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Abstract: Various methods, such as electrochemical purification, chemical precipitation, solvent
extraction, and ion-exchange resins, have been extensively employed for the removal of copper
from nickel anolytes. However, these methods exhibit several significant drawbacks when applied
in industrial settings. For instance, electrochemical purification fails to efficiently manage nickel
anolyte solutions with low copper content. Chemical precipitation presents challenges in residue
management and incurs high production costs for precipitants. Solvent extraction raises concerns
related to toxicity, while the use of ion-exchange resins demands meticulous selection of suitable
materials. In this review, we present a comprehensive review of the nickel removal methods used for
nickel anolyte purification, electrochemical purification, chemical precipitation, solvent extraction,
and ion-exchange resins. We also examine the suitability and benefits of each technique in industrial
settings. The ion-exchange method has drawn significant attention due to its strong selectivity and
small adsorption quantity. The ion-exchange separation process does not generate any slag, and
the ion-exchange resin can be recycled and reused; this method has great potential in a wide range
of applications.

Keywords: nickel anolyte; copper removal; iminodiacetic acid chelating resin; electrochemical
purification; isostere principle

1. Introduction

Nickel is a metal that has always played an important role in human history, and
has been widely used in daily life. Nickel production has been used in the field of metal
materials, such as manufacturing of stainless steel, heat-resistant alloy steel, and other
alloys. Nickel has also been used in many important fields, such as battery energy, chemical
dyes, catalysts, and petrochemicals. In its production and metallurgical technology, many
researchers have conducted long-term exploration work on electrochemical methods, chem-
ical precipitation methods, solvent extraction methods, and ion-exchange methods [1,2].
Electrochemical methods involve a metal separation technique utilizing differences in metal
electrochemical properties. By adjusting its potential, copper is precipitated from a highly
concentrated nickel solution [3,4]. Electrochemical methods mainly include displacement
and electrolysis methods [5,6]. The displacement method requires high activity and large-
particle nickel powder for copper removal, with complex processes and a high activity
of nickel powder [7]. The electrolysis method involves electrolysis of a mixed solution
containing nickel and copper [8,9]. The chemical precipitation method utilizes different
solubilities of metals to separate metals. By increasing OH− and S2− in the solution, copper
is precipitated from a highly concentrated nickel solution. The chemical precipitation
method mainly includes a hydrolysis precipitation and sulfide precipitation method for
OH− and S2− [10–12], respectively. The solvent extraction method is a separation technique
that separates metals based on differences in binding properties with organic functional
groups [13]. The commonly used extractants for copper removal mainly include amine
extractants and aldehyde oxime extractants [14–16]. The ion-exchange method is a reaction
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between resin ion-exchange and metal ions [17]. There are three main types of resins:
anion-exchange resin, cation-exchange resin, and chelating resin. Anion-exchange resins
utilize Cu2+ to form complex anions when Cl− is greater than 1.5 mol/L, while Ni2+ does
not form anionic complexes when Cl- is in the range of 0.1–12 mol/L. By adjusting Cl− con-
centration, copper is separated from nickel anode solution using an anion-exchange resin.
Cation-exchange resin [18,19] utilizes metal ions to be adsorbed by functional groups of
cation-exchange resin. The selectivity coefficient of cation-exchange resins for heavy metal
ions decreases with the increase in hydration radius and charge number [20]. Chelating
resins are widely used in wastewater treatment due to their ability to form stable complexes
with heavy metal ions [21].

