One channel: Flow through a channel with one or two outlets

Creating geometry and mesh for an existing OpenFOAM CFD fuel cell model
by using the software SALOME

Version 2.1
June 17, 2016

/)

Uwe Reimer
with contributions from Sohyeon Lee, Qing Cao, Dieter Froning, Steven Beale
Forschungszentrum Jiilich GmbH, Institute of Energy and Climate Research,
Electrochemical Process Engineering, 52425 Jiilich/ Germany

#) J0LICH

FORSCHUNGSZENTRUM

One channel — documentation 2

Contents
1 Introduction 3
2 The script OneChannel.py 4
2.1 Declaration of input variables 5
2.1.1 Internal parameters 6
2.1.2 Names and lists for GROUP definition 7
2.2 Functions. e e 7
221 DefBlock 7
2.2.2 CreateCell 7
2.2.3 CreateGroups e 8
2.2.4 CreateMesho 10

One channel — documentation 3

1 Introduction

The main goal of this documentation is to give an example how to generate a geometry and the
corresponding mesh for a single channel to be used in computational fluid dynamics (CFD) simulation.
Geometry and meshing tools are usually provided by commercial software packages but lacking in Open
Source codes like OpenFOAM!. The present example shows how to use another Open Source tool
SALOME? in order to generate the required mesh.

This example is used for a beginners tutorial for simulations uding OpenFOAM is used®. The geometry
of the single channel consists of a volume (the fluid zone) and it's surrounding walls, which are
the boundaries of the computational domain. The geometry is shown in Figure 1. Four different
boundaries are defined. The face named membrane can be used as an additional inlet or outlet.

/2

Figure 1: Single channel with boundaries; 1 = inlet, 2 = outlet, 3 = wall, 4 = membrane (the
additional regions at inlet and outlet are optional)

Sometimes, an additional requirement in CFD simulation is to systematically vary parameters — as
for example to check for grid independence or to search for an optimum in channel height or width.
Therefore, an automtated procedure is of advantage that generates the corresponding mesh. One
solution is to use the scripting ability of the Salome software. The scripting language is PYTHON.
The overall process of this example includes the following steps.

1. start the software Salome
2. generate geometry and mesh by using the script OneChannel.py

3. export the mesh to OpenFOAM

http:://www.openfoam.com
Zhttp::/ /www.salome-platform.org
3http://openfuelcell.sourceforge.net/

One channel — documentation 4

2 The script OneChannel.py

The script generates the geometry based on simple building blocks (cuboids). The PYTHON script
generates an internal data structure for the required geometry and creates a 'copy’ of it by calling
the corresponding access functions of SALOME. The following steps are necessary to run the script.
(This script was tested with SALOME 7.4.0.)

1. Open any text editor and adjust the input parameters in "OneChannel.py’
2. Start SALOME

3. Start a new session ('File’ — 'New’ or '"CTRL" + 'N")

4. Load the script ('File’ — 'Load Script’ or '"CTRL" + 'T")

The script runs automatically and the geometry and mesh are generated. If the script is finished it
prints ' ... done.” in the text console (located at the bottom of the SALOME windows).
The script consists of the following blocks which are explained in the following sections.

Header information This invokes the SALOME modules for geometry and mesh generation.
Declaration of input variables This contains all parameters which can be adjusted by the user.
Declaration of functions Here the internal functions are defined.

Main area Here the script is actually run. The functions are called step by step in order to generate
the geometry, create the surface and volume groups and finally to generate the mesh.

One channel — documentation 5

2.1 Declaration of input variables

The input variables are arranged in four blocks. The first two blocks contain parameters to specify
geometry and mesh. These are for user interaction. The second two blocks contain internal variables
which are inherently linked to the code. These parameters should only be changed by advanced users.

The input parameters are collected within an ordered list. This provides an interface for future versions
where this data could be imported form a text file or some other user interface. The geometry
parameters are shown below.

