIZATION DATA FOR Hg-CUPRATES
[HT-SUPERCONDUCTOR, MOLECULAR EFFECT HYPOTHESIS]

FORMULATION MOLECULAR WEIGHT (UAM) APPROXIMATE TC (Kelvin)

HgBa2Ca3Cu4O10 1009.7 125

HgBa2Ca4Cu5O12 1145.3 110

HgBa2Ca5Cu6O14 1280.9 97

HgBa2Ca6Cu7O16 1416.54 88

However, unlike in previous publications [2–4], Equation (1) was also implemented in
specific programs with a linear logarithmic transformation such as

ln(TCi) + α ln(Mi)− ln(K) = 0; (4)

This linearization showed advantages and disadvantages in the precision of the opti-
mizations. For the molecular effect model, the equation used for the ILS method with an L1
Chevyshev norm reads

TC (MO) ∼=
i=N

∑
i=0

ai[MO]i; (5)

where,

MO: MO is the molecular mass of every compound in the HTSC group selected.
i: N degree of polynomial parameter power. Range [0, N].
ai: Polynomial coefficient. Range [0, N].
TC: Critical temperature (K (usually) or C) for each class of compound.

MO is the molecular mass of the HTSC group selected, in this study, the Hg-Cuprates
group. With all these equations, the software algorithms were developed for the program’s
implementation. The discrete intervals selected for (i) were i ε [0, 5] and i ε [0, 6].

Therefore, based on previous formulas, there were two Tikhonov regularization algo-
rithms applied for the ILS optimization of chrome. The first was the absolute OF value, that
is, the Chevyshev L1 norm. The second was with the L2 norm for the Tikhonov function,
that is, for the L1 OF algorithm, reads

minimize Tikhonov functional J(α),
withα1 = 0and L1 Chebyshev Norm,
Jα(u)u∈< = |Au−K|L1

+ [α1]J(u);
Hence minimize,∣∣ [Mi]

αTC −Ki
∣∣
1 or

|ln(TC ) + α ln(Mi)− ln(Ki)|1;
for i = 1, . . . n
subject to,
a ≤ Mi ≤ a1;
b ≤ TC ≤ b1;
c ≤ Ki ≤ c1;
d ≤ α ≤ d1;

(6)

where

Jα (u): Function with regularization parameter alpha.
R: Real space.
u: Searched parameter solution.
A: Model matrix vector data.
K: Constant parameter matrix. Range specific for every element.
α: Constant parameter. Range specific for every element.
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α1: Constant parameter. Tikhonov regularization parameter selected null.
| • |1: L1 Chevshev norm (at an algorithm power of 1).
a, a1: Constraint range specified in Table 1.
b, b1: Constraint range specified in Table 1.
c, c1: K optimization parameter range for the program, approximately [20.0, 50.0].
d, d1: α constant range for the program, approximately [0.0001, 0.8].

The constraints a-d are applied for the optimizations [2–4,11,18]. The figure α1 is
the Tikhonov regularization parameter. The mathematical concept for the regularization
parameter’s second term in the TR function means that the minimization of the principal
term can reach a better defined/minimized global or local minimum. In other words,
the vector/matrix u minimizes the principal term and also the regularization term that
depends exclusively on u, which is the solution of the principal term. There is a range
of function types for the regularization term [11–13]. This implies that the additional
minimization of ([α1] × J(u)) guarantees/attempts that the most convenient minimum
among the minima is determined and is either a global or local minimum. According to
the specific conditions for any specific problem, there is a large number of options for the
regularization parameter [2–4,11,18].

