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Abstract: Polders are low-lying areas located in deltas, surrounded by embankments to prevent
flooding (river or tidal floods). They rely on pumping systems to remove water from the inner rivers
(artificial rivers inside the polder area) to the outer rivers, especially during storms. Urbanized polders
are especially vulnerable to pluvial flooding if the drainage, storage, and pumping capacity of the
polder is inadequate. In this paper, a Monte Carlo (MC) framework is proposed to evaluate the
benefits of rainfall threshold-based flood warnings when mitigating pluvial flooding in an urban flood-
prone polder area based on 24 h forecasts. The framework computes metrics that give the potential
waterlogging duration, maximum inundated area, and pump operation costs by considering the full
range of potential storms. The benefits of flood warnings are evaluated by comparing the values
of these metrics across different scenarios: the no-warning, perfect, deterministic, and probabilistic
forecast scenarios. Probabilistic forecasts are represented using the concept of “predictive uncertainty”
(PU). A polder area located in Nanjing was chosen for the case study. The results show a trade-off
between the metrics that represent the waterlogging and the pumping costs, and that probabilistic
forecasts of rainfall can considerably enhance these metrics. The results can be used to design a rainfall
threshold-based flood early warning system (FEWS) for a polder area and/or evaluate its benefits.

Keywords: urban flood-prone polder area; pluvial flooding; waterlogging; rainfall thresholds; flood
early warning system; predictive uncertainty

1. Introduction

Polders are low-lying areas of land adjacent to coasts or large rivers that are enclosed by
embankments constructed to protect the river and coastal floodplains in deltas across the globe,
e.g., Bangladesh [1], Indonesia [2], Netherlands [3], and China [4]. Polders lie below the levels
of the sea or adjacent outer rivers, and, therefore, pumping systems must be used during storm
events to remove water from the inner rivers (artificial rivers inside the polder area) to the outer
rivers to enable water to drain from the polder areas into the inner rivers [5]. Thus, even though
polder areas are protected from river or tidal floods through embankments, these low-lying
areas can also be affected by urban flooding if they are exposed to intense precipitation and the
drainage, storage, and pumping capacity of the polder is poor. This condition is even worse
with the more intense rainfalls experienced in recent years due to climate change. This is an
issue that, for example, China is currently experiencing [6–9].

Cities on the Yangtze River Delta (the plain region of southeast China) are characterised
by urban flood-prone polder systems [4], and Nanjing and Anhui, for example, have
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suffered catastrophic floods, e.g., in 1998 and 2016 [7,9]. Urban flood-prone polder systems
in China are often operated based on reactive pumping actions (water-pumped based on the
observed runoff (inflow) entering the inner rivers) [5,10], which increases the probability of
the inner rivers’ storage capacity being overwhelmed. When this occurs, the runoff cannot
drain freely to the inner rivers, and the waterlogging, and, therefore, the flood impact on
the polder area, increases. The duration of waterlogging and the maximum inundated area
are, for example, variates that measure damage which increases when this critical condition
occurs in the polder system. Since the polder system’s storage capacity is defined by the
water level of the inner rivers when the storm arrives, flood warnings can provide time
in advance to decrease that water level through proactive pumping, thus increasing the
storage capacity, and avoiding the critical condition situation.

Based on this concept, a flood early warning system, FEWS, based on rainfall thresh-
olds [11–14] can be designed and implemented which can be characterised by a forecasting
model providing, for example, forecasts of future storms, warning decisions made based
on those forecasts and rainfall thresholds, and responses defined based on the pumping
scheme operating in the flood-prone polder area. FEWSs operating in flood-prone polder
systems of this kind have not, to the authors’ knowledge, been studied and designed before,
apart from a recent study in Thailand [15] which reported that flood forecasts for a polder
in Bangkok made it possible to decide in advance on explicit flood controls, including
pump and canal gate operations. Urban polders in China have been studied in another
context, for example, by analysing how polders (i) modify a river network structure [16],
(ii) impact the hydrology of the adjacent outer rivers during extreme events [6,8], or
(iii) impact the flood risk of areas located downstream of adjacent outer rivers [7].

The main aim of this paper is to demonstrate the potential benefits that could be
gained from the use of flood forecasts and warnings in the operation of a polder system
to mitigate flooding. This is achieved by simulating a rainfall threshold-based FEWS for
monitoring and warning an urban flood-prone polder located in Nanjing (the Shazhou
polder). The end-to-end forecast–warning–response system is driven by rainstorms and
their forecasts simulated using the MC method. Deterministic and probabilistic forecasts
and resulting warnings are simulated and metrics are computed that quantify the potential
waterlogging duration and maximum inundated area in the polder under a wide range of
storms, and the trade-off with pumping costs is explored for different pumping strategies.

This paper is structured as follows: Section 2 describes the materials and methods
used to achieve the work’s aim. Here, the study area is described first in Section 2.1, and the
conceptual model used by the MC framework to represent the water fluxes during a storm
in the Shazhou polder is explained in Section 2.2. Then, a general description of the MC
framework used to evaluate the potential benefits of flood warnings is given (Section 2.3).
Next, in Sections 2.4–2.6, detailed descriptions of the components designed to obtain the
metrics defining the waterlogging and pump operation costs are given. The results are
presented in Section 3, and the paper ends with the discussion and conclusions in Section 4.

2. Materials and Methods
2.1. Study Area

Nanjing has suffered from severe pluvial flooding in recent years due to intense
summer rainstorms, notably in 2016, resulting in the inundation of a number of areas in the
city. Most of these areas are polders that have inner rivers and which lie below the levels of
the adjacent outer rivers, which are, ultimately, connected to the Yangtse river. Pumping
systems are operated during storm events to remove water from the inner rivers to the
outer rivers, to enable water to drain from the polder areas into the inner rivers. Even
though storm warnings are issued in Nanjing, these pumping operations can be considered
to be reactive because they are mainly driven by the observed inflow.

The Shazhou polder is situated in Hexi New Town, located in the southwest of Nanjing
City. This area (54.7 km2) is surrounded by the Yangtze, Qinhuai, Nanhe, and New Qinhuai
rivers (the outer rivers). The topography of Hexi New Town is plain and low-lying, lower
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than the normal water level of the adjacent outer rivers. The town is protected from
flooding by embankments, and stormwater, collected in the inner rivers, is discharged to
the adjacent outer rivers using pumping stations [17] (Figure 1).
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Figure 1. Map of the Shazhou polder (Hexi New Town) and its surrounding areas, Nanjing, China.
The pumping system of the polder is made up of 17 pumping stations.

This research only focuses on the simulation of the water fluxes of the polder system
and the inner rivers, and neglects any interaction with the adjacent outer rivers.

2.2. Conceptual Model of Water Fluxes in the Shazhou Polder System during A Storm Event
2.2.1. Model Structure

As in other works that have simulated water fluxes in a polder [5,6,18], this conceptual
model assumes that the Shazhou polder can be represented as a tank with inputs and
outputs (an input–output system). Thus, five processes have been identified to be simulated
in the system during a storm: inflow to the inner rivers, polder runoff, waterlogging, storage
in the inner rivers, and water pumped to the outer rivers (Figure 2). This model considers
a “conceptual pipe” that aggregates the many contributions from the different parts of
the polder urban drainage network. In the above-mentioned works, the capacity of this
pipe has been represented through a variate representing the aggregation of the pipe-
network drainage system (r). A maximum storage capacity of the inner rivers (Scap

max) is also
considered which is defined here as the difference between two benchmark water levels:
the water level at the outlet of the pipe above which waterlogging occurs, hereinafter called
the critical water level (hc), and a pre-lowered water level in normal conditions (hn).

This model assumes that the initial water level prior to a storm is not a constant due to
differences in the antecedent patterns of rainfall, ho ≥ hn. If the water level exceeds the top
of the pipe outlet level during a storm event, i.e., the critical water level hc, runoff cannot
freely drain from the polder area; this constitutes the critical condition that can trigger or
enhance waterlogging. The storage capacity of the inner rivers before a storm arrives (Scap

o )
is defined by the difference between hc and ho; its maximum value is Scap

max. Figure 2 shows
the system working under non-critical conditions, i.e., when the water level of the inner
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rivers is below the critical level hc. However, waterlogging may still occur in this situation
if the runoff from the polder exceeds the capacity of the pipe-network drainage r; in this
case, the maximum pumping capacity of the polder (qmax) is used. The runoff process is
simulated by using an average runoff coefficient (Cru) embedded into a rainfall–runoff
relationship used by [18] to represent the rainfall–runoff process of a neighbouring polder,
whereas the water storage in the inner rivers (Sin) at a given time step t is computed based
on a variate known as the water surface ratio of a polder (k).
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the behaviour of the water of the inner rivers under this condition during the pumping.

