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Abstract: Exopolysaccharides (EPSs) are important biopolymers with diverse applications such as
gelling compounds in food and cosmetic industries and as bio-flocculants in pollution remedia-
tion and bioplastics production. This research focuses on enhancing crude EPS production from
Rhodotorula mucilaginosa sp. GUMS16 using the central composite design method in which five levels
of process variables of sucrose, pH, and ammonium sulfate were investigated with sucrose and
ammonium sulfate serving as carbon and nitrogen sources during microbial incubation. The optimal
crude EPS production of 13.48 g/100 mL was achieved at 1 g/100 mL of sucrose concentration,
14.73 g/100 mL of ammonium sulfate at pH 5. Variations in ammonium sulfate concentrations
(1.27–14.73 g/100 mL) presented the most significant effects on the crude EPS yield, while changes in
sucrose concentrations (1–5 g/100 mL) constituted the least important process variable influencing
the EPS yield. The Rhodotorula mucilaginosa sp. GUMS16 may have the potential for large-scale
production of EPS for food and biomedical applications.

Keywords: exopolysaccharide; Rhodotorula mucilaginosa; central composite method; experimental
optimization

1. Introduction

The use of polysaccharides, in the production of hydrogels, films, aerogels etc. for
application in tissue engineering, is well known [1–6]. The current study, therefore, pro-
poses the biosynthesis of valuable exopolysaccharides (EPSs), from carbon and nitrogen
substrates, under the action of microbes by enabling the chemical condensation of intra-
cellular nucleotide sugars and starter precursors in several metabolic pathways [7,8]. The
biosynthesis of high molecular weight EPS incorporates the biosorption of nutrients [7,8].
The produced EPSs are water-soluble long-chain branched sugar derivatives that may exist
as homopolymers or heteropolymers and are characterized by a wide diversity of chemical
structures [9,10]. These branched sugar derivatives may also contain non-polysaccharide
substituents such as phosphate, acetyl, and glycerol [10,11]. Compared to conventional
plant or algal sourced polysaccharides, EPSs are characterized by lower production costs
and more efficient downstream processing, illustrated by the potential for continuous har-
vesting from the cell-free culture supernatant [12]. EPSs are also characterized by unique
amphiphilic, gelling, biocompatibility, biodegradability, bioactivity properties have diverse
biomedical, environmental and food applications [2,7,13,14]. These properties highlight
that EPS may be particularly useful in tissues engineering [15,16]. Despite the benefits, the
commercial viability of EPS production has thus far been limited due to the low yields
of typically <9 g/100 mL [3,17]. It is, therefore, necessary to explore opportunities for
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enhanced EPS production via proper microbial strain selection and EPS production op-
timization. In line with the need for appropriate microbial strain selection, a previous
study identified that the new cold-adapted yeast of Rhodotorula mucilaginosa sp. GUMS16
has biomedical application for skin wound healing [18]. The quantitative variation of
fungal EPS yields is largely dependent on the processing conditions of culture medium
composition and fermentation conditions [19]. Therefore, the present study investigates the
preferred culture medium composition (i.e., carbon and nitrogen content) and fermentation
conditions (i.e., pH) for enhanced EPS production from the Rhodotorula mucilaginosa sp.
GUMS16 [20] using sucrose and ammonium sulfate as carbon and nitrogen precursors.
Additionally, given the important role of pH in regulating microbial functions [21,22], the
effect of pH value on EPS yield was also investigated. Previous studies reported optimizing
EPS production from different bacteria such as Micrococcus roseus and Lactobacillus plan-
tarum, respectively [23,24]. For instance, Ermiş et al. [25], optimized the EPS yield from
Lactobacillus brevis and showed that the optimal EPS yield of 3.5 g/100 mL was obtained
when the initial process pH of the medium was 6.5 with 18 h incubation time at 35 ◦C. The
novelty of the present study is to focus on the optimization of the yield of EPS from the
cold-adapted yeast of Rhodotorula mucilaginosa sp. GUMS16. The central composite design
(CCD) method was employed to optimize EPS yield and the significance of the process
parameters on EPS yield are also assessed in this study.

2. Materials and Methods
2.1. Microorganism

The Rhodotorula mucilaginosa sp. GUMS16, a cold-adapted yeast we previously re-
ported in [26] was employed. Briefly, Rhodotorula mucilaginosa sp. GUMS16 was isolated
from leaf debris of Deylaman jungle, Guilan, Iran and then initially cultured using stan-
dard potato dextrose agar (PDA) plates (HiMedia, New Delhi) containing the culture
medium. The incubation was undertaken at the temperature of 25 ◦C for 24 h. The resulting
Rhodotorula mucilaginosa sp. GUMS16 was manifested as orange-colored colonies.

