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Abstract: In the present investigation, response surface methodology (RSM) and machine learning
(ML) are applied to the biodiesel production process via acid-catalyzed transesterification and
esterification of triglyceride (TG). In order to optimize the production of biodiesel from used cooking
oil (UCO) in a microwave reactor, these models are also compared. During the process, Box–Behnken
design (BBD) and an artificial neural network (ANN) were used to evaluate the effect of the catalyst
content (3.0–7.0 wt.%), methanol/UCO mole ratio (12:1–18:1), and irradiation time (5.0–9.0 min). The
process conditions were adjusted and developed to predict the highest biodiesel yield using BBD
with the RSM approach and an ANN model. With optimal process parameters of 4.94 wt.% catalyst
content, 16.76:1 methanol/UCO mole ratio, and 8.13 min of irradiation time, a yield of approximately
98.62% was discovered. The coefficient of determination (R2) for the BBD model was found to be
0.9988, and the correlation coefficient (R) for the ANN model was found to be 0.9994. According
to the findings, applying RSM and ANN models is advantageous when optimizing the biodiesel
manufacturing process as well as making predictions about it. This renewable and environmentally
friendly process has the potential to provide a sustainable route for the synthesis of high-quality
biodiesel from waste oil with a low cost and high acid value.

Keywords: machine learning; artificial neural network; response surface methodology; Box–Behnken
design; optimization; biodiesel production; waste conversion; process innovation

1. Introduction

In recent years, the consumption of energy has significantly increased as a result of a
shift toward less traditional ways of living as well as a general rise in the world’s population.
The upward trend in energy demand has been met by an increase in the utilization of
petroleum fuels, which is having a devastating effect on the environment in the form of
increased temperatures caused by global warming and a reduction in the amount of forest
cover. The use of fossil fuels as a source of energy is fraught with constraints. Because of
this, there has been a quest for an alternative fuel that can be replenished, such as biofuel,
because the demand for energy is growing at such a rapid rate [1].

Biodiesel’s appeal as a replacement fuel source has increased as a result of the ongoing
petroleum product crisis. Biodiesel is a renewable fuel that is also biodegradable, is environ-
mentally friendly, has low emissions, and is non-toxic; it may be used in conventional diesel
engines [2]. The production of biodiesel can be carried out through either a homogenous or
a heterogenous process. Homogeneous synthesis, which exhibits high levels of catalytic ac-
tivity, typically involves the employment of chemical catalysts. However, there are several
drawbacks, such as the inevitability of the generation of wastewater during the washing
process, which cannot be recycled, and the fact that when homogeneous catalysts are
employed, a one-step procedure is typically insufficient to create high-quality biodiesel [3].
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Environmental restrictions and streamlining of current processes are driving a shift away
from homogeneous catalysts toward predominantly heterogeneous catalysts. There is no
longer any need to remove water from the commercial biodiesel production process or
neutralize homogeneous catalysts when using heterogeneous catalysts. In addition, solid
catalysts are simple to recycle, since they can be filtered out of the reaction mixture [4].
There are a variety of methods that could be used to increase the quantity and quality of
biodiesel production from biomass sources. These primarily depend on the synthesis and
quality monitoring of the production, with esterification and transesterification being the
most common and cost-effective techniques [5].

The processes of transesterification and esterification are both dependent on the
conditions of the reaction. The values of these reaction parameters have a direct impact on
the biodiesel production process as well as the amount of fatty acid methyl ester (FAME)
produced. Response surface methodology (RSM) was applied to conduct a thorough
evaluation of the effects that input parameters have on output values. Utilizing this method
will allow producing experiment matrices that are dependent on the input parameters one
provides. This will allow attaining the best possible outcomes. RSM has been utilized
by a number of studies for the purpose of optimizing yields by collecting appropriate
comparisons of reaction parameters, which has finally resulted in lower costs, material
reductions, and time savings [6].