In our simulations, we have assumed that the maximum storage capacity of the inner
rivers remains constant over time, and is not affected by sedimentation. However, we are
focusing only on the month of July when flooding is prevalent, and doing multiple stochas-
tic simulations of polder operation over this month, not continuous long-term simulation.
So, sedimentation is not an issue over this time scale. However, we acknowledge that for an
operational forecasting system, regular sediment depth surveys and storage adjustments
would be necessary.

It is thought that a reactive pumping strategy is currently implemented by the flood
managers, in which the rate of pumping is based on the inflow rate; this has been doc-
umented in [5,19]. The impact of pumping on the outer river levels, which drain to the
Yangtze River, is not considered. A critical condition occurs if the pumping is insufficient
to prevent the water levels from submerging the pipe outlet. Thus, there are two potential
states of the system during a storm: the non-critical condition, when the water level of the
inner rivers (h) is <hc, and the critical condition, when h ≥ hc.

Under the assumptions detailed above, the system simulation algorithm is represented
through Equations (A1)–(A7) (Appendix A), where the water balance is performed at an hourly
time step, and all variates are represented in mm·hr−1 per square meter of surface area, rather
than volumes. Table 1 describes the parameters needed to implement the algorithm.

Table 1. Input parameters for the conceptual model of water fluxes in a polder system during a storm
(Figure 2).

Parameter Description Unit

r The capacity of the pipe-network drainage
mm·hr−1

qmax The maximum pumping capacity for the polder

Scap
max

Difference between the critical and normal water level of the inner rivers, i.e., hc
and hn, respectively mm

k Water surface ratio -
Cru Average runoff coefficient
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2.2.2. Model Calibration Procedure

Particular efforts have been made recently to simulate polder systems in China for
flood risk analysis [4,6,8]. However, none of the studies have considered a calibration
procedure for the urban drainage system. One of the main reasons could be a lack of
data/information, since, to calibrate a conceptual model, an average value of the observed
water level of the inner rivers would be needed, derived from several observed points in
the river network. In this context, the objective of the calibration process was to represent
the conditions that give rise to a critical condition situation in the Shazhou polder, rather
than the accurate simulation of the average observed water level h, as this information
was not available. For these purposes, this work used the observed rainfall of the 7 July
2016 event that is known to have caused a critical condition in the polder system. The
calibration procedure consisted of adjusting one of the five parameter values in Table 1—the
maximum pumping capacity (qmax) of the polder. Values for the remaining parameter
values were adopted from previous studies performed in the case study area [17,19]. Thus,
the conceptual model used in the MC framework is not a precisely calibrated model, but it
does capture the key components of the polder system and has been shown to reproduce the
critical condition for a historical storm event. The calibrated model is sufficient to support a
demonstration of the benefits of forecasts for decision-making within the MC framework. A
much stronger calibration using more data would be needed for an operational forecasting
and decision-support system.

2.3. General Description of the MC Framework

The MC framework is based on three components that support the simulation of
a hypothetical FEWS monitoring and warning at the Shazhou polder (Figure 3a): (i) a
rainstorm-and-forecast generator (RFG) which generates synthetic ‘real’ hourly rainfall
and deterministic and probabilistic 24 h forecasts of the ‘real’ rainfall; (ii) a flood warning
decision component (FWDC) that simulates warning decisions based on the type of forecast
generated by the RFG; and (iii) a response and impact component (RIC) that uses the
conceptual model of the Shazhou polder (Section 2.2.1) with pumping strategies to estimate
their impact on waterlogging in the polder area, and the cost of pumping to mitigate this.
In the RIC, a proactive pumping strategy is triggered by flood warnings and starts before
the storm arrives based on the 24 h forecasts of rainfall. If a flood warning is not issued,
only reactive pumping is implemented, i.e., the rate of pumping is based on the inflow rate
(current condition of the Shazhou polder).

Table 2. Description of the metrics used for evaluating the benefits of flood warnings in the Shazhou
polder.

Metric Equation Description of Equations

Average maximum
inundated area

MIA = max
(

IA1, IA2, IA3, . . . IAj
)

MIA = 1
n

n
∑

i=1
MIAi

MIA: the maximum area inundated during each replication i of the
operation of the polder system during July.
IA: hourly inundated area.
j: the total number of simulated hours in a simulated July (744 h).
n: total number of July replications (8730 replications).
MIA: the average maximum inundated area in July.
Di

w: number of hours of waterlogging during a simulated July i.
Dw: average waterlogging duration during July.
Cp: average total pumping cost during July.
Cpro : average proactive pumping costs during July.
Crea: average reactive pumping costs during July.
Ci

pro : total proactive pumping cost for a simulated July i.
Ci

rea: total reactive pumping cost for a simulated July i.

Average
waterlogging

duration
Dw = 1

n

n
∑

i=1
Di

w

Average pumping
costs

Cp = Cpro + Crea

Cpro = 1
n

n
∑

i=1
Ci

pro

Crea =
1
n

n
∑

i=1
Ci

rea

Assumed pumping tariff to compute the pumping costs

q (mm·h−1) 1.6 3.2 4.8 6.4 8 qmax = 9.62
Tariff (units) 15 30 45 60 75 100
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As shall be seen later, the MC framework’s application was based on simulated
observed and forecast rainfalls generated from a stochastic spatio-temporal rainfall model
embedded in the RFG. Therefore, the reader should have in mind that the use of the
words “observed” and “forecast” throughout the paper refers to simulated observed and
forecast rainfalls which implies that the proposed framework can be applied with real-
world observed and forecast rainfall data. In the following subsections, a description of the
three components of the MC framework is given.

2.4. The Rainstorm-and-Forecast Generator (RFG)

The Rainfall Forecast Generator, RFG, utilizes RainSim V3, a stochastic spatial–temporal
rainfall field generator which is described in detail in [20]; a brief summary is provided in
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Appendix B. RainSim is used to generate ‘observed’ rainfall values and their forecasts at
hourly resolution with a prescribed correlation.

As numerical weather prediction (NWP) rainfall forecasts (e.g., ensembles) are typically
available for up to 24 h in advance, a flood in the polder area is simulated based on rainfall
forecasts over a 24 h forecast horizon (forecast lead time). To obtain the deterministic rainfall
forecast, the hourly simulated forecasts are aggregated to obtain a 24 h forecast R̂daily.

A predictive uncertainty (PU) approach has been adopted to probabilistic rainfall fore-
casting, noting that the PU approach can encompass ensemble predictions [21]. To obtain
the 24 h probabilistic forecast and its associated PU, a bivariate parametric model is con-
structed using daily ‘observed’ rainfalls (Rdaily) and their forecasts R̂daily generated by the
RainSim model. The model’s parameters, marginal distributions, and correlation coefficient
are determined, and a conditional distribution of Rdaily given R̂daily, i.e., f

(
Rdaily

∣∣∣R̂daily

)
.

To obtain the parameters of the marginal distributions of Rdaily and R̂daily, a univariate
analysis was performed based on the goodness of fit (GoF) of different distributions. When
the sample size is large, as in this work, the GoF is not based on a traditional statistical test
(tests based on the p-value) [22]; therefore, visual inspection was used to analyse the GoF
through quantile–quantile (q-q) plots, and the Weibull equation was employed to compute
empirical probabilities:

Fm =
m

n + 1
(1)

where Fm is the probability of non-exceedance of the event m, which is defined through the
rank of descending values, and n is the sample size.

Thus, the RFG generates deterministic and probabilistic 24 h rainfall forecasts for the
FWDC to simulate flood warnings. Figure 4 illustrates the generation of the probabilistic
24 h rainfall forecast conducted by the RFG, and Appendix B provides additional details
on the RainSim model, fitting procedure, and data used for fitting.
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based on the daily observed rainfalls Rdaily and their forecasts R̂daily, from which f
(

Rdaily

∣∣∣R̂daily

)
is

derived, blue line.

