Supplementary document for the journal paper
An engineering toolbox for the evaluation of metallic flow field plates

Submitted in July 2019 to ChemEngineering for possible open access publication under the terms and
conditions of the Creative Commons Attribution (CC BY) license
http://creativecommons.org/licenses/by/4.0/.

An implicit model for a gas mixture
(Calculating mass fraction as a field variable)

oxygen

air /

Uwe Reimer and Steven Beale
Forschungszentrum Jiilich GmbH, Institute of Energy and Climate Research,
IEK-3: Electrochemical Process Engineering, 52425 Jiilich/ Germany

l) JULICH

Forschungszentrum

http://creativecommons.org/licenses/by/4.0/

Contents
1 Introduction 2
1.1 Definition of the problem 2
1.2 Size of membrane and diffusion limitation 3
1.3 Boundary conditions 3
1.4 Mesh . . . 4
2 Tutorial case bl: How to add mass fractions to solver icoFoam 5
2.1 Copy and recompile icoFoam 5
2.2 Create the mass fractionclass 5
2.3 Solve the mass fractions equation 7
2.4 Add new files for initial and boundary conditions 8
2.4.1 Directory [system 8
242 Directory /O 12
25 Casebl:results 17
2.5.1 Check for convergence 17
25.2 Simulationresults 21
3 Tutorial case b2: adding a porous zone 23
3.1 Definition of the problem 23
3.2 Creating thesolver. 23
3.3 Attention: L e 24
34 Simulationresults 26
3.5 Erroranalysis 26

4 Useful commands 28

1 Introduction

This tutorial shows how to use OpenFOAM to solve the following problem: Removing one component
of a mixture through a membrane. The examples are tested with OpenFOAM version 3.0.1. The gas
mixture is modeled as a homogeneous medium that contains two components as shown in Figure 1.
Both components do have identical properties (like density). The content of the second component
(red balls in Figure 1) is described by the mass fraction y.

O
@Q.O

00 ®

Figure 1: Gas mixture with two components.

1.1 Definition of the problem

The underlying physical model describes a gas mixture. The mixture is modeled as an effective fluid
(air) that contains one special component (oxygen). The distribution of this special component is
defined by its mass fraction y.

This example case shall simulate the flow of air through a channel, where one component (oxygen)
is partly removed through a membrane. The membrane shall be one side wall of the channel. As a
matter of simplicity air is treated as a mixture of 79 % nitrogen and 21 % oxygen. Both oxygen and
nitrogen shall have the same average properties as air! (see Table 1).

Table 1: Physical properties of air at 300 K and 101326 Pa

density p 1177gm~—3
kinematic viscosity v 15-107%m2?s7!
diffusion coefficient D 176-107" m?s™1

A typical mass flow through a channel in a fuel cell would be 31.15gh™! of air. (This example
calculation is based on a three channel serpentine flow field with an activ area of 45cm?. The average
current density is 0.4 Acm™2 and the cell is operated with air at an stoichiometry of 2.) Since the
cross section is 1 mm?, the velocity at the inlet is u = 1.47ms™!. With these values the Reynolds
number can be calculated according Equation 1 (d = 0.001667 m).

_du

v

Re (1)

https://en.wikipedia.org/wiki/Mass _diffusivity

From the resulting value of Re = 163 a laminar flow regime can be expected.

1.2 Size of membrane and diffusion limitation

As oxygen is removed through a membrane, a concentration gradient between the surface of the
membrane and the fluid part of the channel is created. This gradient causes a diffusion flux of oxygen
from the channel towards the membrane. The diffusion coefficient in Table 1 defines an upper limit
for this flux. The simulation case should stay below the diffusion limit. Therefore, the minimum size
of the membrane area is estimated as a first step based on the following considerations.

1. Definition: 50 % of oxygen shall be removed. The height of the channel shall be d = 1-1073 m.
2. Calculate the maximum diffusion flux (velocity) from Fick's Law.

3. Calculate the required area of the membrane based on the maximum velocity and choose the
simulation geometry.

Maximum velocity

The maximum diffusion flux can be calculated by using Fick's Law (Equation 2). For a simple
estimation the conditions at the outlet of the channel are considered, where the mass fraction of
oxygen should be Yj,c = 0.5-0.21. The maximum flux will occur if the concentration at the surface
becomes zero, i.e. Yy, =0.