An artificial neural network (ANN) is a method of prediction and modeling that has
shown to be effective. It is a machine learning (ML) technique that was developed by
simulating the functioning of the human brain. An ANN is a useful tool for problem-
solving in the fields of engineering and research, particularly in situations where traditional
modeling methods are ineffective, such as when a problem is nonlinear or complex. The
performance of biodiesel-based fuels may be predicted by an ANN that has been trained,
tested, and verified using data. This type of ANN could also be used to increase biodiesel
production by increasing the yield of FAME through optimization [7].

This study describes a method for producing biodiesel from used cooking oil (UCO) in
a microwave reactor using heterogeneous catalysts made from acid-activated forms of palm
seed cake (PSC). To improve the biodiesel production process, RSM based on Box–Behnken
design (BBD) and ML based on ANN algorithms are used. They are utilized to assess a wide
range of variables (including catalyst content, methanol/UCO mole ratio, and irradiation
time), as well as their interactions, and to reduce the number of required experimental trials
in order to carry out the experiment more quickly and accurately. Because of this, BBD
and ANN are superior to other systems in terms of their ability to forecast, effectiveness
at parameter adjustment, and number of required repetitions. That is, the novelty of this
research is that it applies BBD and ANN analytical tools to the UCO biodiesel process with
a sulfonated palm seed cake (SPSC) catalyst by making useful models and judging how
well those models work.

2. Methodology for Research
2.1. Materials

The UCO feedstock, which had a high free fatty acid (FFA) concentration, was received
for free from a number of eateries located in the vicinity of Silpakorn University in Nakhon
Pathom, Thailand. It was first filtered to remove any contaminants, and then, it was
heated in an oven at a temperature of 100 ◦C for 0.5 h in order to evaporate any remaining
moisture. The palm seed cake (PSC) was acquired from Absolute Palm Co., Ltd., Bangkok,
Thailand. Sulfonic acid (SO3H), zinc chloride (ZnCl2) and methanol were all analytical-
grade chemicals (Merck Ltd., Bangkok, Thailand, better than 99% purity) that were utilized
precisely as supplied. In our previous publication [8], we described the preparation and
characterization of the SPSC catalyst used in this study for biodiesel production.
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2.2. Biodiesel Synthesis from UCO in a Microwave Reactor

The following is a description of the experimental procedure that was employed for
the synthesis of biodiesel as displayed in Figure 1. The processes of transesterification
and esterification of triglyceride (TG) were carried out in a glass reactor with a capacity
of 250 mL, which was fitted with a condenser and a mechanical stirrer and put inside of a
home microwave oven manufactured by Samsung in Korea. The pressure in the microwave
reactor was kept at atmospheric level. Following the addition of the constant 50 g of UCO
and the required amount of the synthesized SPSC catalysts (at catalyst content of 3.0, 5.0,
and 7.0 wt.%), the methanol was then added to the waste oil at varied methanol/UCO molar
ratios of 12:1, 15:1, and 18:1. Under the influence of microwave irradiation, the reaction
was carried out at 800 W for varying amounts of time in the range of 5.0–9.0 min before it
was abruptly terminated by being rapidly cooled in an ice bath [9]. Gas chromatography–
mass spectrometry (GC-MS, QP2010 Plus, Shimadzu Corporation, Japan) was utilized to
determine the biodiesel’s composition. The instrument was fitted with a flame ionization
detector and a capillary GC column (DB-WAX, Carbowax 20M, 30 m × 0.32 mm × 0.25 µm)
utilizing the inner standard method described by Buasri et al. [10]. The temperature ranged
from approximately 60 ◦C to 325 ◦C. The yield of UCO biodiesel was determined by
first calculating the weight of UCO biodiesel, then dividing that weight by the weight of
UCO, and finally multiplying that number by 100 to obtain the %yield of biodiesel.
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Figure 1. Experimental setup for biodiesel synthesis from UCO in a microwave reactor.