2.5. The Flood Warning Decision Component (FWDC)

A flood warning aims to provide time in advance to the polder manager to conduct a
proactive action in the polder system to avoid a critical condition situation. Figure 5a shows
the chronology adopted within the MC framework for the operation of the polder system. It
is assumed that the flood warning is issued at midnight, and, thus, the polder manager can
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conduct a proactive strategy based on the 24 h forecast. Note that the end of the proactive
action (tpro) depends on the pumping strategy adopted by the polder manager and where tpro
is located in time, and the storm might arrive before or after the proactive period.
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The warning decision made at midnight is represented by a decision rule, and uses a
rainfall threshold (RT) curve as a tool for making the flood warning decision. The RT curve
defines critical volumes of daily rainfall on the polder area that bring the inner rivers to
the critical condition (h ≥ hc, Figure 2). This curve is made up of different critical values
associated with several initial conditions of the water level of the inner rivers (h0) at the
time the forecast is issued. Thus, in the deterministic forecast scenario, it is assumed that a
warning is automatically issued when the deterministic 24 h forecast, i.e., R̂daily, is above
the RT curve (Figure 5b). In the probabilistic forecast scenario, a warning is automatically
issued when the probability of exceedance (PE) of the RT curve exceeds a pre-defined
probabilistic threshold (PT) (Figure 5c). PE is obtained from f

(
Rdaily

∣∣∣R̂daily

)
(Figure 4),

and PT is a value to be determined when analysing the performance of the FEWS in terms
of the waterlogging and costs of the pumping response.

2.5.1. The Rainfall Threshold (RT) Curve for the Polder System

A rainfall threshold for flood warnings represents a simple and widely used method
that has been used for urban and fluvial areas [13,14,23]. Although the application of
thresholds is similar, the methodology of how rainfall threshold methods are set varies
when considering the precision and parameters required [24]. In this work, a daily rainfall
threshold (RTdaily) for a polder system is defined as the volume of a daily rainfall which
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brings the water level of the inner rivers to the critical level hc, i.e., a daily rainfall that fills
up the storage capacity of the inner rivers. Thus, daily rainfall values greater than RTdaily
falling on the polder area bring the inner rivers to critical conditions. In this context, RTdaily
has to be associated with ho, i.e., the initial condition of the water level of the inner rivers at
the time the forecast is issued. Note also that a critical condition situation depends not only
on the volume but also on the rainfall profile of the storm causing critical conditions in the
polder. Daily rainfalls with significant volumes that spread uniformly during the day might
not cause critical conditions in the polder due to the runoff rate reaching the inner river
being equal to or lower than the pumping capacity of the polder qmax. In this case, water is
not stored in the inner rivers, and the polder manager can drain the runoff smoothly if he
pumps in proportion to the drainage from the polder. However, other daily rainfalls with
similar rainfall volumes, but concentrated in relatively short time periods, might cause
critical conditions in the polder system due to the runoff rate possibly being higher than
the maximum pumping capacity qmax. In this case, the water is pumped at a rate equal to
qmax, but the water level rises, and a critical condition situation can be reached. To account
for the uncertainty in the distribution of rainfall across the day, the calibrated stochastic
rainfall field model (RainSim V3), provides daily rainfall profiles based on the generated
hourly values of those events that could potentially produce significant runoff events in
the polder system (Appendix B). A value of RTdaily can be computed for each profile using
a trial-and-error approach with the water balance model of the Shazhou polder with a
pumping strategy that is thought to represent the current reactive pump operation in the
Shazou polder (this is based on information provided by Nanjing Hydraulic Research
Institute, NHRI). Then, RTdaily is estimated as a p-quantile of the resulting PDF of these
values. The algorithm can be summarized as follows:

• Step 1: From the RainSim simulations, define a set of observed daily rainfalls that
could potentially produce significant runoff events in the polder system (daily rainfalls
>50 mm, which is defined as extreme rainfall in China [25]).

• Step 2: Define different initial conditions as

hj
o = hn + j

∆hn

no
(2)

where hj
o is the initial condition j (i.e., the water level of the inner rivers before the storm

arrives); no is the number of initial conditions considered; hn is the normal level; and ∆hn
is the difference between the critical water level hc and the normal water level hn.

• Step 3: For each hj
o, perform the following sub-steps:

# By using the conceptual model of the polder system with the (reactive) pumping
strategy that approximates the current pump operation in the Shazou polder
(Appendix A), obtain values of RTdaily by rescaling all the values in the set
of daily rainfalls obtained in Step 1 to make them larger or smaller until the
resulting water level of the inner rivers hits the critical level hc.

# Define the PDF of RTdaily, i.e., f
(

RTdaily

)
, with the set of values obtained in

the prior sub-step.
# Define the rainfall threshold associated with hj

o, i.e., RT j
daily, as the p-probability

quantiles of f
(

RTdaily

)
.

Thus, if we have an initial condition hj
o in the inner rivers at the time the 24 h forecast

of rainfall is issued, and a deterministic or probabilistic forecast is greater than RT j
daily, a

critical condition will be reached, and a proactive pumping action should be conducted to
avoid the inner rivers reaching the critical level.
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2.6. The Response and Impact Component (RIC)

The RIC component in the MC framework represents a pumping scheme operating
in a polder system, and the impact is estimated as the resulting waterlogging W in the
polder after the pumping action has been performed. This process is simulated by the
RIC through the conceptual model of the Shazhou polder and considering reactive and
proactive pumping strategies under four flood warning scenarios (Appendix C).

The No-Warning Scenario represents the assumed current pump operation for the
Shazou polder and is simulated by considering only reactive pumping actions in the
conceptual model (Appendix C.1). When the water level starts to rise, the inflow I is greater
than qmax, and the polder manager will pump the water with a pumping rate equal to qmax .
After the critical condition situation, the water level of the inner rivers is dropped to the
normal water level hn with a pumping rate equal to qmax. Furthermore, if, after the storm,
the resulting water level of the inner rivers is below the critical level hc, it is assumed that
the polder manager keeps the water level of the inner rivers at that level. These principles
are represented by

qt =


qmax, i f (ht ≥ hc) until h = hn

min{qmax, It}, i f (ht < hc & It > 0)
0, i f (ht < hc & It = 0)

 (3)

where, as explained in Appendix A, qt and It (mm·hr−1) are the pumping and inflow rates
at time step t, respectively, and ht (mm) is the water level of the inner rivers at time step t.

The Perfect Forecast Scenario is simulated by considering proactive and reactive
pumping actions in the conceptual model and assuming perfect knowledge of the storm’s
profile and volume (Appendix C.2). For a storm where a critical condition has occurred,
the water balance of a critical observed daily runoff can be expressed by

ROc
daily = Vc

p + Scap
o + Sc (4)

where ROc
daily is the observed daily runoff causing critical conditions, Vc

p is the portion of

this critical runoff reactively pumped during the storm to the adjacent outer rivers, Scap
o ,

as explained in Section 2.2.1, is the storage capacity of the inner rivers before the storm
arrives, and Sc is the portion of the critical runoff that brings the water level of the inner
rivers beyond the critical level. The polder manager is assumed to have perfect knowledge
about Sc and Vc

p . The volume of water pumped before the storm arrives (proactive action),

Vbe f ore
p , is defined as

Vbe f ore
p = Sc +

(
hc − hre f

)
(5)

where Sc is expressed as length units, hc is the critical level as explained in Section 2.2.1,
and hre f is a reference level of the inner rivers. The reference level hre f is the level at which
one wants the water level to be at after the pumping actions; it must be neither too high nor
too low. Once the storm arrives, the polder manager then completes the pumping strategy
by conducting the reactive pumping based on the inflows (reactive action) (Appendix C.2).

Two imperfect forecast scenarios are considered based on deterministic and proba-
bilistic forecasts. In each case, the polder manager has an estimate of Sc, designated by Ŝc,
based on a deterministic and probabilistic daily rainfall volume forecast R̂daily, but has no
knowledge of the daily rainfall profile.

The Deterministic Forecast Scenario assumes that the polder manager has an estimate
of Sc, designated by Ŝc, based on a deterministic daily rainfall volume forecast R̂daily, but
has no knowledge of the daily rainfall profile. The volume of water pumped before the
storm arrives (proactive action), Vbe f ore

p , is taken to be Ŝc (Appendix C.3). Once the storm
arrives, the polder manager then completes the pumping strategy by conducting the
reactive pumping based on the inflows (reactive action). Ŝc is a function of R̂daily, and a
proactive pumping factor described by a parameter α which represents the proportion of
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the forecasted runoff pumped in advance, with 0 < α < 1 (Appendix C.3). The proactive–
reactive pumping strategy is defined as follows:

Pstr =

{
Vbe f ore

p t ≤ tpro; proactive action
Vp t ≥ max

(
tarrive, tpro

)
; reactive action

}
(6)

where Vbe f ore
p is the volume of water pumped before the storm arrives, Vp is the volume of

water pumped during the storm (reactive action), tarrive is the time at which the observed
storm arrives in the polder, and tpro defines the beginning of the proactive action period
(Figure 5a).