Youlk — Y. ,05-0.21 _
umaX:D-M =176-1077 5 =185-10"m/s (2)

Size of membrane
The area A of the membrane can be calculated according Equation 3. Here, m = 908 - 10~ % g/s is
the total mass flux of oxygen through the membrane (50 % of the initial content in air).

m
P+ Umax
In order to resemble a straight channel, the following geometry is chosen (see Table 2). The width
was chosen to be larger than the channel heigth, because this way it is easier to plot the resulting
graphs for this tutorial. At inlet and outlet of the channel an additional section is added, nameley
inlet relaxation zone and outlet relaxation zone. These zones are required because in CFD simuations
usually a flat velocity profile is defined at the inlet and a constant pressure at the outlet. The typical

flow profile will be fully developed after a short distance behind the inlet region. The resulting channel
has a membrane area of A = 425-10"%m?,

A=

= 417 -10 % m? (3)

1.3 Boundary conditions

The inlet velocity of air can be calculated from the mass flow of air and the channel geometry in
Table 2. A value of u = 1.469m/s results. The mass fraction of oxygen at the inlet is Y = 0.21.
Pure oxygen shall be removed through the membrane at a constant velocity. The velocity for the
boundary condition of the membrane outlet is given in Table 3.

Table 2: Channel dimensions

width 5mm
height 1mm
length 85 mm

inlet relaxation zone 5mm
outlet relaxation zone 5 mm

Table 3: Oxygen velocity for the membrane boundary

fraction of oxygen to be removed velocity u / ms™!

0.1 3.63E-04
0.2 7.26E-04
0.3 1.09E-03
0.4 1.45E-03
0.5 1.82E-03
0.9 3.27E-03

1.4 Mesh

For geometry and mesh generation the software SALOME is used. The Python-script OneChan-
nel _v2_ 2.py was used, which is contained in the documentation in the folder bl/mesh/. A cross
section is shown in Figure 2.

Figure 2: Section of channel with mesh resolution

Tutorial case bl 5

2 Tutorial case bl: How to add mass fractions to solver icoFoam

This tutorial is based on the OpenFOAM solver 'icoFoam’. The idea is a modified version of a similar
article entitled How to add temperature®>. The main differences are that the normal wall velocity is
not zero at the patch corresponding to the membrane wall. The main items to be accomplished are
first, to copy and test that the local installation of OpenFOAM can compiles correctly. Once that is
accomplished, various small changes are necessary to the solver files themselves which are detailed
below. Finally, new fields have to be added to the initial and boundary conditions in '/0" and some
alterations to the systems files made.

2.1 Copy and recompile icoFoam

This will go through the steps of creating a personal version of icoFoam in the user’'s subdirectory.
The first step is to insure that your installation of OpenFOAM works properly and compiles the
unedited solver. First, bring up a console and move to your OpenFOAM installation folder. Your
particular OpenFOAM installation folder will have a version number following. OpenFOAM has
organized the solvers separate from the source code of OpenFOAM calling them "applications’. Inside
the "applications’ folder, there are subdirectories including one for solvers. This tutorial is based on
icoFoam, which we will copy to our own location:

Jusr/group/OpenFOAM—3.0.1/applications/solvers/incompressible

Copy icoFoam directory locally and rename it.

/private/u.reimer/mysource/micoFoam

Now, some alterations need to be made to the make files in order for everything to compile and not
overwrite the original solver. First, rename the primary file to your new solver name and delete the
old dependency file. Now go into the Make subdirectory and open files with an editor. Change it to
read:

micoFoam .C
EXE = /private/u.reimer/mybin/micoFoam

Now, test that the renamed solver (and your installation of OpenFOAM) works:

wmake

If everything worked correctly, your new solver binary should appear in the
/private/u.reimer/mybin/micoFoam directory.

