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Abstract: This article proposes a better alternative method to prepare CNT antifreeze nanofluid in
EG/water by modifying the conventional method that requires long hours of sonication. Sonicating
a sample for long hours is time and energy consuming and may deform the structure of CNT. In
the modified method, the nanofluid preparation was carried out by dispersion of CNT in EG via
sonication followed by adding water and again sonication. The study shows that nanofluid could be
prepared in less sonication time of 1.5 h compared to the 5 h required in the conventional method.
FTIR spectroscopy revealed that interaction of EG with CNT occurs via trans conformation resulting
in greater stabilization and better interaction of nanofluid prepared by this method (85 days) as
compared to nanofluid prepared by the conventional method (50 days). The nanofluid prepared
by this method has better physical–chemical properties compared to nanofluid prepared by the
conventional method. The nanofluid prepared by this method showed higher stability and better
physical–chemical properties at a lower sonication time. Hence it is a more effective and cost efficient
technique for preparing CNT (EG/water) nanofluid.

Keywords: CNT; antifreeze; nanofluid; heat-transfer; sonication; stability

1. Introduction

Numerous thermal applications utilize water as a heat transfer fluid. Sometimes,
ethylene glycol (EG) is added to water as the mixture of EG/water acquires anti-freeze
and anti-boil properties. Generally, this mixture is used for heat transfer applications in
car radiators, solar cells, etc. in areas where the surrounding is too cold, which freezes
water [1,2]. This mixture provides us with a large range of temperatures for heat transfer
applications; however, this mixture has low thermal conductivity and, hence, a low rate of
heat transfer. The concept of nanofluid (adding nanoparticles to conventional heat transfer
fluid) is helpful in improving the thermal conductivity of EG/water systems.

High thermal conductivity and thermal stability of CNT make it a viable option for the
preparation of CNT based EG/water nanofluid [3–7]. A major issue with the use of CNT
nanofluid is the aggregation of CNT in the base fluid due to its high aspect ratio and strong
van der Waals interaction [8–10]. Various researchers prepared CNT (EG/water) nanofluid
by using surfactants. Kumarsen et al., 2012 [11] prepared 0.45 vol% CNT (EG/water)
nanofluid by 30 min stirring and 90 min sonication. They utilized SDBS as a surfactant for
proper dispersion and reported an enhancement of 19.73% in thermal conductivity. Sandhu
et al., 2016 [12] prepared 0.1 vol% CNT nanofluid by 80 min sonication. They utilized GA
as a dispersant and reported a stability of 39 days and an enhancement of 28% in thermal
conductivity. Similarly, Ganeshkumar et al., 2017 [13] prepared 0.9 wt% of CNT (EG/water)
nanofluid by using SDBS as a surfactant. The sample was stirred for 20 min and sonicated
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for 180 min for homogenous dispersion of CNT. They reported an enhancement of 11% in
thermal conductivity. Although using surfactants is an easier and more cost-effective way
of preparing nanofluids, using surfactants at higher temperatures is not feasible as they
degrade at higher temperatures. Additionally, excessive foaming is also a problem while
using surfactants as a dispersing agent. Furthermore, surfactant particles increase thermal
resistance between CNT and the base fluid, which may limit the enhancement of thermal
conductivity. Therefore, various researchers prepared nanofluid without surfactants.