Recently, the production and metallurgical technology of nickel has reached a bottle-
neck. On the one hand, the scale of production in the nickel industry is constantly being
compressed due to the accumulation of excessive products caused by overcapacity and
the increasing public awareness of environmental protection [22,23]. On the other hand,
along with increasing demand for quality nickel in the international market and the pro-
tection of high-purity nickel production technology in developed countries, it has become
increasingly difficult for developing countries to create new technologies in the nickel in-
dustry [24,25]. Currently, low-quality nickel is barely used in the nickel industry, while it is
expensive to produce high-purity nickel, and difficult to innovate in the production process.
This is the major dilemma faced by the nickel industry in the industrial transformation
period [26,27]. This paper provides a systematic review of the current nickel production
process; an analysis on the literature in nickel production and metallurgical technology
over the recent decade was conducted and is depicted in Figure 1. In this analysis, “Copper
removal from nickel anode solution” acted as a key phrase, and it revealed a year-on-year
increase in research papers retrieved through searches conducted in Web of Science and
CNKI (China National Knowledge Infrastructure).
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Figure 1. Analysis of the literature in nickel production and metallurgical technology over the
recent decade.

This article summarizes the existing methods for removing copper from nickel elec-
trolyte solutions, and provides an assessment of the advantages and disadvantages of these
methods. In the concluding remarks, it is suggested that the ion-exchange method may be a
significant metallurgical research tool for nickel, and it is worthy of widespread promotion
and adoption within the nickel smelting industry.

2. Nickel Production Process
2.1. Distribution of Nickel Ore

The total nickel reserves in the world comprise approximately 64 million tons. Most of
them are located in Cuba, Canada, Russia, South Africa, Australia, China, and Brazil [28].
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The total nickel reserves in these countries constitute 91% of the global nickel reserves [29].
In China, nickel ores are primarily distributed in the northwest, southwest, and northeast
regions which contribute to 76.8%, 12.1%, and 4.9% of the national nickel reserves in
China, respectively [30]. Nickel ores are mainly divided into copper–nickel sulfide ores
and nickel oxide ores. The copper–nickel sulfide ores account for 30–40% of the total
nickel ores, while the nickel oxide ores account for the remaining 60–70%. Despite the
small proportion of copper–nickel sulfide ores, the production of nickel from nickel sulfide
ores account for more than 60% of the world’s total nickel production due to its simpler
production process [31]. In China, copper–nickel sulfide ores and nickel oxide ores account
for 87% and 13% of the total national nickel reserves, respectively; nickel is generally
produced from copper–nickel sulfide ores in China [32]. The smelting of copper–nickel
sulfide ores is mainly carried out using pyrometallurgy, with the main processes including
sulfur smelting, converter blowing, flotation separation, and electrolytic refining [33]. Wet
treatment is the second method for copper–nickel sulfide smelting, including pressurized
ammonia, oxidation/reduction roasting ammonia, and sulfation roasting and leaching.
Nickel oxide ore smelting is also divided into two categories: pyrometallurgical and wet
processes. The pyrometallurgical method involves matte smelting and nickel iron smelting.
Wet metallurgy includes reduction roasting atmospheric-pressure leaching, high-pressure
atmospheric pressure sulfuric acid leaching method, and hydrochloric acid atmospheric
pressure leaching method [34,35].

2.2. Primary Production Process of Nickel

Nickel ore is characterized by low grade, complex composition, large quantity of
associated ore, and high smelting difficulty. The products generated from nickel ore
can vary substantially. The production process of nickel is generally quite complex. In
general, nickel concentrate must first be obtained through ore dressing before it is smelted.
Depending on the types of nickel ore (nickel sulfide ore or nickel oxide ore), two basic
smelting methods (prometallurgy and hydrometallurgy, respectively) have been used in
the production process as shown in Figure 2 [36,37].

ChemEngineering 2023, 7, x FOR PEER REVIEW  4  of  15 
 

 

Figure 2. Experimental apparatus for the production of nickel from nickel sulfide and nickel oxide 

ore with electrolysis. 

2.3. Electrolytic Refining Process of Nickel Sulfide 

Nickel production generally  involves producing a nickel sulfide anode plate  from 

raw copper–nickel sulfide ore and obtaining metal nickel with electrolysis. This process 

was developed around the 1950s, and adopted for nickel production in a number of plants 

[38,39]. To date, this method has been used as the primary approach to nickel production 

in China. There are  two procedures  involved  in  this method: electrolysis of nickel and 

anode purge. A schematic diagram of nickel electrolysis is shown in Figure 3. 