Similar to Equation (6), the applied algorithm for the ILS with the L2 norm reads

minimize Tikhonov functional J(α),
withα1 = 0 and L2 Norm,
Jα(u)u∈< = ‖Au−K‖2

2 + [α1]J(u);
Hence minimize,∥∥[Mi]

αTC −Ki
∥∥2

2 or
‖ln(TC) + α ln(Mi)− ln(Ki)‖2

2;
for i = 1, . . . n
subject to,
a ≤ Mi ≤ a1;
b ≤ TC ≤ b1;
c ≤ Ki ≤ c1;
d ≤ α ≤ d1;

(7)

Jα (u): Function with regularization parameter alpha.
R: Real space.
u: Searched parameter solution.
A: Model matrix vector data.
K: Constant parameter matrix. Range specific for every element.
α: Constant parameter. Range specific for every element.
α1: Constant parameter. Tikhonov regularization parameter selected null.
‖ • ‖2: L2 norm (at an algorithm power of 2).
a, a1: Constraint range specified in Table 1.
b, b1: Constraint range specified in Table 1.
c, c1: K optimization parameter range for the program, approximately [20.0, 50.0].
d, d1: α constant range for the program, approximately [0.0001, 0.8].

2.3. Hypothesis and Algorithms for Molecular Effect Model

The isotope effect model is based on the mathematical correlation between the atomic
weight of every superconductor element isotope and the critical temperature Tc. This model
has proven to be acceptable with some inaccuracies [2–10]. The molecular effect hypoth-
esis proposed here that is mathematically and theoretically presented and numerically
simulated is based on a similar modelling criterion, that is, that the HTSCs show several
chemical groups whose molecular composition/formulation differ in their proportions
of valences/elements [2–10]. From this theoretical basis, it is hypothesized that when
deviations in the molecular weight due to proportional/isotopic variations in the molecule
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occur, there could be a mathematical model to predict the TC magnitude change for each
HTSC group element.

For this molecular model, the constraint values for the parameters are shown in Tables 1–4.
The algorithms set for the ILS molecular effect model with a polynomial p(MOi) read

minimize Tikhonov functional J(α),
withα1 = 0and L2 Norm,
Jα(u)u∈< = ‖Au−MO‖2

2 + [α1]J(u);
Hence minimize,
‖TCi − p(MOi)‖2

2 or
‖ln(TCi )− p(ln(MOi))‖2

2;
for i = 1, . . . n
subject to,
a ≤ MOi ≤ a1;
b ≤ TCi ≤ b1;

(8)

Jα (u): Function with regularization parameter alpha.
R: Real space.
u: Searched parameter solution.
MOi: Molecular mass for the HTSC cuprates from Table 1.
P(MOi): Polynomial optimization parameter matrix of HTSC cuprates range in Table 1.
α1: Constant parameter. Tikhonov regularization parameter, selected null.
‖ • ‖2: L2 Norm (at an algorithm power of 2).
a, a1: Constraint range specified in Table 1 for the HTSC cuprates.
b, b1: Constraint range specified in Table 1 for the HTSC cuprates.

Table 2. Numerical results for Chrome using the GA optimization method.

NUMERICAL GA OPTIMIZATION RESULTS FOR CHROME FIRST STAGE

Cr ISOTOPE TYPE RANGE
(BY ATOMIC MASS, AMU) K OPTIMAL OBJECTIVE FUNCTION RESIDUAL

(L1 Chebyshev Optimization Norm)

[49, 55] 41.378132 176.23 × 10−9

NUMERICAL GA OPTIMIZATION RESULTS FOR CHROME SECOND STAGE

Cr ISOTOPE TYPE RANGE
(BY ATOMIC MASS, AMU) OPTIMAL ALPHA OBJECTIVE FUNCTION RESIDUAL

(L1 Chebyshev Optimization Norm)

[49, 55] 0.6661 13.51 × 10−9

Table 3. Numerical results for Chrome using the 3D interior optimization method.

NUMERICAL 3D/4D INTERIOR OPTIMIZATION RESULTS FOR CHROME FIRST STAGE

Cr ISOTOPE TYPE RANGE
(BY ATOMIC MASS, AMU) K OPTIMAL OBJECTIVE FUNCTION RESIDUAL

(L1 Chebyshev Optimization Norm)

[49, 55] 43.336596 7 × 10−3

NUMERICAL 3D/4D INTERIOR OPTIMIZATION RESULTS FOR CHROME SECOND STAGE

Cr ISOTOPE TYPE RANGE
(BY ATOMIC MASS, AMU) OPTIMAL ALPHA OBJECTIVE FUNCTION RESIDUAL

(L1 Chebyshev Optimization Norm)

[49, 55] 0.6794 1 × 10−3
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Table 4. Numerical results for the ILS molecular effect model for Hg-cuprate HT superconductors.