2.3. Design of Experiments (DoE) by BBD Modeling

In order to obtain the highest quality biodiesel yield from the transesterification and
esterification process, it is necessary to take into account a variety of process parameters [11].
Some of these factors include the amount of catalyst content, the mole ratio of methanol to
UCO, and the amount of time spent under irradiation. As a result, the tests were carried out
in accordance with a DoE that was created using Design-Expert® Software, version 13 (Stat-
Ease, Inc., Minneapolis, Minnesota, United States of America), as demonstrated in Table 1.
The RSM optimization strategy was used with aid from BBD, and 20 trials were carried out
in a randomized way by adjusting the values of the process variables in accordance with
the DoE. To assess the model’s fit, the analysis of variance (ANOVA) test was used [12].
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Table 1. Process variables and code levels of BBD modeling for biodiesel production.

Process Variables Symbol Units
Levels

Low
−1

Mid
0

High
+1

Catalyst content A wt.% 3.0 5.0 7.0
Methanol/UCO mole ratio B mol/mol 12:1 15:1 18:1
Irradiation time C Min 5.0 7.0 9.0

2.4. Improvement of Biodiesel Process by ANN Modeling

ANN are a subfield of artificial intelligence (AI) or ML, two branches of computer
science that aim to create technology that mimics human intellect. AI is being applied
across a wide variety of industries to find solutions to difficult and nonlinear issues. ANN is
a type of algorithm that attempts to mimic the working of the neurological central systems
of animals, most notably the brain. An ANN is able to learn from previous experiences,
is fault-tolerant, and can process data that is noisy and complex. After being trained, an
ANN is able to improve upon the information it was initially created to anticipate while
also making accurate predictions of new data [13]. For modeling of the process parameters
of the acid-catalyzed transesterification and esterification reaction, a feed-forward back-
propagation (BP) multi-layer perception (MLP) neural network analysis is performed using
the Levenberg–Marquardt (LM) algorithm [14]. MATLAB® software R2020b 9.9.0.1467703
(MathWorks, Inc., Natick, MA, USA) employs the neural network utility for this purpose.
The training parameters of the ANN are presented in Table 2. The application of the
ANN with the LM algorithm consisted of 3 stages based on a set of input and output
data of the DoE with replication. These stages were then subdivided into 3 subsets and
referred to as training, testing, and validation, respectively [15]. In addition to analyzing
the interactive effects of input variables on yield of biodiesel, suitable models were also
developed [16]. The procedure for manufacturing biodiesel utilizing an SPSC catalyst from
UCO and methanol in a microwave reactor is depicted in Figure 2. This procedure was
improved using BBD and ANN modeling.

Table 2. Process parameters of ANN training, modeling, and optimization for biodiesel production [15].

Property Value/Comment

Training algorithm Levenberg-Marquardt (LM) or trainlm
Back-propagation (BP)

Learning Supervised
Input layer No transfer function is used
Hidden layer TANSIG transfer function
Output layer PURELIN transfer function
Number of best iterations/epoch 5
Number of input neurons 3
Number of hidden neurons 10
Number of output neurons 1

The data in ANN modeling were randomly partitioned into 3 subsets: training, val-
idation, and testing data. During the first step, 70% of the data from the experimental
dataset were randomly selected, and the weighted parameters of the connections were
refined until the mean squared error (MSE) between experimental and expected biodiesel
yield was reached. In the second step, 15% of the data were chosen at random to test the
“trained”, and the ANN employed the weighted parameters computed in the previous
stage. Finally, in the third stage, 15% of the remaining data subsets were utilized to validate
the final estimation of biodiesel yield using the previously mentioned ANN constructed in
two steps [17,18]. The experimental data that have been gathered may be utilized to make
predictions about the yield for datasets that have not yet been collected, as well as about the
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experimental conditions that will provide the highest yield. The training dataset typically
comprises the experimental values or data that are input, as well as the experimental
findings that are output. This type of dataset is used to understand the relation between
the input and output functions. A portion of the experimental dataset is used for training,
and this portion, which is referred to as the training dataset, is used [19].
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microwave reactor using BBD and ANN modeling.