 

Figure 3. Schematic diagram of producing nickel sulfide anode plate from raw copper–nickel sulfide 

ore and obtaining metal nickel with electrolysis. 

Figure 2. Experimental apparatus for the production of nickel from nickel sulfide and nickel oxide
ore with electrolysis.



ChemEngineering 2023, 7, 116 4 of 14

2.3. Electrolytic Refining Process of Nickel Sulfide

Nickel production generally involves producing a nickel sulfide anode plate from
raw copper–nickel sulfide ore and obtaining metal nickel with electrolysis. This process
was developed around the 1950s, and adopted for nickel production in a number of
plants [38,39]. To date, this method has been used as the primary approach to nickel
production in China. There are two procedures involved in this method: electrolysis of
nickel and anode purge. A schematic diagram of nickel electrolysis is shown in Figure 3.
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The primary reactions occurring on the anode include the following:

Ni3S2 = Ni2+ + 2NiS + 2e-

NiS = Ni2+ + S + 2e-

Ni3S2 + 8H2O = 3Ni2+ + 2SO4
2− + 16H+ + 18e−

The primary reactions occurring on the cathode include the following:

Ni2+ + 2e− = Ni

During the deposition of nickel on a cathode, some of the impurities in the solution
will also react and deposit on the nickel surface. There is a strict requirement on catholyte
composition during the electrolysis process. According to the standards specified in GB-
6516-2010 [40], the catholyte composition required to produce 1# electro-nickel and 0#

electro-nickel is shown in Table 1. During the electrolysis process, Cu, Zn, Fe, Co, and
Pb enter the anolyte through the anode plates. It is necessary to purge the anode for the
electrolysis process. The anode purging procedure is shown in Figure 4.



ChemEngineering 2023, 7, 116 5 of 14

Table 1. Cathode composition of nickel 1# and 0#.

Element Nickel 1# (mol/L) Nickel 0# (mol/L)

Ni 1.19 1.19
Cu <4.72 × 10−5 <4.72 × 10−6

Fe <7.14 × 10−5 <5.36 × 10−6

Co <1.70 × 10−4 <1.70 × 10−5

Zn <5.35 × 10−6 <1.53 × 10−6

Pb <3.00 × 10−4 <7.00 × 10−5

Na+ <1.96 <1.96
Cl− >1.41 >1.41

H3BO3 <9.7 × 10−2 <9.7 × 10−2
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3. Removal of Copper from Nickel Electrolysis Anolyte

The removal of copper from the nickel electrolysis anolyte is a key issue in the nickel
metallurgical industry. The copper concentration in the solution after copper removal has
to be less than 4.72 × 10−5 mol/L. Furthermore, the mass ratio of copper to nickel in the
copper slag must be greater than or equal to 15 [41–43]. To meet these targets, a considerable
amount of long-term research work has been performed by many metallurgists. Various
methods of removing copper have also been proposed.

3.1. Potential-Based Separation Method

Copper exhibits a relatively high electric potential (ϕθ/V = −0.403) (cited from
GB3102) [44]. Copper can be precipitated from a solution with high nickel concentration
by adjusting the electric potential applied to the solution. Currently, the potential-based
separation method has been primarily used as a replacement or electrolysis technique. In
replacement separation, since the electric potential of copper is much greater than that of
nickel, nickel can completely replace copper in theory. A key issue that needs to be con-
sidered here is the reaction time that is determined by reaction kinetics. The displacement
method has been used to remove copper in many nickel refineries, including the nickel
refinery of Port Colborne in Canada [38] and the Niihama Nickel Refinery in Japan [45].
The replacement method involves the use of nickel powder with nickel purity exceed-
ing 99.8% and a diameter of less than 0.04 mm [46]. Such nickel powder is produced