For the Probabilistic Forecast-based Scenario, the polder manager is assumed to
have an estimate of Sc, designed by Ŝc, but has no knowledge of the rainfall profile. The
volume of water pumped before the storm arrives (proactive action), Vbe f ore

p , is Ŝc. Once the
storm arrives, the polder manager then completes the pumping strategy by conducting the
reactive pumping based on the inflows (reactive action). Ŝc is a function of the parameter α

and the expected value of Rdaily, given knowledge of the forecast R̂daily, i.e., E
(

Rdaily

∣∣∣R̂daily

)
(Appendix C.3). The proactive–reactive pumping strategy is defined as for the deterministic
forecast case.

The three linked components are used to conduct an MC analysis of the potential
waterlogging duration and maximum inundated area under the above scenarios by consid-
ering the full range of potential rainstorms in July, the rainiest month in Nanjing. This MC
analysis provides an average value of the (i) maximum inundated area (MIA), (ii) duration
of waterlogging (Dw), and (iii) pumping costs (Cp) during this month (Table 2). The
pumping costs are computed according to an assumed pumping tariff by considering six
steps in the pumping rate (Table 2), which matches with the number of pumps at each
pumping station in the Shazou polder (Figure 1). The values of the metrics are calculated
by considering several replications of the operation of the polder system over the month
of July. Each July replication is performed using continuous simulation, with the hourly
simulation of the polder system’s hydrology based on synthetic ‘observed’ rainfall time
series and warning and proactive pumping strategies based on their corresponding 24 h
forecast values provided by the RFG.

Thus, the benefits of using flood warnings in the Shazhou polder are evaluated by
comparing the values of the metrics in Table 2 obtained from the no-warning scenario
(current condition) with those obtained from the warning scenarios based on different
forecast information (perfect, deterministic, and probabilistic forecasts). To do so, the
MC framework couples the RFG with different warning decisions in the FWDC and with
different pumping strategies in the RIC according to the scenario to be analysed. In the
benchmark scenarios, the FWDC is removed because perfect knowledge of the storm
(perfect forecast) is assumed or there are no forecasts (no-warning scenario) (Figure 3b,c),
whereas, in the imperfect scenarios, the three components are fully exploited (Figure 3d).

3. Results
3.1. Calibration of the Polder Model Used in the MC Framework

Table 3 shows the parameter values adopted to implement the conceptual model of
the Shazhou polder (Table 1). Most of these values have been taken from previous studies
performed in the case study area [17,19], while the value of qmax was initially obtained by
summing the pumping capacity of all pumping stations and dividing by the polder area
(Ap = 54.7 km2). This information can be checked in Duque [26] and has been confirmed
based on interaction with the Nanjing Hydraulic Research Institute (NHRI).
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Table 3. Calibrated values of the conceptual model parameters used in the simulation of the Shazhou
polder FEWS. The description of the symbols is given in Table 1.

Symbol Units Value

r
mm·hr−1 22.14

qmax 9.62 (14.8)
Scap

max mm 500
k - 0.065

Cru 0.70

The calibration procedure consisted of adjusting the value of qmax to produce a critical
condition situation for the 7 July 2016 event. The calibrated value of qmax (9.62 mm·hr−1)
represented 65% of the value obtained based on the theoretical maximum (14.8 mm·hr−1),
which seems reasonable. Figure 6 shows the simulated inflow and water level for the 7
July 2016 event. According to the model, the critical condition started at 5:00, and the
storage capacity was practically full at the end of the following 3 h (8:00 am). This result
corresponds with observed records, which show that the inundation associated with this
event occurred around these hours.
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Figure 6. Calibration of the conceptual model for the Shazhou polder. This figure shows the
simulated water level for the 7 July 2016 rainfall event using the parameter values shown in Table 3.
The simulated inflow I is also shown in this figure.

3.2. Calibration of RainSim Spatio-Temporal Rainfall Field Model

The calibration of the RainSim model is described in detail in Appendix B; a brief
summary is provided here. A long daily rainfall record (Nanjing: 1950–2012) and short
hourly records for five stations including Nanjing (2012–2016) were available for the
calibration of RainSim. To simulate observed rainfall and associated forecasts, rainfall at
one of the five stations, Dongshan, was treated as the ‘observed’ and rainfall at Nanjing
as its forecast, with the spatial correlation between the two stations acting as a surrogate
for the correlation between forecast and observed. Dongshan was close to the centre of the
rainstorm that caused waterlogging in the Shazou polder in 2016.
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3.3. Joint Distribution of the Daily Rainfall Rdaily and Its Forecasts R̂daily Used in the RFG

This analysis was carried out by first using the calibrated spatio-temporal RainSim
model to generate a time series of 1000 years in length at hourly resolution, yielding
365,000 daily values of Rdaily and R̂daily. A univariate analysis of each variable was carried
out based on a q-q plot/visual inspection of the goodness of fit, GoF, of different distri-
butions to values of Rdaily and R̂daily. Since this work focuses on extreme rainfalls that
could potentially produce significant runoff events in the polder system, this analysis only
considered pairs of values that were both greater than 50 mm (daily rainfalls > 50 mm are
defined as extreme rainfalls in China [22]). After applying this filter, the sample size was
reduced to 17,998 daily values.

Among the several probability distributions tested, which were the Exponential, the
Log-normal, and the Gamma distribution, the q-q plots suggested that the latter was the
best distribution to represent the values of Rdaily and R̂daily (Figure 7a,b).Table 4 shows
the fitted distribution parameter values obtained through maximum likelihood estimation
(MLE) and assuming that the location parameter is known, taken as 50 mm for each case.
This table also shows the sample correlation coefficient of the pairs of values greater than
50 mm.
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Table 4. Estimation of the parameters of the Gamma distribution for the values of Rdaily and R̂daily
and their correlation coefficient.

Location Parameter (mm) Shape Parameter (-) Scale Parameter (-) Correlation
Coefficient

Rdaily
o R̂daily

o γRdaily γR̂daily
βRdaily βR̂daily

ρRdaily ,R̂daily

50 50 1.45 1.44 23.2 23.3 0.93

Since the GoF of Rdaily and R̂daily suggested that the Gamma distribution is the best
distribution to represent these variables, it was assumed that their bivariate relationship
can be described by a bivariate Gamma distribution (BGD). The values described in Table 4
represent the parameters of this bivariate parametric model, namely the parameters that
describe the marginal distributions of Rdaily and R̂daily, and the correlation coefficient
(ρRdaily R̂daily

) that defines the dependence structure of the pairs (Rdaily,R̂daily).
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The generation of pairs (Rdaily, R̂daily) and the building of the predictive uncertainty

PU expressed as f
(

Rdaily

∣∣∣R̂daily

)
based on the BGD was carried out using the Gaussian

copula (see [26] for more details). The results of an example of the bivariate simulation
based on the values described in Table 4 are shown in Figure 8. Figure 8a shows the joint
density of 50,000 pairs (Rdaily, R̂daily) from the BGD, whereas Figure 8b shows an example

of PU expressed as f
(

Rdaily

∣∣∣R̂daily

)
for a forecast value R̂dailyi

shown in Figure 8a (grey
dot). This variate is obtained by slicing the joint distribution in the vertical (grey line) at
the grey dot corresponding to R̂dailyi

to give f
(

Rdaily

∣∣∣R̂daily

)
. Note that R̂dailyi

in the MC
framework is obtained from the calibrated spatio-temporal RainSim rainfall field model
and its associated f

(
Rdaily

∣∣∣R̂daily

)
is derived from the BGD.
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3.4. Rainfall Thresholds for the Shazhou Polder Used in the FWDC

The results of applying the approach explained in Section 2.5.1 are illustrated in
Figure 9, which considers twenty initial conditions (no = 20 in Equation (2)). Figure 9a
shows the 17,998 profiles of daily rainfall obtained from RainSim that could potentially
produce significant runoff events in the polder system (daily rainfall > 50 mm); they are
shown as dimensionless mass curves. Figure 9b shows the values adopted for the threshold
RT j

daily by assuming them as the 0.01-probability quantile of f
(

RTdaily

)
. By doing that,

one assumes that the values greater than these quantiles will bring the inner rivers to a
critical condition. Finally, it is worth noting that the rainfall thresholds for the normal
condition hn = 3000 mm are >100 mm, which corresponds to the warning categorised as
“yellow” for Nanjing. A yellow warning is the second lowest on the four-colour-coded
rainstorm warning system used in Nanjing; it triggers a consultation meeting headed by
the Commander of Flood Control.
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daily according to the approach described in Section 2.5.1.