Izadi et al., 2018 [4] worked in a range of 0.05 to 1 vol% of CNT without surfactants
by using 5–6 h sonication in an EG/water mixture and reported non-Newtonian behav-
ior of nanofluid. Soltanimehr and Afrand, 2016 [14] prepared nanofluid by dispersing
(0.025–1 vol%) FCNT in EG/water (40:60) with 2.5 h magnetic stirring followed by 6 h
sonication. They reported an enhancement of 34.7% in thermal conductivity as compared
to the base fluid. Mirabagheri et al., 2018 [15] prepared nanofluid by using (0.25–0.8 vol%)
FCNT in EG/water (20:80) by using 2.5 h stirring and 6 h sonication. They reported 27.3%
enhancement in thermal conductivity. They reported that the amount of CNT and per-
centage of EG and water affect the thermal conductivity noticeably. Yan et al., 2020 [16]
prepared nanofluid by using (0.075–1.2 vol%) ZnO-MWCNT hybrid in EG/water (20:80)
by 120 min magnetic stirring and 300–360 min sonication and reported an enhancement
in viscosity with volume fraction and decrement in viscosity with temperature increment.
Esfe et al., 2023 [17] prepared nanofluid by using MWCNT-TiO2, EG/water (50:50) by
3 h stirring and 5 h sonication and reported 36.30% enhancement in thermal conductivity
and 2 weeks stability. Shahsavani et al., 2018 [18] prepared COOH-MWCNT nanofluid
by 2 h mixing and 5–6 h sonication for studying the rheological behavior of nanofluid.
They reported that viscosity increases with an increase in solid volume fraction while a
decrease was observed with an increase in temperature. Dekhogi et al., 2017 [19] prepared
COOH-SWCNT nanofluid by 2.30 h stirring and 6 h sonication and reported 10 days of
stability. According to this study, the thermal conductivity increases with volume fraction
and temperature. Bagheri et al., 2018 [20] prepared ZnO-MWCNT nanofluid by 2 h stirring
and 5 h sonication and reported an enhancement of 30% at 1.2 vol% and a stability of
1 week. Moradi et al., 2019 [21] prepared MWCNT-TiO2 nanofluid by 2 h stirring and 5.5 h
sonication. They reported an enhancement of 34% at 1 vol% CNT. Eshgarf et al., 2016 [22]
synthesized nanofluid of MWCNT-SiO2 via 2 h stirring and 5–6 h sonication and studied
the viscosity at different shear rates.

The literature showed that researchers supply sonication energy for a longer duration
for preparing CNT nanofluid. Preparation of nanofluid via long hour sonication is a time-
and energy-consuming process; additionally, it may deform the structure of CNT [23].

Apart from this, none of these research articles has discussed the role of the preparation
method and the nature of interactions responsible for stabilization of nanofluid. Thus, it
is imperative to understand the nature of EG/water and CNT for preparation of a stable
nanofluid. Dispersing CNT in EG is easier in comparison to its dispersion in water owing
to π–π interactions between CNT and EG. Therefore, CNT dispersion in EG first and then
in the subsequent addition of water appears as a superior approach for preparing CNT
antifreeze nanofluid in EG/water. A similar approach was used by Yadav et al., 2023 [24]
for synthesizing CNT nanofluid in (60:40) EG/water. EG/water (50:50) has lower viscosity
and cost in comparison to EG/water (60:40) ratio. Therefore, this article prepared CNT
antifreeze nanofluid with (50:50) EG/water. No research article in the literature discusses
and compares the results of nanofluid prepared by conventional method (Method 1) and
modified method (Method 2) at this ratio. Therefore, preparing nanofluids by using this
ratio will provide new information to researchers working in the field of heat transfer.
The nanofluid prepared by Method 2 showed better stabilization and physical–chemical
properties at lower sonication time; therefore, this can be seen as a viable option of preparing
nanofluid from a commercial perspective.
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2. Material and Method
2.1. Materials

Ad Nano technology Pvt. Ltd. Karnataka, India provided COOH functionalized
MWCNT (OD = 50–80 nm, ID = 5–15 nm, length = 10–20 m, specific surface area = 200 g/mL,
density = 2.1 g/mL) with a purity of 95%. Thermo Fisher Scientific India Pvt. Ltd. provided
EG 98% pure (Molecular weight = 62.07 (g/mol), density = 1113.2 (kg/m3)). Easy-Still
Mark 2000 DDQ XL horizontal distillation unit) was used to double-distill water. Labman
LMUC-3 ultrasonicator bath-sonicator with power = 100 W, frequency = 40 kHz, was
utilized to disperse CNT in the base fluid. Shimadzu ATX224, (Shimadzu Philippines
manufacturing. Inc) digital weighting balance with accuracy up to 1 mg was utilized to
weigh CNT. As a base fluid, 50:50 (EG/water) mixture was utilized.