#+t GEOMETRY

myinput.append (0.0) # origin coordinate x
myinput.append (0.0) # origin coordinate vy
myinput.append (0.0) # origin coordinate z

S~
N = O

channel width x in m
channel length y in m
channel height z in m

myinput.append(1.0e—3)
myinput.append (20.0e—3)
myinput.append(1.0e—3)

S~
oW

myinput.append (False) (True) or (False) to have additional inlet and

outlet / 6
myinput.append (5.0e—3)
myinput.append (5.0e—3)

FH OHF FHFFHFH*

additional length of inlet in m /7
additional length of outlet in m / 8

The mesh parameters are shown below.

MESH
myinput.append(2) # mesh: (half of) number of segments per
channel width / 9
myinput.append (True) #(True) or (False) mesh: use mesh gradient in
channel / 10
myinput.append(10) # mesh: gradient value
/11 (factor for refinement (small numbers like 4 will give many cells
with little gradient / large numbers like 40 will give nice gradient))
myinput.append (2.0) # mesh: define number of segments for length of
channel as multiplier of the size of segments per channel width / 12
myinput.append(2) # mesh: (half of) number of segments per

channel height / 13

The number of segements per channel length is calculated automatically to produce the same mesh
size compared to the cross section of the channel. This can be changed by the user by setting a
multiplier to stretch the spacing in y-direction. The example above uses a value of 2.0 (entry number
12).

Important: Number of segements for channel width (and height) are defined by half of their actual
value in the input section (see code listing).

If the parameter for mesh gradient in channel is set to "True’ a gradient is assumed from middle of
channel towards the walls. Figure 2 (left) shows an example of a channel with a mesh resolution of

One channel — documentation 6

four by four. Figure 2 (right) shows an example with mesh size eight by eight and additional grading
towards the walls. The gradient is defined as a geometric progression. The largest cell is defined with
half the width of one block (i.e. a quarter of the actual channel width). The smallest cell is defined
by the input parameter (here 10 is used). In this example it is 1/10 of the the width of one block
(i.e. 1/20 of the actual channel width).

Figure 2: Left: channel mesh is 4 by 4 / Right: Channel mesh is 8 by 8 and has additional grading
with parameter value 10

2.1.1 Internal parameters

Here, three lists are defined. The list ‘'myboxes’ contains all box objects in the order they are created.
For each box the list 'myboxpts’ contains sublists of the eight corner points. The list "allgroups’
collects all groups which are defined within the function 'CreateGroups’. (This is needed to generate
the corresponding groups for the mesh.)

#HE internal parameters

myboxes = [] # container for all boxes
myboxpts = [] # container for all box points
allgroups = [] # container for all generated groups

One channel — documentation 7

2.1.2 Names and lists for GROUP definition

The definition of volume groups, face groups and their names is specific for the applied CFD model
in OpenFOAM.

75;# Names and lists for GROUP deflnltlon

##_ create an empty I|st for each group

volume groups

fluid = []

myfluidnames = [" fluid ']

face groups

fwall = []

finlet = []

foutlet = []

fmembrane = []

myfacegroups = [fwall, finlet , foutlet, fmembrane]
myfacenames = ['wall’, “inlet’, "outlet’, 'membrane’]

2.2 Functions
2.2.1 DefBlock

This function generates 8 vertices of a given block. Additionally to the three coordinates an offset for
the origin can be defined (x0, y0, z0). The points (corners) are collected in an ordered list and can
be accessed by the index as shown in Figure 3.

def DefBlock(mx, my, mz, x0, y0O, z0, mybox):
#: compute 8 points (8 corners) and add them to a list —> mybox (mybox
must be an empty list !I)
x—vector = mybox[0], mybox[1]
y—vector = mybox[0], mybox[3]
z—vector = mybox[0], mybox[6]
global geompy

pt = geompy.MakeVertex (x0, y0, z0)
mybox . append (pt)

pt = geompy.MakeVertex ((x0 + mx), y0, z0)
mybox . append (pt)

2.2.2 CreateCell

This function generates the geometry by building it up from blocks. The function CreateCell makes
a geometry with additional inlet and outlet region and the function CreateCell2 makes a geometry
without additional inlet and outlet region. The order for CreateCell is shown in Figure 4. For each
box the function 'DefBlock’ is called to generate the vertices. As a result the list 'myboxes’ contains

One channel — documentation

[5]

(4]

6]

[3]

[7

[2]

[o]

[1

Figure 3: Box with corners numbered according to the index of the list of points

all boxes in the order they have been created. The list ‘'myboxpts’ contains sublists with the vertices

of these boxes (arranged in the same order).