2.2 Create the mass fraction class

Open the micoFoam.C with a text editor. First, edit the Application at the top of the file to reflect
the new name. Following the flow of the program, one notices that the header file createField.H is
called prior to the solution loop. This file was copied with the solver and has the specific information
pertaining to what variables will be solved. Open createFields.H in your editor. The first items loaded
is the kinematic viscosity from the transportProperties dictionary file. We will add a new transport

2https:/ /openfoamwiki.net/index.php/How to add temperature to_ icoFoam

Tutorial case bl 6

property related to the mass fraction diffusion coefficient. We will store this whole-field, so that we
can change the boundary values, by adding the class diff as follows:

dimensionedScalar nu

(
||nu|l ,
dimViscosity ,
transportProperties.lookup("nu")
)
// s.beale

// Add store diffusion coefficient field—wise
volScalarField diff

(
IOobject
(
"diff",
runTime.timeName(),
mesh ,
IOobject : : MUST _READ,
IOobject : :AUTO_WRITE
).
mesh
)
// s.beale

Later on, we will need to add a diff file in /run/0 to initialise. Following this in the file there are
lines which pertain to the creation of the pressure p and velocity U fields. We will add a new field
for mass fraction y. The fastest way to do this is to copy and paste the pressure lines and then edit
them appropriately like so:

Info<< "Reading,field U\n" << endl;
volVectorField U
(
[Oobject
(
IlUII ,
runTime.timeName (),
mesh ,
IOobject : : MUST _READ,
IOobject : :AUTO_WRITE

mesh

)

// s.beale

// Adding mass fraction as a field variable
Info<< "Readingyfieldyuy\n" << endl;
volScalarField vy

(

I0object

(

y .
runTime.timeName(),

Tutorial case bl

mesh ,
IOobject : :MUST_READ,
IOobject : :AUTO_WRITE
).
mesh
)
// s.beale

Save the changes. You have now created a new field variable y with variable diffusion coefficient diff.

2.3 Solve the mass fractions equation

The next step is to add a new equation describing the transport of the species. Return to editing
micoFoam.C. Because the mass fraction transport depends on the velocity field, we will add the
equation after the momentum equation is solved (after the PISO loop), but before the time step is

written. Edit your file so it looks like this:

#include "continuityErrs .H"

U = HbyA — rAUxfvc ::grad(p);
U.correctBoundaryConditions () ;

// s.beale
//Add these lines to solve for y
fvScalarMatrix yEqn
(
fvm :: ddt(y)
+ fvm::div(phi, y)
— fvm:: laplacian (diff, y)

yEgn.solve ();
y.correctBoundaryConditions();
// s.beale

runTime. write () ;

These lines add a new equation for the mass fraction and make use of the face flux variable, phi,
which is already used in the momentum equation solution. Save the changes and run wmake.

wmake

Your computer should then produce a newly compiled binary.

Tutorial case bl

2.4 Add new files for initial and boundary conditions

The directory structure and files are provided in the folder 'b1’.
Files to modify:

e /system/fvSchemes

e /system/fvSolution
Files to create new:

o /0y

o /0/diff

2.4.1 Directory /system

file /system/fvSchemes

FoamFile

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSchemes;
ddtSchemes

default Euler;
gradSchemes

default Gauss linear;

grad(p) Gauss linear;

divSchemes

default none;
div(phi, U) Gauss limitedLinearV 1;
div (phi,y) Gauss upwind; //s.beale: Add this

}

laplacianSchemes

default none;
laplacian(nu,U) Gauss linear corrected;
laplacian ((1]A(U)),p) Gauss linear corrected;
laplacian(diff ,y) Gauss linear corrected; //s.beale: Add this

Tutorial case bl

interpolationSchemes

default linear;
interpolate (HbyA) linear;

}

snGradSchemes

{
}

fluxRequired

default corrected ;

default no;
p ;

Tutorial case bl

file /system/fvSolution

10

* *— CH —x *\
\ \ |
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 2.1.1 |
\ \\ / A nd | Web: www . OpenFOAM . org |
| \\/ M anipulation | |
* */
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSolution;
b
solvers
{
P
{
solver PCG;
preconditioner DIC;
tolerance le —06;
relTol 0;
}
U
{
solver PBiCG;
preconditioner DILU;
tolerance le —05;
relTol 0;

//s.beale: add this...
y

{
solver BICCG;

preconditioner DILU;
tolerance 1e—10;
relTol O;

1

//s.beale: done editing ...