ChemEngineering 2023, 7, 116 6 of 14

from a hydrogenation reduction reaction; when 1.4 times the theoretical amount of nickel
powder is used in copper removal, copper content in a nickel anolyte can be reduced to
6.3 × 10−6 mol/L, which yields a copper removal rate greater than 99% [47]. The advantage
of this method is its good copper removal performance and elimination of any impurity.
The quality of the nickel powder used to remove copper has a significant impact on the per-
formance and efficiency of copper removal. The replacement method for copper removal
has a strict requirement for the quality and particle size of nickel powder. Nickel powder
with high activity should not be stored for a long time [48]. In summary, the electrochemical
replacement method is costly, and has a complex preparation process. The addition of
nickel powder that exceeds the theoretical amount also brings more difficulty to the further
treatment of the waste slag.

In the electrolysis technique, copper precipitates on the cathode before nickel when
performing electrolysis in a mixed solution containing nickel and copper. Researchers
have attempted to remove copper through the electrolysis method, which yields copper
powder with a copper content exceeding 95% and nickel content of less than 1%. This
method greatly reduces the difficulty of recycling copper. However, this method requires
a copper concentration exceeding 0.55 mol/L in the electrolyte [49]. It is only suitable
for a nickel electrolyte with a relatively high copper concentration. The concentration
of copper in the purging solution of the electrodeposited copper–nickel anode is only
0.08~0.16 mol/L, which does not meet the requirement for the electrolysis method. In
addition, electrolysis is performed with difficulty since electric current efficiency is quite
low (only 70%). When using porous nickel as a cathode for electrolysis, there is thus no
requirement for a copper solution. Along with a cathode potential greater than or equal to
−0.50 V, the copper concentration in the anolyte is reduced to less than 3.15 × 10−5 mol/L
in ambient temperature conditions [50]. Furthermore, the byproduct of copper removal is
copper powder with purity exceeding 99%. This method not only meets the requirement
of copper purging in the solution but also eliminates additional steps required to treat the
copper slag. Thus, it is not suitable for mass production because the electrolysis process
consumes a large amount of powder and a small volume of the treated solution.

3.2. Chemical Precipitation Method

In the chemical precipitation method, metals are separated based on their different
solubility products, as shown in Table 2. It can be seen from the table that Cu(OH)2 and
CuS exhibit a small solubility product constant. By the increasing concentration of OH-

and S2− ions in the solution, copper can be precipitated from the solution with a high
nickel concentration. Currently, the chemical precipitation method mainly includes a
hydrolysis precipitation method associated with OH− ions and a sulfide precipitation
method associated with S2− ions. In the hydrolysis precipitation method, the solubility
product of Cu(OH)2 is smaller than that of Ni(OH)2; adjusting the pH value of the solution
within a specific range can allow Cu(OH)2 to be preferentially precipitated from the solution,
thus realizing the purging effect in nickel anolytes. Some researchers have adopted this
method to separate copper from a solution with a nickel concentration of CNi = 20 g/L and a
copper concentration of CCu = 2.5 g/L. The copper concentration in the treated solution was
reduced to 1.75 × 10−5 mol/L [51]. Moreover, around 9~11% of nickel was also precipitated
together with copper during the copper precipitation process. This activity resulted in a
huge loss of nickel in the solution and a small copper-to-nickel concentration, 9–10 mol/L
in the slag [11]. Hydrolysis precipitation cannot meet nickel production requirements.
In sulfide precipitation, the solubility product of CuS is much smaller than that of other
metal sulfides (Table 2). The addition of S2− ions to the solution allows the formation
of CuS precipitate from Cu2+, even if the concentration of nickel is high in the solution.
This characteristic enables copper removal from nickel anolytes. Copper removal with
sulfide precipitation is a primary method used in current nickel production and explored
in research work. A large number of sulfide additives has been used, including hydrogen
sulfide, sulfur and sulfur dioxide, nickel concentrate plus anode mud, nickel xanthate,
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active sulfur powder, active anode mud, active nickel sulfide, nickel thiosulfate, and NAS.
Among them, H2S, S, and SO2 may achieve decent copper removal performance, thus
meeting the production requirements without introducing any impurity into the copper
slag [52]. These three additives have been widely used in industrial production, and H2S
and SO2 are toxic gases generated during the production process. Other additives are also
used in precipitation processes to replace these two gases.