3. Results and Discussion
3.1. Modeling and Optimization of Biodiesel Process Using RSM

The BBD was used in a total of 20 different tests in order to optimize the three most
important transesterification and esterification variables. These factors were the catalyst
content, the methanol-to-oil mole ratio, and the irradiation time. The experimental design
is presented in Table 3, together with the actual and predicted %FAME content values.

Table 3. Experimental and predicted biodiesel yield of 20 runs using BBD modeling.

Run
A

Catalyst Content
(wt.%)

B
Methanol/UCO

Mole Ratio
(mol/mol)

C
Irradiation Time

(min)

Experimental
Biodiesel Yield

(%)

Predicted
Biodiesel Yield

(%)

1 5 15 7 90 89.68
2 5 12 5 43 42.25
3 5 15 7 90 89.68
4 5 15 7 90 89.68
5 5 15 7 90 89.68
6 3 12 7 51 50.82
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Table 3. Cont.

Run
A

Catalyst Content
(wt.%)

B
Methanol/UCO

Mole Ratio
(mol/mol)

C
Irradiation Time

(min)

Experimental
Biodiesel Yield

(%)

Predicted
Biodiesel Yield

(%)

7 7 12 7 44 45.34
8 5 12 9 56 55.56
9 5 15 7 90 89.68

10 5 15 7 90 89.68
11 3 18 7 90 89.01
12 5 15 7 90 89.68
13 3 15 9 84 84.11
14 7 15 5 77 77.31
15 7 15 9 85 83.78
16 5 18 9 96 96.62
17 7 18 7 99 98.39
18 5 15 7 90 89.68
19 5 18 5 92 92.44
20 3 15 5 72 73.08

The maximum yield of biodiesel was achieved with a catalyst loading of 7.0 wt.%
and a methanol/UCO mole ratio of 18:1 after a reaction time of 7 min. Nevertheless,
the lowest biodiesel yield was obtained with a methanol/UCO mole ratio of 12:1, an
irradiation period of 5 min, and a catalyst component of 5 wt.%. In order to provide an
accurate forecast of the amount of biodiesel that may be generated, the experimental data
were put through a series of nonlinear regression analyses, which led to the development
of a quadratic model (Equation (1)).

Y = 89.68 + 0.975A + 22.81B + 4.37C − 5.47A2 − 13.32B2 − 4.64C2 + 3.71AB − 1.14AC − 2.28BC (1)

where Y denotes the responses (biodiesel yield) that have been forecasted, and the letters A,
B, and C stand for the code values that have been assigned to the test variables of catalyst
content, methanol/UCO mole ratio, and irradiation time, respectively. The interaction
terms are denoted by the letters AB, AC, and BC, whereas the quadratic terms are denoted
by the letters A2, B2, and C2. A synergistic impact is indicated by a positive parameter in a
regression equation.

This type of impact occurs when the result grows as the amount of input from
independent variables increases. On the other hand, a negative sign indicates the
opposite effect, which is a situation in which the response improves as the number of
input factors decreases [20].

The results of an ANOVA testing the BBD model’s appropriateness and suitability
are presented in Table 4. The fact that the model has an F-value of 909.89 indicates that
it is significant. A noise level of this magnitude would only have a 0.01% probability of
producing an F-value of this magnitude. According to the results of the regression analysis,
all three of the parameters had a substantial influence on the FAME content. This conclusion
is supported by the p-values. If the p-value for a model term is less than 0.0500, then it can
be considered significant. The F-value for the Lack of Fit is 681.75, which indicates that the
Lack of Fit is significant. There is just a 0.01% possibility that a Lack of Fit F-value that high
might be caused by noise. This probability is extremely low. The regression model gives
an accurate description of the experimental data, demonstrating that there is a successful
correlation between the three transesterification/esterification process parameters that
affect the amount of biodiesel produced [21].
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Table 4. ANOVA for the fitted polynomial quadratic model of biodiesel yield using BBD modeling.