}

PISO
{
nCorrectors 2;

nNonOrthogonalCorrectors 2;

Tutorial case bl 11

file /system/controlDict

/% *— CH —x *\
| =——— \ |
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 2.1.1 |
| \\ / A nd | Web: www . OpenFOAM . org |
| \\/ M anipulation | |
\» */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;
¥
application icoFoam;
startFrom latestTime;
startTime 0.0;
stopAt endTime;
endTime 0.10;
deltaT 0.00005;
writeControl timeStep;
writelnterval 200;
purgeWrite 5;
writeFormat ascii;

writePrecision 6;
writeCompression off;
timeFormat general;
timePrecision 6;

runTimeModifiable true;

The values for deltaT and endTime have been adjusted in order to yield a Courant Number less than
1. This can be checked in the file solver.log.

Courant Number mean: 0.105321 max: 0.260274

Tutorial case bl

2.4.2 Directory /0

This directory should contain the follwing files.

o diff
*p
o U

ey

12

Tutorial case bl

File /0/diff: here, the diffusion coefficient is set to D = 176 - 10" m2s~! by initializing the internal

field.

* x— CH+ —x *\
\ \ |
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
[\\ / O peration | Version: 2.1.1 |
| \\ / A nd | Web: www . OpenFOAM . org |
| \\/ M anipulation | |
* */
FoamFile
{

version 2.0;
format ascii;
class volScalarField;
object diff;
by

dimensions
internalField

boundaryField

{

wall
{

type
b
inlet
{

type
}
outlet
{

type
b
membrane
{

type
}

[02-1000 0];

uniform 176.0e—7;

zeroGradient;

zeroGradient

value uniform le—15; // disallow
diffusion at inlet
zeroGradient;
fixedValue;
value uniform le—15; // disable
diffusion at membrane

Tutorial case bl

*
—

* — C *
* * *

\ |
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 2.1.1 |
| \\ / A nd | Web: www . OpenFOAM . org |
| \\/ M anipulation | |
* */

FoamFile

{

version 2.0;

format ascii;

class volScalarField:
object p;

}

dimensions [0 2 -2000 0];

internalField uniform 0;

boundaryField

{

wall

{
}

inlet

{
}

outlet

{

type zeroGradient;

type zeroGradient;

type fixedValue;
value uniform O0;

}

membrane

{
}

type zeroGradient;

Tutorial case bl 15

File /0/U: Here, the membrane outlet velocity is defined as 20 % of the mass of oxygen (see Table 3
on page 4).

* x— CH+ —x *\

| =——— \ |
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\\ / O peration | Version: 2.1.1 |
| \\ / A nd | Web: www . OpenFOAM . org |
| \\/ M anipulation | |
* */
FoamFile
{

version 2.0;

format ascii;

class volVectorField;

object U;
by

dimensions [01 -1000 0];
internalField uniform (0 3.0 0);

boundaryField

{
wall
{
type fixedValue;
value uniform (0 0 0);
¥
inlet
{
type fixedValue;
value uniform (0 1.469 0);
}
outlet
{
type zeroGradient;
by
membrane
{
type fixedValue;
value uniform (0 0 0.00182);
by

Tutorial case bl 16

File /0/y: Here, inlet composition is defined as y = 0.21. The membrane outlet is defined as pure
oxygen (y = 1.00).

* x— CH+ —x *\

| =——— \ |
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\\ / O peration | Version: 2.1.1 |
| \\ / A nd | Web: www . OpenFOAM . org |
| \\/ M anipulation | |
* */
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

object y;
by

dimensions [0 0O0OO0O0O0 O0];
internalField uniform 0.21;

boundaryField

{
wall
{
type zeroGradient;
¥
inlet
{
type fixedValue;
value uniform 0.21;
¥
outlet
{
type zeroGradient;
}
membrane
{
type fixedValue;
value uniform 1.0; // pure substance (e.g. is removed
}

Tutorial case bl 17

2.5 Case bl: results
2.5.1 Check for convergence

The output of the solver is collected into the file 'solver.log’ In the present example the solver was
used to solve for pressure, velocity and mass fraction. Therefore, these parameters will be checked.
OpenFOAM already provides a script that separates the output of the solver into separate x-y-data
files. Type 'foamLog solver.log’ at the command line and the contents of solver.log is separated an
all files are written to the directory 'logs’. The following files from the directory 'logs’ are used.