3.5. Application of the MC Framework

Table 5 summarises the input parameters of the MC framework (the input parameters
for RainSim are given in Appendix B) and the values adopted according to the calibration
procedure conducted for its constituent models and values taken from previous studies
performed in the case study area. They are split according to the component they represent.
The outputs of the MC framework are the values of the metrics described in Table 2 which
are computed using the hourly observed rainfalls and their forecasts generated by RainSim.

Table 5. Adopted parameters for the MC framework. The parameters PT and α were varied within
the specified ranges in the MC simulation experiments.

Symbol Description Value Component

R̂daily
o

Parameters of the joint distribution of
the daily rainfall and its forecast.

50 mm

RFG

γR̂daily
1.44

βR̂daily
23.3

Rdaily
o 50 mm

γRdaily 1.45
βRdaily 23.2

ρRdaily ,R̂daily
0.93

PT Probabilistic threshold adopted for the
probabilistic decision rule. 0.1–1 FWDC

r

Parameters of the conceptual model

22.14 mm·hr−1

RIC

qmax 9.62 mm·hr−1

Scap
max 500 mm
k 0.065

Cru 0.70

hre f

Water level assumed at the end of the
perfect forecast-based proactive

pumping strategy
4400 mm

α

Proactive pumping factor (the
proportion of the forecasted runoff

pumped in advance)
0–0.5
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If one shows only these results, one cannot fully appreciate how the several pumping
strategies considered in the MC framework work during a critical storm. Therefore, this
final subsection of the Results section first shows an example of the simulation of the polder
system under all scenarios during the same ‘observed’ storm causing critical conditions.
This analysis gives the reader a good insight into how the pumping criteria adopted for the
different strategies are reflected when trying to mitigate a critical condition situation.

3.5.1. Simulation of Scenarios for A Single Storm

Figure 10 shows an example of the simulation of the polder system under all four
scenarios during the same ‘observed’ storm causing critical conditions. In this case, the
initial condition for all four scenarios matches. Note that, on day 1, the storm magnitude is
insufficient to trigger a warning in the scenarios where proactive pumping is undertaken,
and reactive pumping is performed in all cases. During day 2, a storm triggers proactive
action in all cases, except for the no-warning scenario.
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Figure 10. Example of the simulation of the operation of the polder system (water level) during an
‘observed’ storm causing critical conditions for all four scenarios. In this and the remaining figures,
the following abbreviations are used: DF: deterministic forecast scenario; NW: no-warning scenario;
PF: perfect forecast; PrF: probabilistic forecast scenario. In this case, the initial condition for all
scenarios matches, a = 0.05 for DF and PT = 0.9, and a = 0.025 for PrF.

The four forecast scenarios were implemented for this observed storm as follows.

• Under the no-warning scenario (NW), reactive pumping was implemented as de-
scribed in Section 2.6.

• Under the perfect forecast scenario (PF), the water level is dropped through proactive
pumping before the storm arrives (Section 2.6), and the maximum water level matches
with hre f that is here assumed to be 3400 mm.

• Under the deterministic forecast scenario (DF), a value of α = 0.05 was adopted. As
can be seen for this storm (Figure 10), a warning was issued, and the value adopted
for α is not large enough to avoid the critical condition. Therefore, after the critical
condition situation, the water level is dropped to the normal water level hn (3000 mm)
using a pumping rate equal to qmax.

• Under the probabilistic forecast scenario (PrF), a value of PT = 0.9 (probabilistic
threshold) was used, and a warning was issued. For proactive pumping, a value
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a = 0.025 was adopted, and as can be seen (Figure 10), this is not large enough to avoid
the critical condition. Therefore, after the critical condition situation, the water level is
dropped to the normal water level hn (3000 mm) with a pumping rate equal to qmax.

3.5.2. Simulation Experiments

The simulation experiments considered Julys with at least one rainfall event that could
potentially produce a significant runoff event in the polder system (daily rainfalls > 50 mm).
After applying this filter, the sample size was reduced to an 8730 July event (1000 years of
simulated daily rainfall were used in the analysis). The results of the deterministic forecast
scenario are provided in Figure 11a,b, showing the trade-off between the Cp and MIA and
Dw. The results of the benchmark cases are also plotted in this figure. The no-warning
scenario defines the worst scenario in the analysis due to no proactive pumping action
being undertaken in the polder. In contrast, the perfect forecast scenario represents the
best scenario due to the perfect knowledge of the target variables in the pumping strategy.
Note that the pumping costs of this scenario are slightly lower than the no-warning scenario.
That occurs because the number of critical condition situations decreases significantly in
this scenario, and thereby the number of times the polder manager is assumed to drop
the water level of the inner rivers with a pumping rate equal to qmax. This is reflected in
the reduction in the reactive pumping costs, which also reduces the total pumping costs
(Table 2). Thus, any imperfect forecast strategy cannot overcome these results.

The worst strategy of the deterministic forecast scenario is when α = 0 (the highest
triangle on the plots), i.e., when the volume of water pumped before a critical storm is
zero, which can be considered as a reactive pumping strategy. Therefore, as one can expect,
this strategy matches the results of the no-warning scenario. As α increases, the MIA and
Dw decrease, and Cp increases. However, there is a point (α = 0.25) where MIA and Dw
stop decreasing, and stay constant, which means that, after this point, the impact of critical
storms cannot be avoided. That occurs because, after this point, most of the remaining
critical storms to be avoided are those whose runoff starts at midnight (or close to this time)
and whose inflow rate exceeds the pumping capacity of the polder qmax. These storms are
also a problem for the perfect forecast strategy. Under this condition, the polder manager
is assumed not to have the required response capacity for the critical storm, and he/she
can only use a pumping rate equal to qmax, whereas the water level of the inner rivers
rises until a critical condition situation occurs. Thus, after α ≥ 0.25, the values of MIA and
Dw are associated with waterlogging caused by these storms and by storms whose runoff
overcomes the capacity of the drainage system.

The results of the probabilistic forecast scenario are provided in Figure 11c,d. The
approach consisted of simulating the FEWS by considering different values of PT in the
warning decision for each value of α in the pumping strategy based on probabilistic
information. Then, the plot of Cpvs.MIA or Dw was used to define a set of “best” points as
the Pareto front (black dots in Figure 11c,d). These best points show different combinations
of probability PT and α, with several values of PT sharing the same value of α. However,
if the polder manager chooses a value of α, it would be preferable to have just one value
of PT that performs better than the deterministic scenario. This analysis was performed
by plotting the best Pareto solutions associated with the same α with different values of
PT and comparing them with the deterministic result associated with the same value of α.
Then, the point that overcomes the deterministic result and is closest to the perfect forecast
scenario was chosen. After this analysis, the set of best solutions was reduced to seven
pairs with unique values of α and different PT values (Table 6).
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Figure 11. The trade-off between pumping costs and waterlogging for the deterministic and prob-
abilistic forecast scenarios and comparison with the two benchmark scenarios. This figure shows
the trade-off between Cp and MIA and Dw for the deterministic (a,b) and probabilistic (c,d) forecast
scenarios. The values of α considered were the following: 0, 0.025, 0.05, 0.075, 0.10, 0.15, 0.2, 0.25,
0.30, 0.35, 0.40, 0.45, 0.5.

Table 6. The final sets of parameters for the probabilistic forecast scenario.

Set 1 2 3 4 5 6 7

α 0.05 0.15 0.075 0.1 0.3 0.2 0.25
PT 0.9 0.9 0.8 0.8 0.8 0.7 0.7

A summary of the results is given in Figure 12 that shows this set of best probabilistic
solutions together with the results of the other scenarios (no-warning, perfect and deter-
ministic forecast scenarios). Furthermore, to confirm the behaviour across scenarios, the
99-percentile of values of Dw greater than 1 h (D99

w ) was computed. The results are shown
in Figure 13. As one can see, the behaviour of the scenarios in this figure is the same as
the one shown in the prior figures, where the no-warning and perfect forecast scenario
represent the worst and the best ones, respectively, with the imperfect forecast scenarios
located in between, where the probabilistic results are better than the deterministic ones.
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4. Discussion and Conclusions

While a number of studies have quantified predictive uncertainty, PU, in FEWSs,
refs. [27–32] demonstrated the advantages of probabilistic forecasting over deterministic
forecasting in terms of flood warning reliability (32); they typically do not consider the
response and impact [33]. This represents an innovative contribution from this work in the
context of polder operation. To address this issue, the MC framework simulates the fully
integrated warning–response–impact system for the specific case of a polder and uses a
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rainstorm-and-forecast generator, RFG, to simulate observations and associated forecasts
while quantifying PU and using it to make warning decisions in the FWDC and conduct
the response in the RIC.