Source Sum of Squares Df Mean Square F-Value p-Value

Model 5758.98 9 639.89 909.89 <0.0001
A—Catalyst content 7.61 1 7.61 10.81 0.0082
B—Methanol/UCO mole ratio 4162.83 1 4162.83 5919.32 <0.0001
C—Irradiation time 153.04 1 153.04 217.61 <0.0001
AB 55.20 1 55.20 78.50 <0.0001
AC 5.20 1 5.20 7.39 0.0216
BC 20.84 1 20.84 29.63 0.0003
A2 136.63 1 136.63 194.27 <0.0001
B2 811.00 1 811.00 1153.20 <0.0001
C2 98.39 1 98.39 139.91 <0.0001
Residual 7.03 10 0.7033
Lack of fit 7.01 3 2.34 681.75 <0.0001
Pure error 0.0240 7 0.0034
Cor. total 5766.02 19

Figure 3 presents the results of a comparison between the data obtained through
experimentation and the data that the empirical BBD model predicted. The determination
coefficient (R2), the adjusted determination coefficient (R2

adj), and the predicted determina-
tion coefficient (R2

pred), each came in at 0.9988, 0.9977, and 0.9805, respectively. The high
values for all of the determination coefficients provide evidence that the BBD modeling has
a high level of significance, and they provide support for the existence of an outstanding
correlation between the independent variables. During this time period, the coefficient of
variation (C.V.) was equal to 1.04%. The C.V. had a value that was quite low, which is an
indication that this fitted model is more predictable [22].
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Figure 3. Actual vs. predicted biodiesel yield using BBD modeling.

The three-dimensional (3D) surface plots and interaction plots shown in Figure 4
were used to explore the interactions that occurred between the three parameters (catalyst
content, methanol/UCO mole ratio, and irradiation time) that were studied during the
transesterification and esterification of the UCO. This allowed for the possibility of visual
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observations being made. Using Design-Expert® Software (version 13), we were able
to create the 3D response surface as well as the interaction plots between parameters of
biodiesel yield for all of the design circumstances.
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The surface plot reveals an interaction between the amount of catalyst present and
the mole ratio of methanol to UCO, which has a major impact on the amount of biodiesel
produced. The conversion of TG rose from more than 44% to more than 98% throughout
this time period. The amount of biodiesel produced is proportional to the mole ratio of
methanol to oil and can greatly rise. The catalyst level of 7.0 wt.% and a methanol/UCO
mole ratio of 12:1 were found to produce the lowest yield. Based on the data presented,
it appears that the mole ratio of methanol to oil had a more substantial impact on the
generation of biodiesel than the catalyst content did. The equilibrium of the reaction
determines whether a transesterification and esterification reaction may be reversed or
not. Reversible reactions are controlled by equilibrium. For this reason, the mole ratio of
methanol to UCO needs to be greater than the stoichiometric amount in order to achieve a
satisfactory level of final TG conversion [23].

From graphs, it can be determined that biodiesel yield is dependent on input variables.
Reaction time under irradiation is a crucial factor in the production of UCO biodiesel, as
it influences the rate of transesterification and esterification reaction. According to the
3D surface responses, biodiesel production increases rapidly during the initial phases
of the manufacturing process but then levels off to a negligible level. This process can
be characterized by the fact that, in the early stages, microwave irradiation facilitated
the thermal collection of the reaction mixture, which led to the efficient production of
biodiesel. Following that, the production of biodiesel decreases abruptly. The concentration
of the catalyst can have an effect on biodiesel production. In accordance with the results,
increasing the concentration of the catalyst accelerates production. This is attributable to the
fact that a higher concentration of catalyst results in the formation of stronger nucleophiles
in the system through the deportation of alcohol, thereby increasing biodiesel production.
The significance of catalyst concentration is evidently demonstrated by these results [24].