Table 2. Solubility product constant of common insoluble compounds [51,52].

Cation Ksp(S2−) Ksp(OH−)

Cd2+ 8.0 × 10−27 2.8 × 10−14

Co2+ 4.0 × 10−21 1.6 × 10−15

Cu2+ 6.0 × 10−36 1.3 × 10−20

Fe2+ 6.0 × 10−18 8.0 × 10−16

Fe3+ - 3.0 × 10−39

Mn2+ 3.0 × 10−13 1.9 × 10−13

Ni2+ 2.0 × 10−26 2.0 × 10−15

Pb2+ 3 × 10−28 1.2 × 10−15

Zn2+ 1.6 × 10−24 3.0 × 10−17

The addition of anode mud and nickel xanthate to the nickel concentrate can reduce the
copper concentration to meet the production requirement while avoiding the generation
of toxic gases [52]. In addition, these methods can increase the nickel content in the
product to a certain extent. The copper slag generated from such methods exhibits a small
copper-to-nickel ratio that makes it more difficult to treat the copper slag in the subsequent
procedure. Further improvements are also required for these methods. The use of active
sulfur powder, active anode mud, active nickel sulfide, and nickel thiosulfate may achieve
good copper removal performance, and generate copper slag with a high copper-to-nickel
ratio [49,53–55]. The copper slag may be directly used in the copper smelting system.
Sulfide precipitation using these four additives is one of the major research directions in
the field of nickel smelting.

NAS is a novel copper removal agent developed based on active nickel sulfide, and
synthesized based on the principle of drug molecules. The synthesis and application of
NAS in copper removal have been investigated by many researchers [56]. Experiments
have verified that the addition of NAS can reduce the copper concentration to 3 × 10−3

g/L in the solution, while maintaining a copper-to-nickel ratio greater than 20 in the
slag [57]. In addition, NAS material can sustain a high activity and a decent copper removal
performance for ten days after being synthesized [56]. Further studies are still required
to improve the industrial synthesis technique of the NAS copper removal agent, and to
reduce the synthesis costs.

3.3. Solvent Extraction

In the solvent extraction method, metal ions are separated based on differences in
the binding properties between the metal and the organic functional groups. This method
is usually used for the enrichment and separation of heavy metals [58]. Currently, two
types of extractants have commonly been used for copper removal in solvent extraction:
amine extractants and aldoxime extractants. Amine extractants are based on the different
properties of complex anions formed by heavy metals in the aqueous phase, and different
metal ions can be extracted and separated from the solution [15]. Metal ions are extracted
and separated based on the difference in complex anions formed by heavy metals in the
aqueous phase. The extraction reaction is given by the following equation:

nR4NA + (MBx)
n−1 =

(
R4N

)
n

(
MBx

)n−1
+ nA−
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Many studies have explored the extraction of transition metals from chloride media
using quaternary ammonium salt extractants. Ivanov et al. extracted cobalt, copper, and
iron from a nickel electrolyte using alkylbenzylammonium chloride [14]. Bagreev et al. an-
alyzed the effect of coexisting metals in the chloride system on extraction performance [59].
Park et al. used quaternary ammonium salts to extract copper from the solution. They
were able to achieve a decent copper removal rate with an initial copper concentration of
2.18 × 10−2 mol/L that was reduced to 7.847 × 10−5 mol/L after extraction. The separation
coefficient of their method reached as high as 106 in a copper–nickel system [60]. This
process cannot be used to extract copper from a solution with a chloride ion concentration
exceeding 1.408 mmol/L. This feature greatly limits the application of this method.