NUMERICAL ILS RESULTS FOR MOLECULAR EFFECT MODEL FOR Hg-CUPRATES FIRST STAGE

Hg-CUPRATES MOLECULE TYPE RANGE
(BY MOLECULAR MASS, AMU) OPTIMAL ALPHA OBJECTIVE FUNCTION RESIDUAL

(L1 Chebyshev Optimization Norm, 3000 functions)

[738.42, 1416.54] 5.35 × 10−3 9.704343

PROGRAMMING FIRST-STAGE DATA

K ALPHA Tc

LOG [80, 150] [0.0001, 1] [88, 126]

NUMERICAL ILS RESULTS FOR MOLECULAR EFFECT MODEL FOR Hg-CUPRATES FIRST STAGE

Hg-CUPRATES MOLECULE TYPE RANGE
(BY MOLECULAR MASS, AMU) OPTIMAL K OBJECTIVE FUNCTION RESIDUAL

(L1 Chebyshev Optimization Norm, 3000 functions)

[738.42, 1416.54] 109.2585 10.45268

PROGRAMMING SECOND-STAGE DATA

K FIXED ALPHA Tc

LOG [80, 150] 5.35 × 10−3 [88, 126]

MO is the molecular weight of the HTSC selected (i) within an HTSC group and
[a, b] are the constraint intervals from Table 1. The other parameters are described in
Equations (1)–(7). The constraint values for the parameters are shown in Tables 1–4. All
parameter details are described in Equations (1)–(7). OF was chosen either with/without
algorithmic linearization, depending on the accuracy of the program results.

In previous publications, [3–6,19], the 2D/3D/4D interior and graphical optimization
methods were presented. The authors’ definitions of 2D/3D/4D interior optimization
were stated:

Definition 1. The interior graphical optimization method, [2–4,22] is a type of nonlinear optimization
that combines the separation of variables method with stages of the 3D graphical optimization method.

For all the algorithms presented in Equations (1)–(8), the 2D/3D/4D interior/graphical
optimizations are calculated. The 2D/3D/4D interior optimization method is an improve-
ment of the 3D graphical optimization method [2–4,19–27], set in this article related to
superconductors theory [5–10]. Its base is a 2D/3D/4D imaging separation of variables in
a series of stages. With the most favorable separation of variables, it is possible to optimize
all the parameters throughout the subsequent stages of the 2D/3D/4D optimization plots.
In every 2D/3D graph, the most convenient local, global, or semi-local minimum for every
OF variable is chosen. The details of this method can be found in [2–4,12,22,26].

2.4. Genetic Algorithm (GA) Methods

In brief, the genetic algorithms (GA) optimization method has experienced a recent
increase in the use of its optimization variants. Each one of these GA variants has its
advantages and disadvantages [10,11]. GA is a stochastic mixed method similar to Monte
Carlo but simpler/faster in general.

GA usually selects a randomly large number of successive generations for the objective
function minima accuracy subject to constraints. For every generation, three types of
choices are applied for the OF. Namely, elite selection, after-mutations, and cross-over
changes in the variables’ values. The GA method belongs to the stochastic optimization
methods group. For instance, it is similar to the random, stochastic simulated annealing
(SA) method [10,11,16–24,28]. However, SA cannot determine the global minimum and
is stopped at a local minimum function concavity because of its proper algorithm. GA
stops when the number of generations constrains and/or the numerical tolerance for a
chromosome generation is reached even if that solution is a local or global minimum.
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Another random method, Monte Carlo, has a more intensive global minimum search.
Monte Carlo estimates the objective function minimum/minima parameters in search of a
global minimum. If a global minimum exists, it does not stall easily at any local minima. The
Monte Carlo search is exhaustive and this property causes the classical lateness of Monte
Carlo. However, new Monte Carlo versions/software have overcome this issue. From a
comparison of the genetic algorithm and Monte Carlo methods, the concept emerged that a
stochastic optimization method for the development of life and biodiversity was invented
and optimized by nature millions of years ago [10,11].