2.2. Methodology

Nanofluid was synthesized using two techniques as described below:

2.2.1. Preparation of Nanofluid by Conventional Method (Method 1)

CNT nanofluids with different concentrations of CNT (0.001, 0.005, 0.01, 0.025, 0.05
and 0.075 w/v%) were formulated by this method. The concentration range was selected
based on their stability. Initially, 50:50 EG/water was mixed in six bottles by adding 50 mL
water and 50 mL EG and stirring for about 1 min by a glass rod. Next, the required amount
of CNT was added to each bottle and ultrasonication was carried out in the temperature
range of 30–40 ◦C for varied durations (2, 3, 4, 5 and 6 h). The absorbance of samples was
recorded and plotted by originPro 8.5.0 SR1b161 software. These nanofluids were used for
further studies.

2.2.2. Preparation of Nanofluid by Modified Method (Method 2)

CNT nanofluids with different concentrations of CNT (0.001, 0.005, 0.01, 0.025, 0.05
and 0.075 w/v%) were again made with Method 2 by adding the requisite quantity of CNT
to 50 mL EG and conducting sonication for S0 time period. Thereafter, 50 mL water was
added and it was again subjected to a second slot of sonication for Sf time period. Various
combinations of S0 (40, 50, 60 and 70 min) and Sf (30, 60 and 90 min) were tried to optimize
the nanofluid. The absorbance was recorded at each combination and plotted by origin
software. Ultrasonicator temperature was fixed in 30–40 ◦C range. These nanofluids were
used for further studies.

2.3. Characterization

Absorbance of the prepared nanofluids was recorded by UV-vis spectrophotometer
(HITACHI U-2190) (Hitachi High Technology Tokyo, Japan) for estimating the stability of
the nanofluids. Zetasizer Nano ZS (Malvern RDET 48125) (Malvern Instrument limited,
United Kingdom) was employed to record the particle size of the prepared nanofluids.
Thermal conductivity was recorded by Thermal Property Analyzer (Decagon Inc., Pullman,
WA, USA) using a KS-1 single-needle (60 mm long and 1.3 mm diameter) sensor. For error
estimation, the instrument was calibrated using glycerin. The measurements were within
98% accuracy. Rotational rheometer (Anton Paar MCR-102) (Anton Paar Austria GmbH)
was used to measure the dynamic viscosity at a variable shear rate of 10–100/s. Calibration
was performed by BW 20 oil at 30 ◦C as per national standards and uncertainty was 0.25%.
The Pak and Cho correlation [25], based on mixing theory (Equation (1)), was used to
estimate theoretical density of the nanofluids:

ρ(nf) = Φ ρ(p) + (1 − Φ)ρ(bf) (1)
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Experimentally, density was measured by a pycnometer. Uncertainty was ±0.005%.
Three concordant readings for every sample ensured accuracy and repeatability. The
average values of these experimental data were used in Equation (2) to calculate density:

ρ(nf) = (Mnf − Mbf)/Vnf (2)

Advance neo 500, Bruker NMR spectrophotometer (Bruker, Germany) and Tensor 37,
Bruker FTIR spectrophotometer (Bruker, Germany) were used for NMR and FTIR studies,
respectively.

3. Result and Discussion
3.1. Effect of Sonication Time

Ultrasonication is a common way to break up agglomerates and promote the disper-
sion of nanoparticles in base fluid to obtain more stable nanofluid [26].

3.1.1. Effect of Sonication Time on Nanofluid Prepared by Method 1

For nanofluids prepared by Method 1, CNT mixed with 50:50 EG/water was sonicated
for 2, 3, 4, 5 and 6 h and their absorbance is recorded at each interval and plotted in Figure 1.
From Figure 1a–f, it was noted that on enhancing sonication up to 5 h, the absorbance rises
for all concentrations. The absorbance decreases as the sonication time increases beyond
5 h.
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Sonication lower than 5 h is not enough for effective dispersion of CNT in a mixture of
EG/water. Thus, absorbance rises up to 5 h. More than 5 h of sonication can create active
areas on the CNT surface increasing the possibility of particle collision and formation of
new aggregates resulting in decrement of absorbance. This type of trend was seen by other
researchers also [12,26,27].