The simulation experiments conducted here (Section 3.5.2) focused on demonstrating
the value of rainfall forecasts and threshold-based warnings in polder management. A
perfect model of the Shazou polder system is assumed and used within the MC framework.
Based on the works conducted in [5,19], a simple [5,19] empirical rainfall–runoff has been
used that is sufficient for this demonstration study. More physically based models could be
used in the future that better account for the dynamic, spatially distributed nature of urban
environments, provided the necessary data are available.

The polder rainfall–runoff simulation model is furthermore linked with an impact curve
to represent the inundated area. An impact curve relates the damaging variable (water level) of
a current or future flood event to the magnitude of the impact and has been used for national
flood risk assessment in the UK [34] and for simulating warned and flooded properties within
an MC framework [33]. This curve, which was assumed here, makes the MC framework
versatile; however, for operational implementation, a real-world data-based impact curve
would be needed. This could be derived using 2D hydrodynamic modelling.

The simulated rainfall from RainSim V3 was used to represent observed rainfalls and
their forecasts, and to explore the potential benefits from forecasts in reality. However,
the assumed statistical properties were not based on real-world forecasts, making the
situation potentially overly optimistic. For example, the correlation coefficient between
observations and their forecasts, which defines the predictive uncertainty PU, can perhaps
be considered too optimistic (0.93, Table 5), but it represents a target to achieve the demon-
strated benefits. Future work could thus involve using real-world forecasts from numerical
weather prediction, NWP, or statistical algorithms to examine the outcomes that could be
achieved operationally. This could be possible in the short term because the number of
registered extreme events is increasing, and flood warning/forecast validation databases
are starting to be available for operational flood-forecasting systems across the globe [35,36],
and particularly, maybe in the short term in Nanjing. While operational agencies may not
always provide data for external research, the MC framework can still demonstrate the
target correlations needed for desired performance.

The integrated MC framework revealed that the no-warning scenario resulted in
the highest values of mean inundation area, MIA, and duration of waterlogging Dw
(Figure 12). Perfect forecast scenarios performed best, as expected, while deterministic
and probabilistic forecasts offered improvements over no-warning scenarios. This study
demonstrated a trade-off between average pumping costs Cp and FEWS waterlogging
performance measures (MIA and Dw), i.e., waterlogging decreased as pumping costs
increased. It was shown that probabilistic forecasts could outperform deterministic forecasts
by generating points closer to Utopia on the Pareto curve, i.e., corresponding to the perfect
forecast scenario (Figure 12). A proactive pumping strategy using a parameter α (proactive
pumping factor, Table 5) can be utilized to define a Pareto trade-off curve. The perfect
forecast point serves as a benchmark for judging improvements in imperfect forecasts and
highlights the importance of enhancing rainfall forecasts.

The MC framework assumes warning decisions are based solely on forecasts, but
in reality, factors such as experience, event type, cost–benefit analysis, risk attitude, and
cultural environment also influence decisions [37,38]. Future work could explore the
Shazou polder FEWS potential performance considering these factors and different rainfall
forecasting algorithms and pumping strategies.

Additionally, a serious game could be designed for polder managers in Nanjing to
virtually explore the effectiveness of proactive and reactive actions and to define preferred
trade-off points on the Pareto curve. This would help enhance confidence in potential
benefits and establish a balance between waterlogging and pumping costs.

The main conclusions that can be drawn from this study are as follows:
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(i) A flexible MC framework has been created that can simulate a fully integrated flood
warning–response–impact system for the operation of a polder in real-time. The MC
framework can serve as a test-bed for assessing the accuracy of forecasts needed to
achieve desired operational performance.

(ii) The simulation experiments with the integrated system have shown the potential
benefits that can be derived from rainfall forecasts and threshold-based warnings in
polder operation.

(iii) Probabilistic rainfall forecasts are shown to outperform deterministic rainfall forecasts
based on the selected metrics of polder operation.

(iv) A Pareto curve has been generated that shows the trade-off between flooding metrics,
such as inundated area or duration, and pumping costs, allowing a polder manager
to choose an operating strategy that meets a stated objective.
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Appendix A

Appendix A.1. Conceptual Model of the Water Fluxes during a Storm in a Polder System

The following algorithm simulates the water fluxes in the Shazhou polder system
during a storm. The water balance is performed at an hourly time step and the variables
are expressed in terms of mm·hr−1 per square meter of surface area, rather than volumes.

Appendix A.1.1. Runoff

The runoff process is represented through Equation (A1), which is based on the
rainfall–runoff relationship used by [18] in representing the rainfall–runoff process of a
neighbouring polder.

ROt = 0.55Rt + 0.15Rt−1 (A1)

where Rt (mm) and ROt (mm) represent the rainfall and runoff value at the time step t (hr).
As one can note, this equation states that the average runoff coefficient (Cru) in the polder
system is 0.7, which can be considered a reasonable value considering that the impervious
area in the polder has been reported to be about 78.5% [19]. No data were available to
recalibrate this relationship for the Shazou polder.

Appendix A.1.2. Waterlogging

Under non-critical conditions, this process is simulated by using the equation of [5,19],
which uses the capacity of pipe-network drainage r as the upper limit to derive the inflow
process of the inner rivers. Under critical conditions, it is, on the other hand, assumed that
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the inflow process is blocked and, therefore, the waterlogging cannot be drained. These
processes are represented by

Wt =

{
Wt−1 + ROt, i f (ht ≥ hc)

max
{

0, Wt−1 + ROt − r
}

, i f (ht < hc)

}
(A2)

where r (mm·hr−1) is the capacity of the municipal pipe network, ht (mm) is the water level
of the inner rivers at the time step t, Wt is the cumulative excess runoff or waterlogging on
the polder at the time step t, and hc is the critical water level (Figure 2) defined in mm.

Appendix A.1.3. Inflow

Under non-critical conditions, the inflow to the inner rivers is also represented by
using the conceptual model of [5,19]. Under critical conditions, it is assumed that the
inflow process is blocked, and the inflow to the inner rivers is zero. These processes are
represented by:

It =

{
0, i f (ht ≥ hc)

min{r, Wt−1 + ROt}, i f (ht < hc)

}
(A3)

where It is the inflow at time step t.

Appendix A.1.4. Pumping Strategy

The time variable pumping rate (qt) to be considered in this algorithm will depend
on the pumping strategy used to simulate the Shazou Polder. According to the authors’
understanding of current pump operation for the Shazou polder, the runoff is pumped to
the adjacent outer rivers according to the observed inflow I (reactive pumping) [5,18,19],
i.e., qt = It, when It < qmax, and when It ≥ qmax, the runoff is pumped at the maximum
pumping rate qmax. If ht ≥ hc (critical condition), it is assumed, based on the analysis of
pumping records, that pumping operators will drop the inner rivers to a normal water
level (hn) following the storm event. This normal water level hn defines the lowest level
that pumping operators will draw down the inner rivers to, and this only occurs following
a critical condition. This strategy and other pumping strategies considered in this work are
explained in Appendix C.

Appendix A.1.5. Storage in the Inner Rivers

The water storage can be expressed by

St =

{
St−1 − qmax, i f (ht ≥ hc)

St−1 + max{0, It − qmax}, i f (ht < hc)

}
(A4)

where St (mm) is the water storage in the inner rivers at a given time t. Since the variables
used in Equation (A4) are areal variables (taking the area of the polder as reference), St
should be understood as a volume of water spread over the polder area. This “areal” value
is related to the actual value of the storage as:

St Ap = Sin
t Ain (A5)

where Ap and Ain are the areas of the polder and inner rivers respectively in the same
units, and Sin

t is the actual value of the water storage in the inner rivers at a given time
step t taking mm as the unit. If we consider k as the water surface ratio of the polder (ratio
between Ain and Ap), Sin

t can be expressed from Equation (A5) as

Sin
t =

St

k
(A6)
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Appendix A.1.6. The Water Level in the Inner Rivers

The water levels of inner rivers in a polder system are usually obtained by simulating
the flow processes in the rivers by using, for example, the de St-Venant equations [17,19].
Since this research considers the polder as just an input–output system, these flow processes
are not simulated, and the water level in the inner rivers is simply expressed by

ht = ht−1 + Sin
t (A7)

The simulation experiments (Section 3.5.2) focus only on the month of July when
flooding is most likely to occur; so, at the start of each July simulation, it is assumed that
the initial water level is equal to the normal water level hn.