In this study, a simple GA constrained nonlinear optimization was performed. Imag-
ing processing methods were set in some program areas to check/compare the numerical
algorithm results. In every GA algorithm step, a numerical refinement was the approach to
the OF. There are several variants of the GA method [16,17]. They have in common the steps
of selection, mating, mutation, and final convergence. The type applied in this study was
the continuous variables GA method, which uses a much larger range of variable numerical
data [16,17]. The former decodes the chromosomes and evaluates the OF value for every
chromosome in the initial stages. In this study, the continuous GA method was applied.

From Equations (1)–(8), the main difference between the ILS and GA methods can
be seen, that is, that the ILS has a matrix with a fixed dataset. In the ILS, matrix A is set
to reach the optimal vector matrix solution u for the system A u = K. On the contrary,
the GA performs an extensive random search with a set of values that are numerically
checked in each step. Those are proven to obtain better OF accuracy subject to constraints
remaining throughout the running of the program. Both the GA and ILS methods can
be considered useful for optimization; each one shows advantages and disadvantages.
Actually, GA methods have been shown to obtain accurate results when the complexity
and number of the variables and constraints in the OF increase. A classic example of the
Monte Carlo stochastic method is the GEANT systems series, which is generally used in
medical physics [25,28,29]. The GEANT4 software applies a large-scale random selection
very similar to GA, for instance, to determine the optimal beam radiation parameters in
intensity-modulated radiation therapy [28,29]. Both of these methods usually require a
longer running time compared to ILS [2–4,13,17,19–27].

2.5. GA and Inverse Least Squares Computational Software

Diagram 1 shows the basic structure of the software that was used for programming
Equations (1)–(8). The differences between each program are related to subroutines, pat-
terns, loops, matrix definitions, imaging processing subroutines and options, and several
others. Genetic algorithm programs [2–4,17] are significantly different but use the same
technique. These programs constitute an advance/improvement on the previous stud-
ies [2–4,13,17,19–27]. All software for ILS and GA was adapted on superconductors applied
theory, materials concepts, Isotope Effect, and optimization fundamentals [30–38].

3. Results

The results are divided into two models. The first group is the comparative opti-
mization between the 3D interior optimization and genetic algorithm methods to validate
the results of the previous studies for chrome and other superconductors materials [2–4],
combined with recent concepts in applied mathematics on modeling and [2–4,39–41]. How-
ever, not all the superconductors applied theory are exactly/perfectly coincident along the
literature [42–44]. The second group is the inverse least squares method for the hypothesis
of the molecular effect model for selected HTSC Hg-cuprates. The numerical results, errors,
optimization residuals, and 3D/4D graphics are presented. The running time is specified
for each subsection, which is generally consistent with [2–4].
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3.1. GA Numerical Results for Chrome

Table 2 shows the numerical results using the GA method in two stages as 3D interior
optimization was also conducted. The results match well for both methods. The running
time was about 4–8 s including the graphics (Intel Core 3).

3.2. Interior Tikhonov Optimization Numerical Results for Chrome

Table 3 presents the numerical results for 3D/4D interior optimization for chrome
using the isotope effect objective function in logarithmic form. The running time was about
2–4 s including the graphics.

3.3. GA Interior Optimization 2D Graphical Results for Chrome

Figures 1–3 show the GA method results for chrome isotopes. The optimization was
performed in two stages comprising the best fit, average distance among individuals, and
stopping criteria.

3.4. Inverse 3D Interior Tikhonov Optimization Graphical Results for Chrome

The image processing method for the 3D interior optimization results for Chrome
is shown in Figures 4–7. The numerical data that are presented in the Results section is
pictured inset in the 3D charts.