Aldehyde oxime extractant allows the formation of chelate complex by coordinating
a copper ion with oxygen atoms in the hydroxy group and nitrogen donor atoms in the
oxime group. The copper ion is extracted and separated from the solution. The extraction
reaction is given by the following equation:

Cu2+ + 2HR(O) = CuR2(O) + 2H+

Fang Wu et al. separated copper from nickel sulfate using an M5640-kerosene-H2SO4
extraction system [61]. Specifically, they used an M5460 solution with a concentration
of 20~30% as the extractant, and sulfuric acid with a concentration of 2 mmol/L as the
stripping agent. After three stages of the extraction and stripping process, 99.9% copper
was removed from a nickel sulfate solution with 50 g/L nickel concentration and 5.0 g/L
copper concentration. The loss rate of nickel was less than 0.5% during the extraction
process. The pH value of the solution was maintained at around 2.0 during the extraction
process, while the pH of nickel electrolysis anolyte was around 4.5. Excessive acid is
required to adjust the pH value of the solution, which reduces the economic value and the
applicability of this method.

3.4. Ion-Exchange Method

The ion-exchange resin is a synthetic polymer material containing functional groups.
The essence of the ion-exchange method is a reaction between exchangeable ions with metal
ions in a solution. There are three types of resins: anion-exchange resin, cation-exchange
resin, and chelating resin. The anion-exchange resin is used when the concentration of Cl−

is greater than 1.5 mol/L, and the Cu+ ion can form complex anions in the solution. When
the concentration of Cl− is lower than 12 mol/L, Ni2+ cannot form an anionic complex [62].
Copper can be separated from a nickel anolyte with an anion-exchange resin by adjusting
the concentration of chloride ions in the solution. Ailiang Chen et al. separated copper
from nickel sulfate solution using 201 × 7 geltype strong basic anion exchange. Their
study demonstrated a good copper removal performance [63]. The adsorbed resin can
be regenerated using an acidic NaCl solution containing hydrogen peroxide, and can be
reused afterwards. The concentration of copper and nickel is greater than 1.575 mol/L and
less than 1.5 × 10−3 mol/L in the regenerant, respectively. The regenerant can be used as
a raw material for copper production. A large amount of chloride acid is required in this
method, thus leading to a high recovery and separation cost. This method is not suitable
for large-scale industrial production. In cation-exchange resin, metal ions can be adsorbed
by functional groups in cation-exchange resin through an ionic bond. The adsorption
force and distance are determined by the charge number of metal ions and hydrated ions
formed by metal ions, respectively. The selective adsorption coefficient of heavy metal
ions with cation-exchange resin decreases with the increase in the hydration radius and
charge number [64]. Cation-exchange resin exhibits good separation performance on metal
ions such as Cr3+ and Pb2+, both of which possess a greater valence difference and small
hydration radius, but a weak selectivity for metal ions sharing the same valence. There is no
difference in their valence states because Ni2+ and Cu2+ are both divalent. Cation-exchange
resin is rarely used for separating nickel and copper. Chelating resins are widely used
in wastewater treatment due to their ability to form stable complexes with heavy metal
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ions [65]. Table 3 shows a selective adsorption of heavy metals by common chelating
resins. As shown in Table 3, most chelating resins are more selective for copper than nickel.
Considering that chelating resin requires a simple regeneration condition and exhibits a
greater number of reuse cycles, they have been used in many separation and purification
processes in China [66,67].

Table 3. Functional groups and adsorption selectivity order of metals comprising chelating resins
[60–63].