3.1.2. Effect of Sonication Time on Nanofluid Prepared by Method 2

Figure 2a–f represent the absorbance data of nanofluid prepared by Method 2 at
various combinations of sonication time intervals, S0 (40, 50, 60 and 70 min) and Sf (30,
60 and 90 min). Absorbance was maximum for S0 = 60 min and thereafter decreased at
S0 = 70 mins. This clearly indicated S0 = 60 min was the optimum dispersion time, as
maximum dispersion is seen at S0 = 60 min and all Sf (30, 60 and 90 min).
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The effect of Sf (30, 60 and 90 min) was observed at the optimized S0 (60 min). As Sf
increased from 30 to 90 mins, absorbance decreased. Therefore, S0 = 60 min and Sf = 30 min
was obtained as optimized time for sonication.

Applying sonication for S0 > 60 min and Sf > 30 min enhances the defects on surface of
CNT leading to the formation of new aggregates resulting in a decrement in absorbance [27].

3.2. Stability Analysis

Pantzali et al., 2009 [28] reported that nanofluids have sufficient capability to design
efficient heat transfer systems but their long-term stability could be a practical issue in their
commercialization. Thus, in this study, evaluation of nanofluid stability was performed
with Dynamic light scattering and UV-vis spectroscopy.

3.2.1. UV-Vis Spectroscopy

Stability of prepared nanofluid was analyzed under static conditions by measuring
their absorbance using UV-vis spectroscopy. It was found that stability varied with the
concentration of nanofluids as plotted in Figures 3 and 4. As CNT concentration increased,
absorbance also increased as represented in Figures 3 and 4.

In case of nanofluids prepared by Method 1, nanofluids at 0.001, 0.005, 0.01, 0.025
and 0.05 w/v% of CNT showed no change in absorbance up to 50, 47,44, 30 and 15 days,
respectively, and a decrease was seen thereafter. CNT nanofluid with 0.075 w/v% CNT
showed a constant decrement in absorbance.

In case of nanofluids prepared by Method 2, nanofluids containing 0.001, 0.005, 0.01,
0.025, and 0.05 w/v% CNT showed no change in absorbance up to 85, 82, 78, 45 and 25 days,
respectively, and a decrease was seen thereafter. Nanofluid with 0.075 w/v% CNT showed
a constant decrement in absorbance after 5 days.

For nanofluids prepared by both Method 1 and Method 2, stability decreased as con-
centration increases. A similar trend was also reported by other researchers [29,30]. Average
particle separation reduces with concentration. A lower separation means higher Vander
Waals attractive potential. A higher Vander Waals attractive potential than electrostatic
repulsive potential leads to particle agglomeration, which settle at the bottom [31].
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It was found that nanofluids prepared by Method 2 wa more stable as compared
to nanofluid prepared by Method 1 at all concentrations as shown in Table 1. This may
be because of the change in preparation procedures. In Method 2, CNT was allowed to
interact with EG first thereafter water was added to the system. CNT interacts with EG
more strongly as compared to water [32], which blocks CNT and water contact. Hence,
it prevents agglomeration of CNT [33]. Therefore, proper dispersion was obtained by
Method 2.

Table 1. Stability of nanofluid prepared by Method 1 and Method 2.

Concentration of CNT (w/v%) Stability of Nanofluid (Days)

Method 1 Method 2

0.001 50 85
0.005 47 82
0.01 44 78

0.025 30 45
0.05 15 25

0.075 0 5

Since nanofluids with 0.05 and 0.075 w/v% of CNT showed stability less than 1 month,
these were not considered for further analysis owing to the lack of practical applicability
for heat transfer.

3.2.2. Dynamic Light Scattering

Figure 5 showed that hydrodynamic size increases with the increment in concentration
of CNT in both nanofluids prepared by Method 1 and Method 2. Larger concentrations
showed enhanced particle sizes as agglomeration enhances with increased loading [34].



ChemEngineering 2023, 7, 117 8 of 16

ChemEngineering 2023, 7, x FOR PEER REVIEW 8 of 16 
 

3.2.2. Dynamic Light Scattering 
Figure 5 showed that hydrodynamic size increases with the increment in concentra-

tion of CNT in both nanofluids prepared by Method 1 and Method 2. Larger concentra-
tions showed enhanced particle sizes as agglomeration enhances with increased loading 
[34]. 

Comparing the hydrodynamic size at day 0 for nanofluids prepared by Method 1 and 
Method 2 at each concentration, it was found that nanoparticles prepared by Method 2 
were smaller than those prepared by Method 2 at all concentrations. 