3.5. Inverse Least Squares Numerical Results for HTSC Hg-Cuprates with Molecular Effect Model

The calculation using the ILS method for the molecular effect model was conducted
with two types of programs. The first was a nonlinear ILS Matlab program based on
subroutines. The second was an ILS based on a polynomial fit. The best results were
obtained with the second program. Table 4 shows the results for the nonlinear ILS Matlab
program. Tables 5 and 6 and Figures 8 and 9 show the results of the ILS polynomial
molecular effect model for the HTSC Hg-cuprates. With both methods, the different models
were proved, but the polynomial one performed the best. The running time for the ILS method
was about 3–6 s, including the graphics, and about 2–5 s for the ILS polynomial method.

Figure 1. Chrome GA results (first stage of optimization) for best fit across generations (500). Results
are accurate in magnitude orders. Best Fit results 1.76 × 10−7 and Mean 5.19 × 10−5.
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Figure 2. Chrome GA (first stage of optimization) combined chart results for best fit across generations
(700). Best fit, average distance between individuals, and stopping criteria are shown. Results are
accurate. Best Fit and Mean values are lower as it was selected 700 generations.

Figure 3. Chrome GA (second stage of optimization) combined chart results for best fit across
generations (500) and stopping criteria. Results are accurate in magnitude orders. Best Fit results
1.76 × 10−7 and Mean 5.19 × 10−5.



Standards 2022, 2 441

Figure 4. Chrome first stage of 3D interior optimization. Optimal zone is accurate and OF magnitude
is about 7 × 10−3. This value validates the chrome GA results. Optimal zone marked inset. Image
processing method 1.

Figure 5. Another perspective of chrome first stage of 3D interior optimization. Optimal zone is
accurate and residual is about 7× 10−3. This value validates the chrome GA results. Image processing
method 1.
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Figure 6. Chrome second stage of 3D interior optimization. Optimal zone is accurate and OF
magnitude is about 1 × 10−3. This value validates the chrome GA results. Subroutine for image
processing is different from the first-stage 3D interior optimization charts. Image processing method 2.

Figure 7. Another perspective for chrome second stage of 3D interior optimization. Optimal zone is
accurate and OF magnitude is about 1× 10−3. This value validates the chrome GA results. Subroutine
for image processing is different from the first-stage 3D interior optimization charts. Image processing
method 2.
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Table 5. Numerical results for the molecular effect model using the 6-degree polynomial method and
the approximated equation. For the approximation, a quadratic polynomial is set.

ILS MOLECULAR EFFECT MODEL 2 (6-DEGREE)

COEFFICIENT VARIABLE X COEFFICIENT APPROX VARIABLE X SELECTED

−1.4683 × 103 CONSTANT [−1.468] CONSTANT

8.5713 X [8.571] X

−20.8471 × 10−3 X2 [−20.847 × 10−3] X2

29.0052 × 10−6 X3 [29.005 × 10−6] X3

−23.4857 × 10−9 X4 0 X4

10.1448 × 10−12 X5 0 -

−1.7944 × 10−15 X6 0 -

RESIDUAL = 32.703892 × 10−12

APPROXIMATE POLYNOMIAL

Tc = [−1.468] + [8.571] MO + [−20.847 × 10−3] MO2 + [29.005 × 10−6] MO3 + [−23 × 10−9] MO4

Table 6. Numerical results for the molecular effect model using the 5-degree polynomial method and
the approximated equation. For the approximation, a cubic polynomial is set.

ILS MOLECULAR EFFECT MODEL 2 (5-DEGREE)

COEFFICIENT VARIABLE X COEFFICIENT APPROX VARIABLE X SELECTED

4.8106 CONSTANT [4.811] CONSTANT

−982.4692 × 10−3 X [−982.469 × 10−3] X

4.4871 × 10−3 X2 [4.487 × 10−3] X2

−6.1759 × 10−6 X3 [−6176 × 10−6] X3

3.5178 × 10−9 X4 0 -

−725.5851 × 10−15 X5 0 -

RESIDUAL = 264.499782 × 10−3

APPROXIMATE POLYNOMIAL

Tc = [4.811] + [−982.469 × 10−3] MO + [4.487 × 10−3] MO2 + [−6176 × 10−6] MO3

3.6. Numerical Results and Predictive Model Use Verification

The numerical validations/predictions of the optimization methods are presented in
Tables 7–9. The validations are also given with the Tc and K predictions. For the molecular
effect model, the 6-degree ILS numerical validation is shown in Table 9. Table 7 shows
the validations/predictions for the GA chrome results. Table 8 presents the 3D/4D ILS
interior optimization method validations/predictions for chrome. Table 9 shows the ILS
validations/predictions for the molecular effect model for the HTSC Hg-cuprates.
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Figure 8. Molecular effect model with ILS 6-degree polynomial fit. Generally, Tc matches a parabolic
curve when the molecular weight increases.