Chelating Resins Functional Groups Selectivity Order

Aminocarboxylic acid —NC(H2COOH)2 Fe3+ > Ni2+ > Cu2+ > Zn2+

Iminodiacetic acid —N(CH2COOH)2 Cu2+ � Ni2+ > Zn2+ > Fe2+

Phosphoric acid —PO(OH)2 U4+ > Fe3+ ≥ UO2
2+ > Cu2+

Polyamide —CH2CH2NH— Hg2+ > Cu2+ > Zn2+ > Ni2+

Dithiocarboxylic acid —CSSH Ag+ > Cu2+ > Zn2+ > Mn2+

Thiourea —NC(NH2)S Ag+ > Au3+ = Pd2+ > Hg2+

4. Extraction of Nickel Using Iminodiacetic Acid Chelating Resin

The chemical formula of iminodiacetic acid (a dicarboxylic acid amine) is HN (CH2COOH)2,
and is generally abbreviated as IDA. The nitrogen atom forms a secondary amino group, while
the iminodiacetic acid anion may function as a tridentate ligand to form a metal complex with
the two coupled five-membered chelate rings. Hydrogen ions in the nitrogen atom can be
replaced by carbon atoms in the polymer in order to produce an ion-exchange resin. IDA-based
chelating resin has become a major research topic on nickel smelting in recent years due to its
superior adsorption and physicochemical properties.

4.1. Chelating Resin Preparation and Character

Chelating resin can be synthesized by two methods. The first method involves the
polymerization of functional groups with small molecules, such as imidazole, pyridine, and
acrylic acid, into macromolecules. The second method seeks to first obtain a high-molecular
polymer and then introduce a functional group [68]. The second synthesis method has
drawn more interest from researchers because it is more advantageous in terms of greater
structural varieties, high structural stability, and larger adsorption quantity of the product.
There are three methods of synthesizing IDA chelating resin: reaction of acetic acid with
acrylonitrile styrene-divinylbenzene crosslinked polymer, reaction of ethylenediamine with
chloromethyl polystyrene polymer, and bonding of imine acetate group to the surface
of macroporous crosslinked polystyrene microspheres. In industrial production, IDA
chelating resin is usually synthesized by first performing a Friedel–Craft reaction on a
polystyrene-based resin skeleton and then by introducing a highly active chloromethyl
group to the aromatic ring [69].

4.2. Adsorption Mechanism

The IDA group, i.e., -N(CH2COOH)2
−, is a tridentate ligand where the electrons are

provided by an oxygen atom on two carboxyl groups and a nitrogen atom on the amino
group. Even if the adsorbed metal ion does not form a coordinate bond with the nitrogen
atom, the chemical bond formed by the two oxygen atoms can still form a stable chelating
body in IDA. This feature enables a greater adsorption selectivity for IDA resin. As shown
in Figure 5, there is a triple bond between copper and IDA, and a double bond between
nickel and IDA. The triple bond of IDA with copper results in IDA having a stronger
extraction of copper than nickel. Thus, it can be used for the selective adsorption of copper
in a nickel anolyte.
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4.3. Practical Application of IDA Chelating Resin in Nickel Extraction