Appendix A.1.7. Inundated Area

A relationship is required that expresses the inundated area as a function of water
level in the inundated polder. An impact curve was assumed for these purposes. This
curve is shown in Figure A1 and was added to the conceptual model to represent the area
inundated in the polder as a function of the depth of water that accumulates in the polder,
i.e., the waterlogging. The shape of the function reflects the substantial development in
lower areas of the polder, with substantial inundation occurring with initial waterlogging.
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Appendix B.

Appendix B.1. Spatio-Temporal RainSim Rainfall Field Model and Fitting Procedure

The stochastic rainfall modelling in RainSim is based on the Neyman–Scott Rectangular
Pulses (NSRP) model [36], and it can be used for a single-site application (a point rainfall
generator) or for spatial applications (a spatio-temporal rainfall generator). RainSim
operates in three modes: First, several required statistics are computed from the observed
time series; the aim of this stage is to perform a statistical characterisation of the rainfall time
series. This mode is called analysis. Then, the parameter set is estimated that, according
to analytical expectation, best matches the observed statistics. This mode is called fitting.
Finally, synthetic time series are generated using the fitted parameters.

The spatio-temporal rainfall model was used for this application.

Appendix B.2. Available Data and Chosen Sites for Representing the Observed and Forecast
Rainfall

RainSim V3 first requires a set of statistics to be computed from an observed sample to
provide a statistical characterisation of the rainfall time series. These statistics are calculated
from hourly and daily data. This subsection describes the sources of the data used for that
purpose and other important information.

The daily data were obtained from the Global Historical Climatology Network-Daily
(GHCN-Daily) dataset [39], which provides a long daily record (62 years) at Nanjing Station.
The hourly data were collected from the five rainfall stations shown in Figure A2. The
record lengths and other important information about the stations are described in Table A1.

Table A1. Characteristics of the rainfall stations used in RainSim V3.

Code Name Lat. Long. Record Period

62724050 Nanjing 118◦43′ 32◦05′ 1950–2012 (daily)
2012–2016 (hourly)

62935200 Xiaoqiao 118◦34′ 32◦10′

2012–2016 (hourly)62936600 Liuhe 118◦53′ 32◦20′

62936660 Getang 118◦44′ 32◦15′

63129400 Dongshan 118◦51′ 31◦57′
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Table A2. Input parameters of RainSim for spatio-temporal applications and statistics needed to
calibrate and validate the model. The statistics used for calibrating and validating RainSim correspond
to July, which is the rainiest month in Nanjing.

Symbol or
Abbreviation Statistic Units or

Time Step Description Calibrated Values

λ
1/mean waiting time between

adjacent storm origins (1/h)

In
pu

tp
ar

am
et

er
s

of
th

e
m

od
el

0.003967

β
1/mean waiting time for raincell

origins after storm origin (1/h) 0.077682

η 1/mean duration of raincell (1/h) 5.381274
ξ 1/mean intensity of a raincell (h/mm) 0.169332
γ 1/mean radius of raincells (1/km) 0.015000
ρ Spatial density of raincell centres (km−2) 0.001050

Observed Fitted Weight

mean The mean h hour rainfall
accumulation Daily

St
at

is
ti

cs
ne

ed
ed

fr
om

da
ily

or
ho

ur
ly

ra
in

fa
ll

fo
r

ca
lib

ra
ti

ng
an

d
va

lid
at

in
g

th
e

m
od

el
. 6.45 6.42 5

pdyr

The probability that an h hour
accumulation is dry, that is
strictly less than a specified

threshold

Daily
Hourly

0.69
0.91

0.81
0.93

6
5

var The variance of the h hour
accumulation

Daily
Hourly

334.95
2.83

334.97
2.84

2
3

Lag1corr
The auto-correlation of the h

hour accumulation of two-time
series.

Daily 0.16 0.30 3

xcorr
The cross-correlation of the h

hour accumulation of two-time
series.

Daily 0.90 0.96 2

var The variance of the h hour
accumulation Hourly

skew The skewness coefficient of h
hour accumulation Hourly 4.86 3.88 3

Dongshan station was chosen as the location that represents the observed time series and
the time series at Nanjing station as its forecast. Since they are closely located, there is no bias
between them, and the predictive uncertainty PU is only a function of a correlation parameter
(xcorr in Table A2). The Dongshan station was chosen as the observed time series because
the records of this station best represented the 7 July 2016 event, which, as explained above
(Section 2.2.2), was used to calibrate the conceptual model of the Shazou polder.

Appendix B.3. Calibration of the Model

The parameters of the RainSim V3 spatio-temporal model (Table A2) are estimated
by minimizing a sum of squares function based on the differences between observed
and model statistics. The estimated parameters and observed statistics used in model
fitting procedure are shown in Table A2. The daily statistics were calculated from the
long daily record of the Nanjing station obtained from the GHCN-Daily dataset, whereas
the hourly statistics were calculated from the Dongshan record (Table A1). The spatial-
temporal rainfall model simulated rainfall at five locations (Figure A2), with the same
observed statistics at each location, but with different spatial correlations (parameter xcorr
in Table A2) obtained from the records of the five hourly rainfall stations (note that, for
brevity, the spatial correlation in Table A2 is only shown for the Nanjing and Dongshan
stations). This was carried out based on the criterion adopted to represent the observed
rainfalls and their forecasts as explained in Section 2.3 and illustrated in Figure A2.
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Appendix C.

The response strategies used in the conceptual model of the Shazhou polder for each
of the four forecast scenarios are as follows.

Appendix C.1. Reactive Pumping Strategy: No Warning Sccenario

A reactive pumping strategy can be defined as a pumping action driven by the inflow
of the inner rivers I. Under non-critical conditions, this pumping strategy is represented by
the following operational principle [5,18]: When the water level starts to rise,

If : the inflow exceeds the pumping capacity of the polder system qmax,

pump the water at the latter rate, while the excess water is stored in the inner
rivers, raising the water level;

Else: pump the water at the inflow rate It.

For the critical condition, it is assumed that the maximum pumping capacity qmax is
used in the polder. It is also considered that, after the critical condition has been reached
and the inflow has stopped, the polder manager drops the water level of the inner river
to the normal level hn by using the maximum pumping capacity qmax. Furthermore, if the
resulting water level of the inner rivers after the storm is below the critical level hc, it is
assumed that the polder manager keeps the water level of the inner rivers at that level.
These principles are represented by

qt =


qmax, i f (ht ≥ hc) until h = hn

min{qmax, It}, i f (ht < hc & It > 0)
0, i f (ht < hc & It = 0)

 (A8)

where, as explained in Appendix A, qt and It (mm·hr−1) are the pumping and inflow rate
at time step t, respectively; the other variables have already been introduced.

The adopted reactive pumping strategy has three mains assumptions: (i) the pumping
starts when a storm starts (reactive action), (ii) once the dropped water level reaches a
given water level (here assumed as hn), the pumping ends, and (iii) the water level of the
inner rivers can be higher than the level that defines the end of the pumping (i.e., hn). This
behaviour has been observed in the operation of the Shazhou polder [10].

Appendix C.2. Proactive Pumping Strategy: Perfect Forecast Scenario

The water balance of a critical observed daily runoff can be expressed by

ROc
daily = Vc

p + Scap
o + Sc (A9)

where ROc
daily is the observed daily runoff causing critical conditions, Vc

p is the portion of

this critical runoff reactively pumped to the adjacent outer rivers during the storm, Scap
o , as

explained in Section 2.2.1, is the storage capacity of the inner rivers before the storm arrives,
and Sc is the portion of the critical runoff that brings the water level of the inner rivers
beyond the critical level. The terms of the rhs in Equation (A9) are the three variables that
should be considered in a proactive pumping strategy. Of these variates, only Scap

o is known
before the storm arrives, and Vc

p and Sc are, therefore, the target variables in a proactive
pumping strategy. The perfect forecast scenario is the best scenario when simulating the
polder system, as one is assuming perfect knowledge about these target variables; to know
the values of these variables, one should have perfect knowledge of the profile and volume
of the coming daily rainfall causing critical conditions in the polder.