2.2. Preparation of Inoculum

The 24 h-old culture, at the logarithmic stage of growth, with an optical density
(600 nm) of 0.8, was used as the inoculum in all experiments. These cultures were used as
inoculum at 10% (v/v) for all the experiments.

2.3. Experimental Design, Statistical Analysis, and Optimization

CCD methodology based on using a five-level rotatable central composite design
was employed to optimize the culture conditions of pH, sucrose, and ammonium sulfate
concentrations for enhanced EPS production by Rhodotorula mucilaginosa sp. GUMS16.
A total of 20 experiments were conducted. Based on the ranges of the process variables
specified above, the coded values were determined as follows [27];

Xi =
Xi − X0

∆X
(1)

where Xi denotes the coded value of the process variable; Xi is the process variable’s actual
value; X0 denotes the actual value of Xi at the center point with the step change value
denoted as ∆X.

The values of the process variables and their associated coded values are presented in
Table 1.
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Table 1. Coded and actual levels used in the CCD experimental method.

Parameters Coded and Actual Values for the
Levels in the Experimental Design

Low axial Low Center High High axial

Levels −2 −1 0 +1 +2

pH value, p (dimensionless) 0.64 2 4 6 7.36

Sucrose concentration, S (g/100 mL) 0 1 3 5 6.36

Ammonium sulfate concentration, A (g/100 mL) 1.27 4 8 12 14.73

The significance of each process variable on the EPS yield was assessed based on
the analysis of the associated student F-value of the process variable compared to the
critical F-value (determined to be 3.37 for a 95% confidence level) of the experimental
data as described in the literature [28,29]. In this approach, the significance of a process
variable is determined by the magnitude by which the statistical student F-value exceeds
the critical F-value. The significance of the variables was also assessed using the p-value of
each process variable such that the level of significance was determined by the magnitude
of difference of p-value from 0.05 for a 95% confidence level. The experimental results
of the central composite design were then employed to generate an empirical relation in
accordance with the second-order polynomial equation as follows:

YEPS = X0 +
3

∑
i=1

biXi +
3

∑
i=1

biiXi
2 +

3

∑
i=1

∑
j=1

bijXiXj (2)

where YEPS denotes the EPS yield, g/100 mL, X0 represents the model intercept, Xi (Xj)
represents the ith (jth) system variable (pH, sucrose, and ammonium sulfate concentrations,
g/100 mL), bi, bii, and bij represent the model regression coefficients.

The sufficiency of the developed empirical model was initially assessed via the deter-
mination of the associated correlation coefficient (R2) [30]. Further assessments involved
statistical analysis using analysis of variance (ANOVA). Statistical analysis of the data was
performed using the statistical software of Minitab® 17.1.0 (Minitab, Inc., State College, PA,
USA). The empirical model was subsequently employed to determine the values of the
process variables that will facilitate an optimal EPS yield via the numerical optimization
algorithm method available in Minitab software. The estimated operating conditions for
the optimal EPS yield were then validated experimentally. The predicted optimal EPS yield
and the experimentally optimal EPS yield were subsequently compared.

2.4. Culture Conditions

The Potato Dextrose Broth (PDB) (HiMedia, New Delhi) containing 2.4 g/100 mL
of dextrose was modified with different combinations of the independent variables (pH,
sucrose, and ammonium sulfate concentrations), following the experimental design. The
ranges of the pH value, sucrose, and ammonium sulfate concentrations investigated were
specified as 2–6, 1–5 (g/100 mL) and 4–12 (g/100 mL), respectively. All experiments were
conducted in 250 mL Erlenmeyer flasks containing 90 mL of the growth medium. After
inoculation, the flasks were incubated with shaking at 150 rpm in the dark for 5 days at
25 ◦C. The sucrose was added in addition to the dextrose which present in PDB, since
sucrose has reported as the preferred carbon source for EPS production [31,32]. Further-
more, most microorganisms have been reported to use ammonium salts or amino acids as
nitrogen sources for polysaccharide production [33], and several studies had previously
demonstrated the sufficiency of the use of ammonium sulfate to achieve optimal EPS
yields [23,34]. Therefore, ammonium sulfate was selected as the preferred nitrogen source.
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2.5. Recovery of the EPS