Many different models have been developed for IDA chelating resin. These resin
models exhibit various levels of selectivity and absorptivity [69–77]. Table 4 shows the
adsorption performance of several typical IDA resins currently being used in experimental
research and industrial applications. In metal enrichment and recovery, the distinctive
feature of IDA chelating resin is its excellent complexing ability of heavy metals, which is
far superior than that of alkali metals [78]. The binding ability of IDA functional groups to
heavy metals is 5000 times that of alkali metals. IDA-type chelating resin has been widely
used in the hydrometallurgical industry. Zaionl et al. used Lewatit TP-207 and Amberlite
IRC-748 to recover nickel and cobalt from the acid leachate after leaching laterite nickel
ore tailings. A better recovery performance is achieved when a fixed bed is used [79].
Mendes et al. achieved selective adsorption of nickel and cobalt from Brazilian laterite
nickel ore oxygen pressure acid leaching solution using the chelating resin Amberlite
IRC-748 packed column. The nickel solution is enriched more than 20 times with very few
impurities [80]. In water purification, chelating resins with IDA functional groups possess
several advantages, including high selectivity, fast adsorption rate, and easy desorption
of heavy metals in water. These resins have been widely used for the purification of
industrial wastewater and the treatment of domestic water. For example, IRC-718 and
Chelex-100 are commonly used for treating the wastewater generated by printed circuit
board manufacturers. Korngold et al. used Purolite S930 to remove Cu2+, Ni2+, Co2+, and
Cd2+ from tap water containing a small amount of carboxylate, and reduced their content
to 10−6. Such content meets the standard for drinking water [81]. In substance analysis,
IDA chelating resin exhibits a very high sensitivity to heavy metal, such that even trace
amounts of heavy metals can be adsorbed effectively by the resin. Therefore, it can be used
to test and analyze the trace metals in solutions. Yebra et al. used flame atomic absorption
spectrometry to automatically detect nickel at µg/g content level in food [82]. The metals
were enriched in a microcolumn before being tested. Their results showed high accuracy
and small deviation in the detection of nickel metal. Nicalai et al. used Metpac CC-1 chelate
resin to enrich 17 trace elements in seawater, and subsequently detect them using the
ICP-MS technique [83]. They compared the results with the evaluation report, and found a
strong agreement between them. This finding demonstrated that using IDA chelating resins
can provide strong accurate results in analytical chemistry and radiochemistry applications.

Table 4. The adsorption proprieties of common typical IDA chelating resins [67–75].

Resin Type Selectivity PH Max Capacity/mmol·g−1

Amberlite IRC-748 Cu2+ > Ni2+ > Co2+

5.0 1.060

4.0 1.252

1.0 2.000

Amberlite IRC-718 Fe2+ > Cu2+ > Zn2+ >
Ni2+

5.0 2.250

4.0 0.95
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Table 4. Cont.

Resin Type Selectivity PH Max Capacity/mmol·g−1

Lewatit TP-207 Cu2+ > Zn2+ > Cd2+
5.0 0.87

4.0 1.38

Chelex-100 Cu2+ > Zn2+ > Cd2+
6.0 0.021

5.6 2.15

Purolite S-930
Cr3+ > Cu2+ > Ni2+>
Zn2+ >Co2+ > Cd2+ >

Fe2+ > Mn2+

4.0 0.89

Lonac SR-5 1.0 1.25

Diaion CR-10 5.0 2.809

5. Conclusions and Future Perspectives

In industrial applications, the potential-based separation methods can swiftly remove
high concentrations of copper but are unable to minute copper content from nickel anolytes.
Sulfide precipitation can effectively extract minute copper amounts from nickel anolytes,
yet it generates substantial, challenging-to-handle high-nickel waste residue. Moreover,
the precipitating agent cannot be reused, leading to elevated costs. While solvent extrac-
tion partially mitigates these limitations in copper removal from nickel anolytes, it still
faces issues, such as organic phase entrainment, third-phase formation, and a significant
environmental impact.

As an alternative, the ion-exchange method has garnered significant attention due to
its robust selectivity and minimal adsorption capacity. These advantages render the ion-
exchange method well suited for separating low-concentration substances. As this method
does not generate slag during the ion-exchange separation process and allows for the
recycling of ion-exchange resin, its potential spans across diverse applications. Specifically,
the ion-exchange technique proves especially effective for isolating trace heavy metals.
Hence, chelating resin emerges as an ideal contender within the ion-exchange method. The
IDA chelating resin, exhibiting high selectivity for both copper and nickel, finds extensive
use in enriching the production of these metals. Notably, the IDA resin’s copper selectivity
generally surpasses that of nickel. Therefore, future studies should explore harnessing this
feature for the effective separation of copper from nickel anolytes.

In conclusion, comparative analysis of electrochemical purification, chemical precip-
itation, solvent extraction, and ion-exchange resins showed that ion-exchange resin has
significant advantages in terms of slag, low cost, and resin recycling, among others. The
nickel extraction method based on ion-exchange resin may be a significant metallurgical
development in research on nickel, and it is worth promoting its widespread use in the
nickel smelting industry.
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