Based on this concept, the proactive criterion adopted for a 24-h storm period in the MC
framework for the proactive strategy in this and the other forecast scenarios is defined by

Pstr =

{
Vbe f ore

p t ≤ tpro; proactive action
Vp t ≥ max

(
tarrive, tpro

)
; reactive action

}
(A10)
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where Vbe f ore
p is the volume of water pumped before the storm arrives (proactive action),

Vp is the volume of water pumped during the storm (reactive action), tarrive is the time
at which the observed storm arrives in the polder, and tpro is the proactive action period
(Figure 5a).

Thus, in the perfect forecast scenario, Vbe f ore
p in Equation (A10) should be equal to

Sc; and then, when the storm arrives, Vp will be equal to Vc
p . Note, however, that, when

applying this strategy, the storage capacity of the inner rivers at the end of the 24 h storm
period will be full, which would produce a critical condition situation for the next day,
even for a weak storm. To avoid this, Vbe f ore

p under this scenario is expressed by

Vbe f ore
p = Sc +

(
hc − hre f

)
(A11)

where Sc is expressed as length units, and hre f is a reference level of the inner rivers. The
reference level hre f is the level at which one wants the water level to be at after the pumping
actions; it must be neither too high nor too low. In this first case, a critical condition
situation can be produced the next day, even by a weak storm. In the second case, the
strategy can be considered expensive. When considering the value of Vbe f ore

p based on this
equation, one makes sure that the level of the inner rivers after the end of the storm will be
equal to hre f .

Under perfect knowledge assumptions and considering the proactive criterion de-
scribed in Equation (A10), Sc should be computed prior to the analysis of the daily storm
by performing in advance the 24 h water balance of the polder system based on reactive
pumping actions and using the observed profile and volume of the daily rainfall to be
analysed (perfect forecast). It can be computed through the following algorithm:

• Step 1: Assume the polder system to be a tank (an input-output system) and compute
the hourly runoff ROt by using Equation (A1), and its associated waterlogging Wt and
inflow It through Equation (A2) and Equation (A3), respectively, for the no-critical-
condition situation.

• Step 2: Compute the hourly water storage as

St =

{
0, i f (It ≤ qmax)

St−1 + (qmax − It), i f (It > qmax)

}
(A12)

• Step 3: Compute the maximum value of St, i.e., Smax(S1, S2, S3, . . . S24), and compute
Sc as

Sc = Smax − SCap
o (A13)

The chronology of the perfect forecast pumping strategy can be summarized as follows.

• At midnight, the value of Sc is delivered to the polder manager, and the polder
manager conducts the proactive action by pumping a volume of water equal to
Sc +

(
hc − hre f

)
(Equation (A11)) with a pumping rate = qmax.

• Then, the polder manager waits for the arrival of the storm. If the storm arrives before

Sc +
(

hc − hre f

)
has been pumped, the manager will continue with the proactive

strategy and use the pumping rate qmax until the target volume has been pumped.
• Finally, the polder manager completes the pumping strategy by conducting the reactive

action once the storm arrives, which is represented by Equation (A8). The volume of
water pumped during the reactive period will be equal to Vc

p and the level of the inner
river at the end of the storm will be equal to hre f .

Note that the representation of the perfect forecast pumping strategy does not mean
that the polder system will not be affected by waterlogging. There are two conditions
causing waterlogging under the perfect forecast scenario:
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• Condition 1: When the runoff rate RO overcomes the capacity of the drainage system r.
• Condition 2: When the runoff starts at midnight and the inflow overcomes the pump-

ing capacity of the polder system qmax, i.e., before the proactive strategy can be
implemented. Under this condition, tarrive in Equation (A10) is zero, and the proactive
action cannot be conducted. In this case, the polder manager does not have response
capacity for the critical storm, and he/she is only able to use a pumping rate equal to
qmax, whereas the water level of the inner rivers rises until a critical condition situation
is reached.

Appendix C.3. Proactive Pumping Strategy: Deterministic Forecast Scenario

The proactive pumping strategy in the imperfect forecast scenarios considers the
uncertainty of the target variables Sc and Vc

p and assumes the polder manager has a forecast

of the total critical daily runoff (ROc
daily), designated by R̂Oc

daily, but has no knowledge of the
rainfall profile. Thus, in this case, the polder manager has to deal with the proactive action
based on knowledge of R̂Oc

daily and SCap
o ; the latter is assumed known because he/she

knows the storage capacity of the inner rivers before the storm arrives. The following
equation can be written based on the true values of these two variables:

ROc
daily = Vexcess + SCap

o (A14)

where Vexcess is the portion of the critical daily runoff expressed by Vc
p + Sc in Equation

(A9). Based on Equation (A14) and the information assumed known by the polder manager;
one can, therefore, say that he/she has an estimate of Vexcess which can be computed as

V̂excess = R̂Oc
daily − SCap

o (A15)

where V̂excess is the estimate of Vexcess based on the deterministic forecast R̂Oc
daily Thus, the

estimate of Sc in Equation (A9)can be computed as a proportion of V̂excess as

Ŝc = αV̂excess (A16)

where Ŝc is the estimate of Sc and α is a parameter, (0< α < 1), representing the proportion
of V̂excess that represents Ŝc, i.e., α represents the proactive pumping factor in the pumping
strategy. Based on Equation (A16), the estimate of Vc

p is given by

V̂c
p = (1− α)V̂excess (A17)

Thus, an imperfect forecast-based proactive pumping strategy assumes that Vbe f ore
p in

Equation (A10) should be equal to Ŝc (Equation (A16)); and then, when the storm arrives, it
assumes that Vp will be equal to V̂c

p (Equation (A17)).
In this context, the deterministic forecast pumping strategy requires a forecast of

the total critical daily runoff R̂Oc
daily based on the deterministic forecast of a critical daily

rainfall (Rc
daily) (a daily rainfall causing critical conditions in the polder), designated as

R̂c
daily. By definition, the values of this latter variable are values greater than a daily rainfall

threshold RTdaily (Section 2.5.1) and, therefore, they are provided to the polder manager
when a flood warning is issued. R̂Oc

daily is computed here as

R̂Oc
daily = 0.7R̂c

daily (A18)

where the value of 0.7 represents the average runoff coefficient of the polder system, Cru
(Table 1), used in the conceptual model to compute the runoff rate RO (Equation (A1)).
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The chronology of the operation of the polder system under the proactive pumping
criterion described in Equation (A10) and Figure 5a and based on deterministic 24 h
forecasts can be summarized as follows.

• A deterministic 24 h forecast of rainfall is generated at midnight, and a warning
decision is made based on the deterministic decision rule explained in Section 2.5
(Figure 5b). If a flood warning is issued, the deterministic forecast of the daily runoff
that will cause critical conditions in the next 24 h, R̂Oc

daily, is delivered to the polder
manager (Equation (A18)). If a flood warning is not issued, only a reactive pumping
action is conducted.

• If a flood warning is issued, the polder manager conducts the proactive action by
pumping a volume of water equal to Ŝc = αV̂excess with a pumping rate = qmax, where
V̂excess is computed as R̂Oc

daily − So (Equation (A15)).
• Then, the polder manager waits for the arrival of the storm. If the storm arrives before

Ŝc has been pumped, the manager will continue with the proactive strategy and use
the pumping rate qmax until the target volume has been pumped.

• Finally, the polder manager completes the pumping strategy by conducting the reactive
action once the storm arrives, which is represented by Equation (A8).

Appendix C.4. Proactive Pumping Strategy: Probaabilistic Forecast Scenario

The proactive pumping strategy based on the probabilistic forecast uses the expected
value of the forecast of a daily rainfall Rdaily to compute R̂Oc

daily.

R̂Oc
daily = 0.7E

(
Rdaily

∣∣∣R̂daily

)
(A19)

where E
(

Rdaily

∣∣∣R̂daily

)
is the expected value of the conditional distribution of Rdaily given

R̂daily, i.e., f
(

Rdaily

∣∣∣R̂daily

)
, obtained from the joint probability of Rdaily and R̂daily (Figure 4).

The chronology of the operation of the polder system under the proactive pumping
criterion described by Equation (A10) and Figure 5a, and based on probabilistic 24 h
forecasts can be summarized as follows.

• A probabilistic 24 h forecast of rainfall is generated at midnight, and a warning
decision is conducted based on the probabilistic decision rule explained in Section 2.5
(Figure 5c). If a flood warning is issued, the probabilistic-forecast-based estimate of

the daily runoff that will cause critical conditions R̂Odaily
c in the next 24 h is delivered

to the polder manager (Equation (A19)). If a flood warning is not issued, only reactive
pumping is conducted.

• Then, the chronology (last three steps) is the same as for the deterministic scenario.
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