Time-0

UxFinalRes-O pFinalRes-O plIters-0 yFinalRes-0
UxIters-0 pFinalRes-1 plters-1 yIters-0
UyFinalRes-O pFinalRes-2 plters-2

UyIters-0 pFinalRes-3 plters-3

UzFinalRes-O pFinalRes-4 plters-4

UzIters-0 pFinalRes-5 plters-5

Again, the software GNUPLOT is used to generate the graphs. The GNUPLOT-scripts are contained
in the documentation package in the folder 'scripts-gnu’. All graphs are generated at once by using
the batch file. The resulting *.png files are located at the top of the directory (because the names
start with an underscore). The following graphs correspond to the simultaion to remove 40 % of
oxygen (see Table 3 on page 4). It can be seen that the solution of pressure and velocity converged
after 5-1073. The behavior of the mass fraction is difficult to interpret. Convergence seems to be
very fast and the graphs merely show fluctuations of the solver.

22000 . . .

20000 | 1
18000
16000
14000
12000 |
10000 |
8000 |
6000 |

4000 s . s s s s . s i
0-10° 10103 20-10% 3010° 4010 50107 6010° 7010° 80-10° 90107 1001073

time step

computation time / time step

Figure 3: Computation time

Tutorial case bl

4 Uxltersg
| | | Uyltersg
33 Uzltersg

3 i
25 1

2 i
15} 1

iterations per time step

11]
05 } 1

O L L L L L L L L L
0-10° 1010 20-10 30-10° 4010°* 50-10°* 60-10°3 70-10° 8010 90102 100-10°3
time step

106
1010 ' ' UxFinalResq
9-10°6 1 |UyFinalResg
8106 | |UYzFinalResq

7-10°® 1
6-10°6 1
5-10°6 1
4-10°6 1
3-10°® 1
2-10°® 1
1106 |
0-10° ; \ AMM%

0-109 10-10-320-10330-10°2 40-10-350-10"2 60-10"3 70-10°2 80-10"3 90-10-3100-10°3

time step

residuals

Figure 4: Top: Number of iterations for velocity; Bottom: Residuals of velocity

Tutorial case bl

400

pltersg ——
350 | | pltersy ——
plters, ——
$ 300 'ﬂ‘l | | pltersg ——
2 l pltersy ———
QL 250 | pltersg —
E
g 200 |
[]
5 150 |
©
& 100 ¢ ‘
i L
0-10° 10‘103 20- 103 30 103 4010°% 50- 103 60- 103 70- 103 80 103 90- 103 100-10-3
time step
110- Wr’w mrm wl “WWHWWWW ‘ pFinaIReso
900-10°° i || i HH pFinalRes
‘ pFinalRes,
800-10° pFinalRes4
49 pFinalRes,4
70010 ‘ pFinalResg
/2]
‘® 600107
3
= 9
@ 50010
400-10°°
300102
200-10°
100-10°

0-10° 10 10'3 20- 10330 10340 10‘350 10360 10370 10380 10390 103100 102

time step

Figure 5: Top: Number of iterations for pressure; Bottom: Residuals of pressure

Tutorial case bl

8

75 | 1
7 i
6.5 | 1
6 | i

55 1

iterations per time step

5 | i
45 |]

231-10O 10-10°3 20-10°% 30103 4010° 5010°% 6010° 7010° 80-10° 90-103 1001073
time step

100-10°12 . .
90-10-12 | i
8010712 | 1
7010712 | 1
601012 | 1
50-10°12 1
401012 i
301012 1
20-10°12 1
1010712 |]

0-100 : : : : : : : : :
0-10° 1010 20-10% 30103 4010 50103 60-10% 70107 80107 90-10°% 100-10°3

time step

residuals

Figure 6: Top: Number of iterations for mass fraction; Bottom: Residuals of mass fractions

Tutorial case bl 21

2.5.2 Simulation results

The initial problem was defined on page 4: a certain amount of oxygen shall be removed from a gas
stream. The inlet of the channel is air with a mass fraction of oxygen of y = 0.21. Air flows from left
to right in the figures below. At the membrane pure oxygen is removed. The distribution of oxygen
mass fraction is shown in Figure 7. The value of 90 % oxygen removed was chosen in order to test the
simulation in case that diffusion is reaching the limiting regime. In this case the local mass fraction

near the outlet becomes negative (Y = —0.08). In the outlet relaxation zone the value of Y increases
again slightly.
Y
0.1 0z

Em—— .