After incubation, the EPS containing media was centrifuged at 8500× g for 30 min at
4 ◦C and the supernatant containing the EPS was kept. The EPS was precipitated from the
supernatant using the drop-by-drop addition of cold 96 wt.% ethanol with simultaneous
stirring followed by overnight incubation at 4 ◦C. The precipitated EPS was also washed
with cold ethanol followed by 8500× g centrifugation for 20 min at 4 ◦C. After evaporation
of ethanol (i.e., when the mass of the EPS pellets remained constant), the resulting EPS pellet
was dissolved in distilled water, frozen and lyophilized using a freeze dryer instrument
(Christ Alpha 1-2 LDplus, Nemacka, Germany). Finally, the mass of EPS produced was
measured using a precision analytical balance (Sartorius Quintix®, Göttingen, Germany), in
g. The yield was reported as the mass of EPS in g per 100 mL of the substrate and denoted
as YEPS. Figure 1 shows the schematic diagram of the EPS extraction and recovery process.

Figure 1. Exopolysaccharide extraction and recovery process from Rhodotorula mucilaginosa sp. GUMS16.

3. Results and Discussions
3.1. Model Fitting

The CCD and the yields for the different levels of the process variables investigated
are shown in Table 2. Table 2 shows that the highest EPS yield is 13.05 g/100 mL at pH,
sucrose concentration and ammonium sulfate concentration conditions of 4, 3 g/100 mL
and 14.73 g/100 mL, respectively. Table 2 highlights the favorable impact of the nitrogen
source in EPS yield when Rhodotorula mucilaginosa sp. GUMS16 was employed. Therefore,
EPS yield positively correlates with a higher nitrogen source concentration, highlighting
the important role of nitrogen in the biosynthesis of proteins and polysaccharides by the
yeast [35,36].

Employing the experimental results presented in Table 2 in conjunction with the model
form highlighted in Equation (3), to generate a fitted empirical relation describing EPS
yield as a function of the process variables as follows.

YEPS = −4.82 + 1.641p − 0.447S + 1.310A − 0.1726p2 + 0.0821S2

−0.0138A2 + 0.0266p × S + 0.0039p × A − 0.0414s × A
(3)
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Table 2. The yield of crude exopolysaccharides (EPSs) generated at the different process conditions.

Runs Coded Values of Parameters Actual Values of Parameters Response

p S
(g/100 mL)

A
(g/100 mL) p S

(g/100 mL)
A

(g/100 mL)
YEPS

(g/100 mL)

1 −1.68 0 0 0.64 3 8 2.59

2 0 0 0 4 3 8 8.13

3 −1 1 1 2 5 12 10.09

4 0 0 −1.68 4 3 1.27 0.19

5 −1 −1 1 2 1 12 11.54

6 0 0 0 4 3 8 7.23

7 1 1 1 6 5 12 10.64

8 0 0 0 4 3 8 7.00

9 −1 1 −1 2 5 4 2.83

10 −1 −1 −1 2 1 4 2.93

11 0 0 0 4 3 8 7.53

12 0 0 0 4 3 8 6.84

13 0 1.68 0 4 6.36 8 7.38

14 1 −1 −1 6 1 4 2.93

16 1.68 0 0 7.36 3 8 7.99

17 1 1 −1 6 5 4 3.23

18 1 −1 1 6 1 12 11.64

19 0 0 0 4 3 8 7.91

20 0 0 1.68 4 3 14.73 13.05
p denotes pH value, S denotes sucrose concentration, A denotes ammonium sulfate concentration and YEPS
denotes crude EPS yield.

This fitted relation was determined to have a coefficient of determination (R2) value
of 0.9615, indicating that the fitted relation did not sufficiently describe only 3.85% of the
experimental dates data and that the model is sufficient to describe the experimental results
given the R2 value exceeds the lowest acceptable R2 value of 0.7 for scientific studies [37,38].
The fitted relation in Equation (3) was therefore employed in assessing the effects of the
process variables using surface plots in the subsequent section.