Figure 9. Molecular effect model with ILS 5-degree polynomial fit with 96% confidence intervals.
Generally, Tc matches a parabolic curve when the molecular weight increases. At lower values of
molecular weight, there is a low accuracy of approximately 250 toward lower molecular weight
magnitude values.
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Table 7. GA program numerical results validation for chrome isotope effect model. For UAM the
errors decrease.

CHROME GA NUMERICAL VALIDATION

ISOTOPE [UAM] K PREDICTED K OPTIMAL BY GA

50 40.6261

41.3781
51 41.1655

52 41.7014

53 42.2339

Table 8. 3D/4D ILS interior optimization numerical validation program numerical results for chrome
isotope effect model. For UAM, the errors decrease.

CHROME 3D/4D ILS INTERIOR OPTIMIZATION NUMERICAL VALIDATION

ISOTOPE [UAM] K PREDICTED K OPTIMAL BY ILS- INTERIOR OPTIMIZATION

50 42.7958

43.3365
51 43.3755

52 41.9512

53 42.5240

Table 9. Program numerical results for molecular effect model using 6-degree polynomial and
approximated equation. Errors are almost null [10−12 magnitude order]. Numerical program
results for validation simulation give acceptable Tc figures. In this program, MO varied and the
corresponding Tc was predicted using the model.

PROGRAMMING RESULTS FOR ILS MOLECULAR EFFECT MODEL 2 (6-DEGREE)

MOLECULAR WEIGHT (AMU) Tc EXPERIMENTAL [K] Tc PROGRAM PREDICTED [MO] ERROR

602.7936 97 97.0000 9.3223 × 10−12

738.42 126 126.0000 1.8190 × 10−12

874.0432 133 133.0000 3.8654 × 10−12

1009.7 125 125.0000 5.9117 × 10−12

1145.3 110 110.0000 3.6380 × 10−12

1280.9 97 97.0000 6.8212 × 10−13

1416.54 88 88.0000 −2.6375 × 10−11

NUMERICAL PROGRAM VALIDATION

MO SIMULATED Tc PROGRAM PREDICTED

602.7936 97.0000

750.42 127.3895

890.0432 132.7059

1029.7 123.0025

1180.3 106.1526

1295.9 95.9194

1480.54 80.5684

4. Electronics Physics and Engineering Applications

Applications of 2D/3D/4D interior and graphical optimizations [5–10,31–34,36–38,40–44]
are in the field of the BCS theory of superconductivity in the isotope effect model. Further
prospective applications for the molecular effect model in the HTSC groups of compounds
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are primarily considered for TC predictions when HTSCs show several chemical groups
whose molecular composition/formulation differs in proportion to the
valences/elements [5–10,31–34,36–38,40–44].

5. Discussion and Conclusions

The objective of this research was to prove/show the similarities in the results of
several optimization methods applied for chrome and the HTSC-Hg-cuprates group using
the BCS theory of superconductivity [2–4]. For chrome, the methods were the genetic
algorithms and 3D/4D interior optimization methods. For the HTSC Hg-cuprates group, a
hypothesis for the molecular effect model was approached and numerically analyzed. The
rationale for this molecular effect model was set based on the molecules’ similar atomic
weights (isotope variations in molecular composition and/or molecular approximate pro-
portion/composition for any constituent element) for this HTSC group.