The hydrodynamic size of both nanofluids prepared by Method 1 and Method 2 
showed an increment on keeping with time as shown by Figure 5 (comparing day 0 and 
day 11). It was also found that nanofluid prepared by Method 1 showed a larger increment 
in size or agglomerated faster with time as compared to nanofluid prepared by Method 2. 
This could be due to the arrangement of water and EG around CNT. The presence of more 
EG molecules around CNT helps in stabilizing its dispersion, while the presence of water 
leads to agglomeration of CNT. In Method 2, the CNT was first dispersed or wrapped by 
EG before being mixed with water. The strong propensity of EG to form hydrogen bond-
ing with water stabilizes the (CNT-EG) system in water. 

On the other hand, in Method 1, CNT was added to the water and EG mixture and 
the water molecules around CNT caused faster agglomeration of CNT and destabilization 
of nanofluid at a faster rate. 

Larger enhancement in size with time was also observed at a high concentration in 
comparison to lower concentration of CNT. 

An increase in hydrodynamic size or aggregation shows lack of stability of nanofluid 
[35]. The enhancement in size observed by DLS matches well to the decrease in stability 
as indicated by UV-vis spectroscopy. 

 
Figure 5. Hydrodynamic size of nanofluid prepared by Method 1 and Method 2 at day 0 and day 
11. 

3.3. Study of Interactions between CNT and Base Fluid 
3.3.1. FTIR Spectroscopy 

FTIR data of EG/water mixture, nanofluid prepared by Method 1 and nanofluid pre-
pared by Method 2 are shown in Figure 6. The peak at 3276 cm−1 in a mixture of EG/water 
indicate hydrogen bonding. A shift was observed in this peak in the case of both 

Figure 5. Hydrodynamic size of nanofluid prepared by Method 1 and Method 2 at day 0 and day 11.

Comparing the hydrodynamic size at day 0 for nanofluids prepared by Method 1 and
Method 2 at each concentration, it was found that nanoparticles prepared by Method 2
were smaller than those prepared by Method 2 at all concentrations.

The hydrodynamic size of both nanofluids prepared by Method 1 and Method 2
showed an increment on keeping with time as shown by Figure 5 (comparing day 0 and
day 11). It was also found that nanofluid prepared by Method 1 showed a larger increment
in size or agglomerated faster with time as compared to nanofluid prepared by Method 2.
This could be due to the arrangement of water and EG around CNT. The presence of more
EG molecules around CNT helps in stabilizing its dispersion, while the presence of water
leads to agglomeration of CNT. In Method 2, the CNT was first dispersed or wrapped by
EG before being mixed with water. The strong propensity of EG to form hydrogen bonding
with water stabilizes the (CNT-EG) system in water.

On the other hand, in Method 1, CNT was added to the water and EG mixture and the
water molecules around CNT caused faster agglomeration of CNT and destabilization of
nanofluid at a faster rate.

Larger enhancement in size with time was also observed at a high concentration in
comparison to lower concentration of CNT.

An increase in hydrodynamic size or aggregation shows lack of stability of nanofluid [35].
The enhancement in size observed by DLS matches well to the decrease in stability as
indicated by UV-vis spectroscopy.

3.3. Study of Interactions between CNT and Base Fluid
3.3.1. FTIR Spectroscopy

FTIR data of EG/water mixture, nanofluid prepared by Method 1 and nanofluid
prepared by Method 2 are shown in Figure 6. The peak at 3276 cm−1 in a mixture of
EG/water indicate hydrogen bonding. A shift was observed in this peak in the case of both
nanofluids (3292 and 3297 cm−1) because of the formation of new hydrogen bonds between
CNT-EG-water system.
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Two bands at 1039 and 1081 cm−1 were due to O-C-C-O stretching vibration modes
in trans and gauche conformation of EG in EG/water mixture, respectively [36]. This
indicates that in a mixture of EG/water, EG exists in both trans and gauche conformations.
A minute shift was seen for the trans peak in nanofluid prepared by Method 1, indicating
interaction of both water and EG with CNT in nanofluid prepared by Method 1. In the case
of nanofluid prepared by Method 2, the intensity of gauche conformation (1081 cm−1 band)
diminishes and only trans-conformation exists (1043 cm−1 band), indicating that gauche
form changes to trans form in EG. The reason is that EG interacts by trans form, having no
dipole moment with the nonpolar surface of CNT, eliminating the gauche form having a
dipole moment [37,38].