The elliptical contour of the surface response map indicates that there is a significant
relationship between the surface response chart’s components. In addition to lowering
yield, a catalyst concentration that is too high (more than 5.0 wt.%) can make it difficult to
separate the aqueous layers while washing. An excessive amount of catalyst will also result
in the production of biodiesel that is extremely viscous and cannot be used as a fuel for
motors. At a catalyst concentration of 5.0 wt.%, the production of biodiesel results in the
highest possible yield. In addition, there was an insufficient concentration of the catalyst
used in the reaction, which led to a reduction in the amount of FAME that was produced [6].

Increases in both the methanol/UCO mole ratio and the irradiation time resulted in a
greater percentage yield of FAME when the catalyst content was held constant. Also, in-
creasing the alcohol/oil molar ratio initially improved the UCO biodiesel yield significantly
in a shorter reaction time. Raising the percentage of methanol in the reaction medium with
longer reaction times has minimal influence on biodiesel yield, and doing so decreases
biodiesel production even more. Since the reaction is complete and equilibrium has been
reached, the %yield of FAME has declined, since too much alcohol destroyed the catalyst
activity, reducing its effectiveness. In addition, increasing the irradiation time has a sig-
nificant impact on biodiesel yield, provided that the mole ratio of methanol to waste oil
remains unchanged [25].

Using the numerical optimization capability of Design-Expert® Software, it was
possible to determine the ideal values for three variables: the catalyst content (A), the
methanol/UCO mole ratio (B), and the irradiation time (C). With the assistance of RSM
consisting of three components and three levels of BBD, the optimization of reaction vari-
ables was successfully accomplished. The optimization module found in Design-Expert
will seek a combination of factor levels that will simultaneously satisfy the criteria that
have been imposed on each of the replies and the factors [26]. According to the infor-
mation presented in Figure 5, each of the variables and the responses pertaining to the
upper- and lower-limit experimental range need to be in accordance with the creations
defined for the best operating environment [27]. The regression model of the numerical
technique predicted that a catalyst concentration of 4.94 wt.%, a methanol/UCO mole ratio
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of 16.76:1, and an irradiation time of 8.13 min would result in the highest possible biodiesel
production of 98.62%.
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The desirability contour plots and the percentage yield of FAME in the synthesis of
UCO biodiesel under optimal reaction conditions are depicted in Figure 6, which makes
use of BBD modeling. Each estimated response is then converted into a unitless utility that
is bounded by a desirability value that is between 0 and 1, according to the desirability
approach. A response value that is higher on the desirability scale suggests that it is
more desirable [1]. In order to verify that this particular combination is the most effective
one, there were three distinct tests conducted [28]. According to the findings, the overall
response effectiveness was 98%, which is extremely similar to the predictions that were
given by the model. As a consequence of this, the model that BBD modeling generated was
assessed, and it was found to be accurate and effective for estimating the percentage yield
of biodiesel that was obtained from UCO in a microwave reactor. This was accomplished
through the use of a model that was shown to be accurate and efficient [29].

Model validation, which serves the dual function of checking the accuracy of the model
as well as the interpretation of the experimental data, often makes use of an adequacy
check as one of its methods of data analysis. A mathematical model that has been shown
to be accurate to a very high degree can be used to design an acceptable strategy for the
actual process [30]. The DoE and the implications of any residual data from the biodiesel
synthesis process are graphically represented in Figure 7, which is also included in this
report. This demonstrates that the BBD modeling does not contain any errors that were not
foreseen by the designers. According to the plot findings that are adequate, which can be
seen in diagnostic plots for BBD modeling adequacy, the empirical model is acceptable for
describing and optimizing the biodiesel production process of UCO utilizing solid catalyst
in a microwave reactor and BBD-based RSM. This is because the empirical model utilizes
solid catalyst in a microwave reactor.
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3.2. Modeling and Regression of Biodiesel Process Using ANN