0 021 05> removed
L
L
B
B,
I
U — [

Figure 7: Mass fraction of oxygen at the membrane surface. Air flow is from left to right.

In order to compare the results, the mass fraction distribution at the end of the channel is compared.
In Figure 8 the position of the cross section is indicated by the black arrow.

outlet

membrane

inlet

7

Figure 8: The black arrow shows the position of the cross section (for the following Figure).

The resulting mass fraction distributions are shown in Figure 9. The distribution f Y is more or

Tutorial case bl 22

less homogeneous up to the fraction of 40 % oxygen removed. A significant gradient in Y seems to
develop for higher amounts of oxygen removal. The transition towards diffusion limitation can be
observed as predicted by theory.

o2l O, removed

0.1

0.2

0.3

0.4

0.5

0.9

Figure 9: Mass fraction of oxygen at the cross section at the end of the channel.

Tutorial case b2

3 Tutorial case b2: adding a porous zone

3.1 Definition of the problem

In the previous tutorial bl the second outlet (membrane) was located directly at one side of the
channel. Now, the second outlet is separated from the channel by a porous zone, e.g. like a gas
diffusion layer (GDL) in a fuel cell. The geometry is shown in Figure 10 and the parameters are given
in Table 4. Geometry and mesh are provided by the script 'OneChannel v3 1.py’ for the software

SALOME, which is inlcuded in the directory '/mesh’.

inlet

membrane

channel

outlet

porous transpor layer
"\ (GDL)

Figure 10: Section of the channel with porous transport layer.

The inlet velocity of air is u = 1.47 m/s. The velocity at the membrane is identical as in the previous

Table 4: Channel dimensions

channel width 5mm
channel height 1mm
channel length 85 mm
height porous zone 2mm
inlet relaxation zone 5mm

outlet relaxation zone 5mm

tutorial bl (see Table 3 on page 4).

3.2 Creating the solver

For this task two options are available.

1. Combine the solver from tutorial case bl (modified icoFoam) with the porous zone from solver

porousSimpleFoam.

2. Start with the solver porousSimpleFoam and modifiy it according to tutorial bl.

Tutorial case b2 24

Option 1 did not work for me therefore, option 2 is chosen. The source for the solver is contained in
the directory 'source/simplePor’ - which already reveals the name of the modified solver.

The flow through porous media is described by the Darcy-Forchheimer-Equation. The property of the
porous media is defined in the file '/constant/porosityProperties’ where two parameters d and f are
scalars with components in x, y and z direction. The values for d are given in m™2, ie,, d = 1/K
with K as the permeability of the porous layer.

File '/constant/porosityProperties’

FoamFile

version 2.0;

format ascii;

class dictionary;

location "constant";

object porosityProperties;
] * % % x % %k k * * k k *k k k *x * k k * k Kk *x * k k * *k k x * *k kx *x * x x % [/
porosl

type DarcyForchheimer;

active yes;

cellZone porous ;

DarcyForchheimerCoeffs

{
d (le7 1e7 1le7);
f (0 0 0);
coordinateSystem
{ .
type cartesian;
origin (0 0 0);
coordinateRotation
{
type axesRotation;
el (1 00);
e2 (01 0);
b
}
}

3.3 Attention:

The import of the mesh from the SALOME script is descibed in a separate tutorial. After the import,
all boundary faces are assigned the type patch automatically. The solver requires patch for inlet and
outlet, but needs the type wall for impermeable boundaries. Therefore, the entry in the file '/con-
stant/polyMesh /boundary’ must be changed manually.