As no new peak appeared in nanofluids prepared by Method 1 and Method 2 as
compared to the base fluid, it indicated that nanofluids were stabilized via noncovalent
interactions.

3.3.2. NMR Spectroscopy

Figure 7 depicts the NMR spectra (500 MHz, DMSOd6, TMS) of EG/water mixture,
nanofluid prepared by Method 1 and nanofluid prepared by Method 2. In the case of
nanofluid prepared by Method 1 (Figure 7B), all peaks become broader as compared with
a mixture of EG/water (Figure 7A). It showed enhanced hydrogen bonding in nanofluid.
The peak at 4.47 ppm (due to water) and 5.11 ppm (due to OH of EG) [39] in nanofluid
prepared by Method 1 were broader than nanofluid prepared by Method 2. It indicated
that OH of EG and water showed more interaction among themselves and with CNT in
case of nanofluid prepared by Method 1. In the case of nanofluid prepared by Method 2
(Figure 7C), peak at 3.45 ppm (due to CH2-EG) was broader in comparison with nanofluid
prepared by Method 1, indicating stronger stacking interaction of CH2 (EG) with CNT.
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These results were in line with preparation protocols. No new peak appears in
nanofluid prepared by Method 1 and Method 2 in comparison to a mixture of EG/water,
indicating the presence of noncovalent interactions such as hydrogen bonding, Van-
der walls interactions, and hydrophilic–hydrophobic interactions for stabilizing CNT in
EG/water mixture.

3.4. Physical–Chemical Properties
3.4.1. Viscosity

An increase in viscosity leads to an increment in the pumping power required to pump
the nanofluid, so a study of viscosity is important for its role in heat transfer application.
The rheological behaviour of the base fluid and both nanofluids prepared by Method 1
and Method 2 at different concentrations is shown in Figure 8. It was observed that both
nanofluids have higher viscosity as compared to the base fluid. This will increase the
pumping power required to pump the nanofluid.
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Viscosity increases with an increase in particle concentration. Similar trend was also
observed by other researchers and it was due to the formation of agglomerates of CNT [40].
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The dynamic viscosity of nanofluid was observed to decrease as the shear rate in-
creased as shown in Tables 2 and 3. It clearly indicates the shear thinning behaviour of the
nanofluid. This may be because of breaking of agglomerates of CNT-CNT and particle–base
fluid interactions at a higher shear rate [3,41].

Table 2. Viscosity of nanofluid prepared by Method 1.

Shear Rate (1/s)
% Enhancement in Comparison to Base Fluid

0.001 w/v% 0.005 w/v% 0.01 w/v% 0.025 w/v%

10 140.83 157.88 171.52 186.40
14.7 123.10 130.44 141.44 145.87
21.5 108.71 116.64 128.54 132.43
31.6 81.22 85.14 92.33 97.63
46.4 66.28 66.69 74.82 82.14
68.1 50.00 54.12 56.56 59.28
100 35.03 39.75 45.33 53.06

Table 3. Viscosity of nanofluid prepared by Method 2.

Shear Rate (1/s)
% Enhancement in Comparison to Base Fluid

0.001 w/v% 0.005 w/v% 0.01 w/v% 0.025 w/v%

10 77.55 83.49 123.03 156.18
14.7 65.73 71.34 104.27 131.46
21.5 54.29 62.59 91.00 100.27
31.6 41.85 46.70 65.39 75.72
46.4 35.46 40.16 51.15 62.25
68.1 27.94 35.97 39.88 42.18
100 20.58 25.69 34.20 37.89

It was observed that nanofluids prepared by Method 1 had higher viscosity as com-
pared to nanofluids prepared by Method 2 at all shear rates as shown in Figure 8A,B and
in Tables 2 and 3. Higher viscosity means more energy required for pumping the fluid,
which eventually leads to an increase in operation costs. Therefore, nanofluid prepared
by Method 2 is a viable option for heat removal in industrial application in comparison
to nanofluid prepared by Method 1. This may be because of larger particle size and low
stability of CNT nanoparticles in nanofluid prepared by Method 1 as indicated by DLS and
UV vis data.