In the present investigation, a feed-forward BP of an ANN model was built for the
conversion of UCO to biodiesel using MATLAB® software. The input parameters for
this model include the amount of catalyst present, the mole ratio of methanol to UCO,
and the amount of irradiation time. There are 3 neurons in the network’s input layer,
1 neuron in the network’s output layer, and 10 neurons in the network’s hidden layer. The
transfer functions known as TANSIG and PURELIN are used to model the neurons in
the hidden layer and output layer, respectively. In order to train the network, the LM
training algorithm was utilized, and the MSE was chosen to serve as the performance
function that needed to be minimized (the default). There were 20 data points utilized for
the ANN modeling, of which 70% was used for training, 15% was utilized for validation,
and 15% was utilized for testing. For the purpose of converting UCO into biodiesel in
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a microwave reactor, the MSE and correlation coefficient (R) were used to assess the
performance of the ANN modeling [31]. Training and learning are integral parts of the
network’s operational procedure in its entirety [11]. For the purpose of this inquiry, a
feed-forward BP network model with three layers was used. As can be seen in Figure 8,
this model includes input, hidden, and output layers. Through a process of trial and error,
the ideal number of hidden neurons was carefully determined. In order to accomplish this
goal, investigation into the number of hidden neurons was conducted in order to design
the network architecture. After that, every single one of these hidden neurons underwent
training on multiple occasions, and they were further instructed to produce the highest
value of R and the lowest output error based on MSE [32]. The ANN topology network
(3-10-1) was determined to be the most effective one for the estimation of the amount of
biodiesel that can be produced from UCO in a microwave reactor.
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Figure 8. Topology network of 3-10-1 for ANN modeling. Weights (W) and biases (b) are neural
network classification parameters.

The connection between the output and target data is demonstrated in Figure 9. As can
be seen, a correlation may be drawn between the data using the straight lines. The training
R is 1, while the validation R is 0.9999, and the testing R is 0.9989. In addition, R values
for regression are used to determine how closely outputs and goals are correlated with
one another. A close association can be shown by a R value of 1, while a random relationship
can be indicated by a R value of 0. As a result, in terms of correlation, the prediction made
using ANN modeling is significant, with an overall R value of 0.9994. The trainlm algorithm
often takes a greater amount of memory but significantly less processing time. When there
is no longer any generalization improvement, which may be determined by an increase in
the MSE of the validation samples, training will automatically come to an end. The average
squared deviation from the targets in terms of the outputs is what is meant by the term MSE.
Lower values are better, and zero signifies no error [33]. Figure 10 is a representation of
the best validation performance, which was generated from the curve of a different period.
According to what has been demonstrated, the best validation performance is 0.0085 at the
fifth of six epochs (green circle). The performance plot demonstrates no overfitting. The
validation (green) and test (red) curves are comparable and near the best-fitting curve. In
addition, it is notable that as the MSE value approaches zero, the prediction performance is
enhanced [34]. Furthermore, the error histogram is one of the tools that may be utilized
in order to gain further information on the neural network. The error histogram that
was obtained for the regression curves pertaining to the selected network is depicted in
Figure 11. An accurate signal of the values of the outliers was acquired, as can be shown.