The basis for the molecular effect hypothesis has, therefore, several theoretical applica-
tions for Tc and its equation predictions. The first is a prediction of the approximate TC for
a molecule whose composition within the HTSC group differs in the valence/proportion of
one/several elements. The second is the case where the molecule is formed by the different
isotopes of some/one of its elements, for example, any Hg isotope with a different atomic
weight. The third is the case when both the theoretical and experimental facts occur, that
is, when both the valence/proportion of one/several elements form part of the molecule
and the type of isotopes of the molecule’s elements changes. Notably, this study sets a
hypothesis/pre-hypothesis based on optimization predictions for the HTSC Hg-cuprates.

The results can be classified into numerical and 3D/2D graphical. The numerical
results for the chrome isotope effect, both with GA and 3D/4D interior optimization, can
be considered acceptable. Very acceptable numerical and 2D graphical optimization results
using the polynomial ILS method from the HTSC Hg-cuprates molecular effect model were
obtained with almost zero errors (errors about [10−3, 10−11], Tables 5 and 6, Intel Core-3).
The simple ILS method programming for the HTSC Hg-cuprate errors were higher (errors
about [10−2, 10−3], Table 4).

In brief, the GA and 3D/4D interior optimization methods have verified previous
studies using the 3D/4D interior optimization methods for chrome [2–4]. The GA method is
proven as acceptable/accurate (errors about [10−6, 10−7], Table 2, Intel Core-3); the method
is in parallel with the 3D/4D interior optimization method. A primary hypothesis for
HTSC was tested with the Hg-cuprates group. Both the numerical and graphical results are
very acceptable. However, the extension of this molecular effect model to several groups of
HTSC remains to be demonstrated.

6. Scientific Ethics Standards

The advances in Interior Optimization and Graphical Optimization were created by Dr
Francisco Casesnoves on 15 March 2022. The basic 2D/3D graphical optimization methods
were created by Dr. Francisco Casesnoves on 3 November 2016, and the interior optimiza-
tion methods in 2019. The 4D graphical and interior optimization methods were created by
Dr. Francisco Casesnoves in 2020. This new GA software was originally developed by the
author. This article contains information about previous papers, whose inclusion is essential
to make the contribution understandable. The GA nonlinear optimization software was
invented/improved based on previous contributions to subroutine modifications, patterns,
loops, graphics, and optimal visualizations. In the Introduction section, the paragraph on
the basic Tikhonov functional parameters was taken from [11]. The 4D interior optimization
method is originally from the author (August 2021). In general, all engineering software
constitutes advances/improvements from author’s series publications [2–4,12–15,19–27].
This study was carried out and the contents were investigated according to European Union
Technology and Science Ethics standards in the European Textbook on Ethics in Research from
the European Commission, Directorate General for Research, Unit L3, Governance and
Ethics, European Research Area, Science and Society, EUR 24452 EN [45–47], which was
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based on The European Code of Conduct for Research Integrity, revised edition, ALLEA, 2017.
This research was conducted entirely by the author, including the computational software
used, calculations, images, mathematical propositions and statements, reference citations,
and text. When a mathematical statement, proposition, or theorem is presented, a demon-
stration is always included. If any numerical inconsistency is determined after publication,
the corresponding explanations/corrections are included in subsequent articles/books.
The article is exclusively scientific, without any commercial, institutional, academic, reli-
gious, religious-similar, non-scientific theories, personal opinions, lobbies influences, friens,
colleagues or relatives favours, political ideas, or economical influences. When anything is
taken from a source, it is adequately recognized. Ideas and some text expressions/sentences
from previous publications were emphasized with the aim of clarification [45–47].
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29. Batič, M.; Hoff, G.; Pia, M.G.; Saracco, P.; Weidenspointner, G. The Geant4 Simulation Toolkit. IEEE Nucl. Sci. Symp. Med. Imaging
Conf. Seoul 2013, 60, 2934–2957.

30. Luenberger, G.D. Linear and Nonlinear Programming, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2008.
31. Huang, X. Does the isotope effect of mercury support the BCS theory? arXiv 2011, arXiv:1102.1467.
32. Hummel, R.E. Electronic Properties of Materials; Springer: New York, NY, USA, 2011.
33. Kasap, F.; Capper, P. (Eds.) Springer Handbook of Electronic and Photonic Materials, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2000.