3.4.2. Density

The density of the nanofluid prepared by both Method 1 and Method 2 are given
in Table 4. The density of all the prepared nanofluids was slightly higher than the base
fluid due to the presence of CNT nanoparticles. A negligible enhancement in density of
nanofluid prepared by Method 2 as compared to nanofluid prepared by Method 1 was
observed at all concentrations. This means that the prepared nanofluids are suitable for
heat transfer applications.

3.4.3. Thermal Conductivity

Figure 9 shows an enhancement in thermal conductivity with concentration of CNT
for both nanofluids prepared by Method 1 and Method 2. The enhancement in thermal
conductivity is the result of homogenous dispersion in the base fluid and formation of a
nanolayer [7,42–44]. The liquid nanolayer at the interface has a higher thermal conductivity
than the bulk liquid [44]. Nanofluid prepared by Method 2 has higher thermal conductivity
as compared to nanofluid prepared by Method 1. Higher thermal conductivity means
higher heat removal tendency. Therefore, nanofluid prepared by Method 2 is a better
nanofluid. This is because in Method 2, CNT is first dispersed in EG. EG form interactions
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with CNT via trans form (as described by FTIR data). This means higher interaction
between CNT and EG and more ordered liquid layer is formed around CNT in Method 2
that results in higher thermal conductivity [38].

Table 4. Density of nanofluid.

Concentration of
CNT (w/v%)

Experimental
Density (Kg/cc) of

Nanofluid Prepared
by Method 1

Experimental
Density (Kg/cc) of

Nanofluid Prepared
by Method 2

Theoretical Density
(Kg/cc)

0 (base fluid) 1058 1058

0.001 1058.16 1058.20 1058.48

0.005 1059.67 1060 1060.39

0.01 1060.67 1061.34 1062.89

0.025 1066.01 1067.35 1070.50
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4. Comparison of Present Work with Work Reported in Literature

As shown in Table 5, work has been carried out in literature to prepare surfactant-free
nanofluid using EG/water (50:50). However, when compared to previous literature, the
current study showed that Method 2 requires less sonication time and shows better stability.
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Table 5. Comparison of present study with reported work.

(EG/Water) Nanoparticle Used Technique Used for
Dispersion Stability Reference

50:50 COOH-DWCNT 5–6 h sonication - [4]

50:50 MWCNT-SiC 1 h stirring and 45 min
sonication - [45]

50:50 Al2O3-MWCNT 45 min stirring and 1.5 h
sonication - [46]

50:50 COOH-SWCNT 2.30 h stirring and 6 h
sonication 10 days [19]

50:50 MWCNT-SiO2
2 h stirring and 5–6 h

sonication - [47]

50:50 MWCNT-TiO2
3 h stirring and 5 h

sonication 2 weeks [17]

50:50 COOH-MWCNT 5 h sonication 50 days Present study
50:50 COOH-MWCNT 90 min sonication 85 days Present study

5. Conclusions

In this study, stable CNT antifreeze nanofluid was prepared in 50:50 EG/water without
surfactants and their physical–chemical properties were investigated. Nanofluid was
prepared by two methods, first by the conventional method (Method 1) and second by
a modified method (Method 2) in a concentration range of 0.001 to 0.075 w/v%. Both
Method 1 and Method 2 are successful in preparing stable nanofluids with enhanced
thermal conductivity. These nanofluids remain stable without the addition of any surfactant,
thus solving the problem of foaming. These nanofluids could be useful in a large range
of temperatures including cold (subzero) areas for heat transfer applications. Thermal
conductivity of both nanofluids increases linearly with concentration and their stability
decreases with concentration. The conclusions of the aforementioned study are listed below:
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by this method.
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CNT Carbon Nanotube
EG Ethylene Glycol
Φ CNT amount (V%)
ρ(bf) Base fluid density (Kg/m3)
ρ(nf) Nanofluid Density (Kg/m3)
M(nf) Nanofluid mass (Kg)
M(bf) Base fluid mass (Kg)
V(nf) Nanofluid volume (m3)
S0 Sonication time prior to addition of water (min)
Sf Sonication time after addition of water (min)
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