3.2. Effects of the Process Variables
3.2.1. Effect of pH

Figure 2a shows that EPS yield initially increased from 5 g/100 mL to 8 g/100 mL
as the pH increases from 0.64 to 4, with the EPS yield decreasing with further increments
in the pH value. This observation is indicative of the unfavorable impact of alkaline
environments on EPS yield. It is consistent with the literature since the EPS chemical
structure is modified and disrupted at high pH conditions [39]. The preference for lower
pH values to enable EPS production is also consistent with earlier studies that showed
enhanced EPS production by microbes of Cryptococcus genus, Lactobacillus casei CRL 87
and Lactobacillus confusus TISTR 1498 at pH values of 4, 6, and 5.5, respectively [31,40].
Notably, while low pH values may favor EPS production [41], the result suggests that
highly acidic conditions (i.e., pH < 4) may lead to unwanted excessive acidification during
EPS accumulation, which may negatively impact the yeast growth.
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Figure 2. Surface plot highlighting the effect of process variables on the crude EPS yield (EPS, g/100 mL). (a) denotes the 3D
surface plot showing variations in crude EPS yield as pH and sucrose concentration changes at constant ammonium sulfate
concentration of 8 g/ 100 mL. (b) denotes the 3D surface plot showing variations in crude EPS yield as sucrose concentration
and ammonium sulfate concentration changes at a constant pH of 4. (c) denotes the 3D surface plot showing variations in
crude EPS yield as pH and ammonium sulfate concentration changes at a constant sucrose concentration of 3 g/ 100 mL.
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3.2.2. Effect of Ammonium Sulfate Concentration

Figure 2b highlights a positive correlation between the ammonium sulfate concen-
tration (i.e., nitrogen source) and the EPS yield since EPS yield increases from ~0.19
to ~13 g/100 mL as the concentration of ammonium sulfate increases from ~1.27 to
~14.73 g/100 mL. This observation indicates the favorable role of nitrogen on EPS pro-
duction by Rhodotorula mucilaginosa sp. GUMS16. However, a critical review of existing
literature shows significant variations in the effect of higher nitrogen concentrations on
EPS yield. Some previous reports showed that higher nitrogen presented unfavorable
effects on the EPS yield by P. acidipropionici and on the other hand, favorable effects on EPS
production by S. thermophilus [42].

These observations suggested that the effect of nitrogen on EPS yield is microbe
microbe-specific and that there is a need to determine the ideal nitrogen concentration for
enhanced EPS yield on a ‘case by case’ basis [42].

3.2.3. Effect of Sucrose Concentration

Figure 2c highlights the marginal effect of increments in sucrose concentrations (i.e.,
carbon source) on the yield of EPS produced by Rhodotorula mucilaginosa sp. GUMS16. This
observation is consistent with the literature, which showed positive correlations between
EPS production and carbon concentration [41,43,44]. Some studies have highlighted that
the positive effect of carbon on EPS yield is not sustained, with excessive carbon leading
to a reduction in the EPS yield due to catabolite repression [45]. The absence of this
effect (i.e., increasing carbon leading to decrease in EPS yield) suggests that the maximum
carbon concentration may yet to be attained, with higher sucrose concentrations proposed
to be studied in future investigations. Given that the results show that while higher
ammonium sulfate (i.e., nitrogen source) concentrations enable higher EPS yields, higher
sucrose concentrations (i.e., carbon source) lead to marginal improvements in EPS yield
overall. This observation implies that lower carbon to nitrogen ratios favor enhanced EPS
productivity when Rhodotorula mucilaginosa sp is employed. This observation is consistent
with the study by [36] in which the EPS yield by Haloferax mediterranei was shown to present
a linear and negative correlation with the C/N ratio. In another study, variations in the
C/N ratio did not lead to changes in the EPS productivity [46], thus suggesting that the
effect of the C/N ratio on EPS yield is also microbe-specific.

Table 3 shows that variations in the ammonium sulfate (A) constitutes will present the
most significant independent effect on EPS yield as illustrated by the highest F-value of
208.80 compared to the F-values of 7.46 and 1.15 for pH value (p) and sucrose concentration
(S) respectively. The results also imply that variations in pH constitute the next most
significant parameter that influences EPS production, given that the associated F-value
is greater than the critical F-value of 3.37. These results also indicate that the effect of
variations in sucrose concentration (S) present the least significant process variable given
that its F-value of 1.15 is less than the critical F-value of 3.37. The calculated F-values of the
interactions of the process variables of p × S, p × A and A × S terms were not shown to be
significant since the F-values were determined to be less than critical F-value of 3.37.

The empirical relation in Equation (3) and the optimization algorithm in Minitab
were employed in determining the conditions that facilitate optimum EPS production
by Rhodotorula mucilaginosa sp. GUMS16. The conditions of pH, sucrose concentration
and ammonium sulfate concentration will facilitate the predicted optimal EPS yield of
14.83 g/100 mL were 5, 1 g/100 mL and 14.73 g/100 mL, respectively. The validation of
these process conditions for optimal EPS yield was undertaken, and the experimentally
determined results are presented in Table 4.