Figure 12 shows a graph plot comparing the experimental data for biodiesel yields
with the value calculated by the BDD and ANN modeling. This comparison can be
found in the chart. It demonstrates that the results of both BDD and ANN modeling
match the experimental values with a low amount of error. The BBD and ANN models’
predicted values were within 3% of the actual value of the experiment, showing that the
established models had good accuracy and were able to accurately forecast the obtained
yield of biodiesel [35].
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In addition, the efficiency of the generated BBD and ANN models in predicting
biodiesel yield was assessed using mean absolute error (MAE) and average absolute
deviation (AAD). MAE and AAD evaluate the precision and accuracy of a model. Low
values were obtained for both MAE and AAD, indicating that the models fit well. The
lower these statistical indicators are, the greater the model’s performance [23,36]. RSM
models had MAE and AAD values of 0.3995 and 0.5485, respectively, whereas ANN models
had lower MAE and AAD values than RSM, which were 0.0460 and 0.0570, respectively.
Based on the results of the statistical indices, the ANN model performed better than the
RSM model.
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Furthermore, the model prediction was carried out using the ANN model, which
obtained a high R value. This confirmed that the ANN modeling had a superior generaliza-
tion ability to forecast biodiesel yield than the BBD modeling. The findings described here
are in agreement with those discovered by previous researchers [11,18,37]. Therefore, it can
be stated that RSM and ML techniques are effective methods for predicting the amount of
biodiesel produced under various transesterification and esterification reaction conditions
in a microwave reactor.

Table 5 displays the experimental findings that were validated for BBD and ANN
models. The biodiesel yield was predicted by the BBD modeling to be 98.62%, whereas
it was 98.53% under different circumstances when using ANN modeling. It was found
that 98% biodiesel yield was achieved at the two optimum conditions of 4.94 wt.% catalyst
content (A), 16.76:1 methanol/UCO mole ratio (B), and 8.13 min of irradiation time (C) for
the BBD model and 7 wt.% catalyst content, 18:1 methanol/UCO mole ratio, and 7 min of
irradiation time for the ANN model. For the examination of the catalyst’s reusability, the
same BBD-model-optimized conditions are employed.

Table 5. Validation of experimental results for BBD and ANN modeling.

Model
A

Catalyst Content
(wt.%)

B
Methanol/UCO

Mole Ratio
(mol/mol)

C
Irradiation Time

(min)

Predicted
Biodiesel Yield

(%)

Validation
Biodiesel Yield

(%)

BBD 4.94 16.76 8.13 98.62 98

ANN 7 18 7 98.53 98

The reusability of the heterogeneous solid acid catalyst is one of the most important
advantages of employing this type of catalyst. A catalyst that can go through more reuse
cycles without needing to be reactivated is considered to be more stable [38]. Figure 13
depicts the outcome of the experiment, which shows that the SPSC catalyst was successful
in completing up to five cycles, with a final biodiesel yield of 90%, under optimal reaction
conditions (4.94 wt.% catalyst content, 16.76:1 methanol/UCO mole ratio, and 8.13 min
of irradiation time). As a result, it was demonstrated that the PSC is an excellent use of
bio-based material as a precursor for acid catalyst synthesis, which may be utilized for
the esterification and transesterification of UCO. Because sulfonated bio-based catalysts
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are able to complete multiple reaction cycles while maintaining their stability [39], their
cost-effectiveness is highlighted.
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The agricultural, food, chemical, and energy industries could all stand to benefit
economically from the possibility of producing biofuel and heterogeneous catalysts through
the utilization of waste oil and agricultural biomass [40].

4. Conclusions

In the present study, the BBD of RSM and ANN of ML approaches were successfully
employed for the purpose of predicting and optimizing the process parameters for the
synthesis of biodiesel from UCO in a microwave reactor. The optimal results of the biodiesel
manufacturing process were 4.94 wt.% of catalyst content, a mole ratio of 16.76:1 between
methanol and UCO, and 8.13 min of irradiation time spent. This allowed for the conversion
of 98.62% of waste oil to biodiesel to be achieved. Error analysis was conducted between
anticipated and experimental values for both the BDD and ANN modeling, and it was
discovered that the error % was too low. To produce a rigorous study in the near future,
(i) additional reaction variables such as stirring speed, temperature, and reaction time,
(ii) different chemical reactors in relation to biodiesel production, and (iii) the leaching of
SPSC catalyst in biofuel should be considered.
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