11 | 10
g 9
—

Figure 4: Order of stacking of boxes.(First set is for inlet relaxation, second set is main volume, last

set is outlet relaxation zone.)

2.2.3 CreateGroups

This function creates the volume and face groups which are required by a specific model in Open-
FOAM. The function CreateGroups is called for a geometry with additional inlet and outlet region
and the function CreateGroups2 is called in case of a geometry without additional inlet and outlet
region. The function consists of two blocks. The first block defines the volume groups and the second
block the face groups. Group operations must be performed on the united geometry (partition) and
not on the original boxes (otherwise they will not be accessible for the mesh). By generating the
partition the boxes of the united geometry have been internally re-numbered by SALOME. This is

One channel — documentation

common for such type of software. The new generated objects can be retrieved by means of an access
function, which now have the odering as showed in Figure 5. The first step is to obtain this ordered
list of the subshapes (boxes) and rearrange it into a list with the order defined in function 'CreateCell’

(see Figure 4).

M
z 9| 11
8 |l 10
5(7
4|6
13
02
X

Figure 5: Order of subshapes as returned by the access function of SALOME.

Sub—shapes will be sorted by coordinates of their gravity centers

this list of subshapes is sorted: increasing z / increasing x /
increasing vy

mylist = geompy.SubShapeAllSortedCentres(mychannel, geompy.ShapeType["
SOLID"])

here we assign face groups

we have to re—sort it to fit the correct order created in function
CreateCell

newboxes = [] # list to collect subshapes in the correct
order (according to function CreateCell)

newboxes.append(mylist [0])

newboxes.append(mylist [2])

newboxes.append(mylist [3])

newboxes.append(mylist [1])

newboxes.append (mylist [4])

newboxes.append(mylist [6])

newboxes.append(mylist [7])

newboxes.append(mylist [5])

newboxes.append(mylist [8])

newboxes.append(mylist [10])

newboxes.append (mylist [11])

newboxes.append (mylist [9])

After that the geometry is parsed with the loops which are defined in function 'CreateCell’. The first
block assigns volume groups and the second block face groups. In order to access the correct faces

One channel — documentation 10

the list of box vertices from function 'DefBlock’ are used.

m = myboxpts[i]

front = geompy. GetFaceByPoints(newboxes[i], m[0], m[1], m[6], m[7])
back = geompy. GetFaceByPoints(newboxes[i], m[2], m[3], m[4], m[5])
bottom = geompy. GetFaceByPoints(newboxes[i], m[0], m[1], m[2], m[3])
top = geompy.GetFaceByPoints(newboxes[i], m[4], m[5], m[6], m[7])
left = geompy. GetFaceByPoints(newboxes[i], m[0], m[3], m[5], m[6])
right = geompy. GetFaceByPoints(newboxes[i], m[1], m[2], m[4], m[7])

myfacegroups[0]. append(bottom)

2.2.4 CreateMesh

This function generates the mesh. The function CreateMesh is called for a geometry with addi-
tional inlet and outlet region and the function CreateMesh2 is called in case of a geometry without
additional inlet and outlet region. The following steps are performed.

1. Initialize all objects with 1 segment. This generates a very basic wire frame.

2. Define number of segments for length of channel and assign this value to the edge of the first
box (bottom left corner of the geometry).

3. Define number of segments for width of channel and assign it to the width of every channel.

4. Define number of segments for height of channel, interconnect, GDL, electrolyte and assign
them to the correct edges.

5. Copy all groups from the geometry into the mesh.

The respective number of segments are assigned only to some key egdes. After each step all affected
edges are initialized by calling the automatic propagation method.