Table 4 shows that the predicted optimal EPS yield at the determined conditions is
comparable with the experimentally determined EPS yield, with a relative absolute error
of 0.09 calculated.
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Table 3. Analysis of variance (ANOVA) of the model for the EPS production.

Source DF Adj SS Adj MS F-Value p-Value Remarks

Model 9 226.52 25.17 24.96 0.00 **

p 1 7.52 7.52 7.46 0.02 **

S 1 1.16 1.16 1.15 0.31 *

A 1 210.51 210.51 208.80 0.00 **

p2 1 6.54 6.54 6.48 0.03 **

S2 1 0.91 0.91 0.90 0.37 *

A2 1 0.67 0.67 0.66 0.44 *

p × S 1 0.09 0.09 0.09 0.77 *

p × A 1 0.01 0.01 0.01 0.93 *

A × S 1 0.88 0.88 0.87 0.38 *
In Table 3, * denotes low significance when the F-value is less than 3.37 while ** denotes high significance, i.e.,
when the F-value is greater than 3.37.

Table 4. Predicted and experimentally determined optimum EPS yields.

YEPS, (g/100 mL)
(Predicted. Yield)

YEPS, (g/100 mL)
(Exp. Yield) Relative Absolute Error

14.83 13.48 0.09
YEPS denotes the yield of exopolysaccharide.

A comparison of the optimum EPS of 13.48 g/100 mL as determined in the current
study with the EPS reported in previously reported works demonstrates the high pro-
ductivity of the EPS from Rhodotorula mucilaginosa sp. GUMS16. Of course, the dextrose
content of the PDB of 2.4 g/100 mL may also contribute as a carbon source, thus may partly
explain the high yield of crude EPS recorded. The yield of crude EPS from Rhodotorula
mucilaginosa sp. GUMS16 may be indicative of its commercial potential since its EPS
yield exceeded the reported optimal EPS yields of 2.2 g/100 mL, 11.8 g/100 mL and
12.6 g/100 mL generated from Bacillus mucilaginosus CGMCC5766, Cupriavidus pauculus
KPS 201 and Spirulina Platensis, respectively, reported in the literature [47–49]. The to-
tal sugar content of the optimally generated EPS was also determined using the phenol
sulfuric acid method [50,51]. It was determined that the mean sugar content was 60%
mass basis and was comparable to the sugar content of EPS reported in a previous work
that ranges from 34–71% mass basis [52]. Other components in EPS such as proteins and
macro-molecules such as DNA, lipids, and humic substances were not measured in the
current study. The current study acknowledges that further purification processes involv-
ing ion-exchange chromatography and size exclusion chromatography may be required
to enhance the purity of the EPS extract [53]. These additional purification steps have not
been considered in the present study, implying that the EPS yield reported in the current
study may be referred to as ‘crude EPS’. We also acknowledge that further purification
may lead to a change in the EPS yield. The impacts of such purifications on EPS yield will
be investigated in future studies. Nevertheless, the present study establishes the potential
of employing Rhodotorula mucilaginosa sp. GUMS16, to facilitate optimal production of
useful EPS. Crucially, the current study also aligns with current research interest in the
exploration of the circular economy paradigm [54], which involves the recovery of high
value products (i.e., EPS) from low value feeds (i.e., ‘soft’ carbon sources like sucrose).

4. Conclusions

The present study investigated the production of extracellular polysaccharides (EPS)
by Rhodotorula mucilaginosa sp. GUMS16, with emphasis on the process conditions that
facilitate enhanced EPS yield. In the study, the process conditions of carbon concentra-
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tion, nitrogen concentration, and pH were assessed, with sucrose and ammonium sulfate
employed as carbon and nitrogen precursors, respectively. The study established that
changes in ammonium sulfate (nitrogen precursor) constituted the most important factor
that influenced EPS yields, with sucrose (carbon precursor) concentration shown to be the
least important process variable in the present study. Further investigations also estab-
lished that the optimal crude EPS yield of 13.48 g/100 mL from Rhodotorula mucilaginosa sp.
GUMS16 was achieved at pH, sucrose concentration and ammonium sulfate conditions of
5.1 g/100 mL 14.73 g/100 mL, respectively, were imposed.
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