Tutorial case b2

File ' /constant/polyMesh /boundary’ — before the change

25

FoamFile
{
version 2.0;
format ascii;
class polyBoundaryMesh ;
location "constant/polyMesh";
object boundary;
¥
5
(
wall
{
type patch;
nFaces 2992;
startFace 89528;
by
inlet
{
type patch;
nFaces 336;
startFace 92520;
}
File '/constant/polyMesh /boundary’ — after the change
FoamFile
{
version 2.0;
format ascii;
class polyBoundaryMesh ;
location "constant/polyMesh";
object boundary;
by
5
(
wall
{
type wall;
nFaces 290902;
startFace 89528;
by
inlet
{
type patch;
nFaces 336;
startFace 92520;

Tutorial case b2 26

3.4 Simulation results

Figure 11 shows the distribution of mass fraction of oxygen for a cross section of the channel. The dif-
fusion limit seems to be reached as approximately 50 % of oxygen is removed. Under these conditions
the value of y decreases to zero at the interface of the membrane. The solver also provides solutions
for higher rates of removal, but these solutions have no physical meaning because local values of y are
negative. The simulations have been performed with the turbulence model switched on and switched
off. In both cases identical results have been obtained.

Y
0,000e+00 0,053 0,11 0,16 2,100e-01
| | |

MI|IIIIIII\I|IIIIIIII w

0O, removed
0.1
0.2
0.3
0.4
0.5
0.9

Figure 11: Mass fraction of oxygen at the cross section of the channel (middle of channel). Air flow
is from left to right.

3.5 Error analysis

For further analysis the parameters mass flow and mass fraction have been calculated at three posi-
tions:

e cross section of the channel at the end of the inlet zone (length = 4 mm),
e cross section of the channel at the beginning of the outlet zone (length = 91 mm),
e cross section of the membrane outlet (height = 3 mm).

The overall mass balance can be obtained from the fluxes at the inlet and both outlets. The absolute
error Am is calculated from the mass fluxes according Equation 4. The resulting error is shown in
Figure 12.

Am = m(inlet) — m(membrane) — m(outlet) (4)

From Figure 12 it can be deduced that the largest error corresponds to 16 % of the mass flux through
the membrane. One possible eason for that may be the applied boundary condition. At the membrane
the mass flux (velocity) and mass fraction are enforced, which is not the best option for an outlet.

Tutorial case b2 27

0.000200 T T T T
— turbulence on
turbulence off
0.000150 - -
‘TUJ
o
~ 0.000100 [-
=
<
0.000050 [-
‘\‘/‘/4\
0.000000 L L L L
0 0.2 0.4 0.6 0.8 1

fraction of oxygen removed
Figure 12: Absolute error of mass flow.
Since the outlet through the membrane is pre-defined, the error of the solution manifests itself at the

'free’ outlet of the gas channel. Figure 13 shows the mass fraction at the outlet. It can be observed
that the simulation values are slightly higher compared to the theoretical values.

o2f ., ' ' ' }

0.15 | T
T

3 01]
>

0.05 [theoretical value T

turbulence on A
A turbulence off
0 ! : ' '
0 0.2 0.4 0.6 0.8 1

fraction of oxygen removed

Figure 13: Mass fraction y at the beginning of the outlet region (length = 91 mm).

Tutorial case b2 28

4 Useful commands

ideasUnvToFoam channel.unv convert the mesh from UNV to OpenFOAM format
checkMesh > checkMesh.log check the quality of the converted mesh

mapFields ../al -consistent start a simulation of a fine mesh with results from a coarse mesh in
directory 'al’; see 3

icoFoam > solver.log & run simulation in background and write output to logfile 'solver.log’
icoFoam » solver.log & run simulation in background and append output to existing logfile 'solver.log’

nohup nice -n 19 icoFoam > solver.log & job runs after logout and has lowest priority on the
computer

tail solver.log prints the last 10 lines of file 'solver.log’

foamToVTK -latestTime convert results (last time step) into VTK-files (for PARAVIEW)

foamLog solver.log separates the output of the file 'solver.log’ and writes all values in separate files
(x-y-data) into the directory 'logs’

30penFOAM: UserGuide.pdf page U-30

	Introduction
	Definition of the problem
	Size of membrane and diffusion limitation
	Boundary conditions
	Mesh

	Tutorial case b1: How to add mass fractions to solver icoFoam
	Copy and recompile icoFoam
	Create the mass fraction class
	Solve the mass fractions equation
	Add new files for initial and boundary conditions
	Directory /system
	Directory /0

	Case b1: results
	Check for convergence
	Simulation results

	Tutorial case b2: adding a porous zone
	Definition of the problem
	Creating the solver
	Attention:
	Simulation results
	Error analysis

	Useful commands