[CrossRef]
34. Kessel, W. On a General Formula for the Transition Temperature of Superconductors. Naturforschung 1974, 29a, 445–451. [CrossRef]
35. Kulu, P.; Casesnoves, F.; Simson, T.; Tarbe, R. Prediction of abrasive impact wear of composite hardfacings. Solid State Phenomena.

In Proceedings of 26th International Baltic Conference on Materials Engineering; Trans Tech Publications: Bäch, Swit-zerland,
2017; Volume 267, pp. 201–206. [CrossRef]

36. Luiz, A. Superconductivity—Theory and Applications; InTechOpen: London, UK, 2010; ISBN 9789533071510.
37. Reynolds, C.A.; Serin, B.; Nesbitt, L.B. The Isotope Effect in Superconductivity. I. Mercury. Phys. Rev. 1951, 84, 691. [CrossRef]
38. Seri, B.; Reynolds, C.A.; Nesbitt, L.B. Mass Dependence of the Superconducting Transition Temperature of Mercury. Letters to

Editor. Phys. Rev. 1950, 80, 761. [CrossRef]
39. Todinov, M. Reliability and Risk Models; Wiley: New York, NY, USA, 2005.
40. Vidyasagar, M. Nonlinear Systems Analysis, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 1993.
41. Wesche, R. Chapter 50. High-Temperature Superconductors. In Springer Handbook of Electronic and Photonic Materials; Springer:

Berlin/Heidelberg, Germany, 2017.
42. Parinov, I.A. Microstructure and Properties of High-Temperature Superconductors, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017.
43. Fossheim, K.; Sudbø, A. Superconductivity Physics and Applications; Wiley: New York, NY, USA, 2004.
44. Wang, Y.F. Fundamental Elements of Applied Superconductivity in Electrical Engineering; Wiley: New York, NY, USA, 2013.
45. European Textbook on Ethics in Research. European Commission, Directorate-General for Research. Unit L3. Governance and

Ethics. European Research Area. Science and Society. EUR 24452 EN. Available online: https://op.europa.eu/en/publication-
detail/-/publication/12567a07-6beb-4998-95cd-8bca103fcf43 (accessed on 28 June 2021).

46. ALLEA. The European Code of Conduct for Research Integrit, Revised ed.; ALLEA: Bern, Switzerland, 2017.
47. Swedish Research Council. Good Research Practice; Swedish Research Council: Stockholm, Sweden, 2017; ISBN 978-91-7307-354-7.

http://doi.org/10.1115/1.4006670
http://doi.org/10.1109/TNS.2006.869826
http://doi.org/10.1007/978-3-319-48933-9_50
http://doi.org/10.1515/zna-1974-0312
http://doi.org/10.4028/www.scientific.net/SSP.267.201
http://doi.org/10.1103/PhysRev.84.691
http://doi.org/10.1103/PhysRev.80.761
https://op.europa.eu/en/publication-detail/-/publication/12567a07-6beb-4998-95cd-8bca103fcf43
https://op.europa.eu/en/publication-detail/-/publication/12567a07-6beb-4998-95cd-8bca103fcf43

	Introduction 
	Mathematical and Computational Methods 
	Numerical Data for Chrome and HTSC Hg-Cuprates 
	Mathematical Techniques and Inverse Least Squares Algorithms for Optimization Methods 
	Hypothesis and Algorithms for Molecular Effect Model 
	Genetic Algorithm (GA) Methods 
	GA and Inverse Least Squares Computational Software 

	Results 
	GA Numerical Results for Chrome 
	Interior Tikhonov Optimization Numerical Results for Chrome 
	GA Interior Optimization 2D Graphical Results for Chrome 
	Inverse 3D Interior Tikhonov Optimization Graphical Results for Chrome 
	Inverse Least Squares Numerical Results for HTSC Hg-Cuprates with Molecular Effect Model 
	Numerical Results and Predictive Model Use Verification 

	Electronics Physics and Engineering Applications 
	Discussion and Conclusions 
	Scientific Ethics Standards 
	References

