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Abstract: The Congo River Basin is the second-largest watershed globally, flowing through nine
countries before reaching the Atlantic Ocean. The Kasai River Basin (KARB), containing about
one-fourth of Congo’s freshwater resources, plays a strategic role in sustaining navigation, food
production, and hydroelectricity generation in Central Africa. This study applies a multi-model
framework suited for data-scarce regions to assess climate change impacts on water availability in
the KARB. Using two conceptual hydrological models calibrated with four reanalysis datasets and
fed with bias-corrected outputs from 19 climate models under two representative climate pathways
(RCPs), we project changes in the mean annual discharge ranging from —18% to +3%, highlighting
the sensitivity of impact assessments to model and input data choices. Additionally, streamflow
signatures (Q10, Q50, Q90) are projected to decline by approximately 9%, 18%, and 13%, respectively,
under RCP 8.5. Annual hydropower potential is estimated to decrease by 14% and 5% under RCPs
4.5 and 8.5, respectively. These findings provide actionable insights for water management practices
in the KARB, including guiding the development of adaptive strategies to optimize water allocation,
mitigate risks of scarcity, and support sustainable agricultural and industrial activities in the region.

Keywords: climate change; hydrological modeling; streamflow regime; reanalysis datasets; Kasai
River Basin; Congo

1. Introduction

Climate change has emerged as one of the most critical challenges of the 21st century,
profoundly affecting natural and human systems worldwide. Its impacts on hydrological
cycles are particularly significant, altering precipitation patterns, river flows, and water
availability. These changes pose severe risks to water resources, agriculture, energy pro-
duction, and ecosystem health, necessitating comprehensive studies to understand and
mitigate potential adverse effects.

Central Africa, home to the Congo River Basin, the second-largest watershed globally,
is especially vulnerable to these changes [1,2]. Spanning nine countries and encompassing
diverse ecosystems, the Congo River Basin plays a crucial role in regional water security,
food production, and energy generation [3]. Within this vast basin, the Kasai River Basin
(KARB) is of particular importance, containing about one-fourth of Congo’s freshwater
resources. The KARB supports navigation, agriculture, and hydroelectricity, making it a
strategic area for socio-economic development in Central Africa.
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Despite the abundant water budget, high potential for power production, and rich
natural resources, the countries herein are the least economically developed and face
various food and water security challenges [4,5]. On top of the existing problems, the
hydroclimatic conditions of the region have been altered due to the warming climate,
which makes sustainable development highly challenging. Alterations in numbers and
periods of dry and wet days, a reduction in water content in rainforests, multidecadal
drying trends in streamflow, an increase in temperature by 0.5 °C with a stronger increasing
trend in minimum than maximum temperatures, and a decline of rainfall by 9% during
the 20th century are a few examples of changes in the past few decades [6-11]. The
continuation of changes in the climate can cause severe socio-economic vulnerability in the
region due to the lack of adequate infrastructure, industrialization, mismanagement, and
political issues [10,12-14]. Therefore, understanding the impact of climate change on water
availability in the Congo River Basin is essential to propose adaptive water and energy
management policies [3].

The impact of climate change can be assessed using the so-called “top-down” ap-
proach [15] based on the projections of general circulation models (GCMs), which are
downscaled to the spatial resolution of interest and fed into impact assessment models [16].
The GCMs simulate the Earth’s physical processes using various mathematical equations,
representing mass and energy transfer through the climate system [17]. Due to the incon-
sistency of GCM projections and the complexity of the Congo River Basin’s climate system,
using an ensemble of climate models is recommended for impact assessment [3,18,19]. Nev-
ertheless, modeling the impact of climate change on water availability is highly challenging
in the Congo River Basin. One of the main problems is the availability of sparse or low-
quality hydroclimatic data in the watersheds [20,21]. Even if such data exist, they might be
erroneous due to maintenance and operational issues, human errors, and environmental
conditions [8,22]. Indeed, the number of active stations in the Congo Basin region has been
significantly reduced since the independence of the countries in 1960 [22].

Escalating political issues, a lack of infrastructure such as limited transportation net-
works, and a limited budget for operation and maintenance are other contributing factors
for scarce hydroclimatic stations [21,23,24]. This makes the hydrological representation
of catchment physical processes difficult even under the historical conditions in these re-
gions. Hence, some approaches such as regionalization [25] and the use of satellite-derived
data [26] or reanalysis datasets [27] have been commonly utilized. Reanalysis is a systematic
approach to generate grid-based climate data using data assimilation schemes and models
that are fed by available observational data, which are provided from various sources such
as satellites, buoys, aircrafts, and ship reports [28,29]. The improved quality and homo-
geneity of the reanalysis data make them a desirable choice for climate monitoring and
research, as well as in commercial applications, particularly in data-scarce regions [27,29].
The hydrological models using reanalysis can estimate river discharge as good as or even
better than the ones using the station data [30,31]. Given the differences among reanalysis
datasets attributed to inter-model variability, the assimilation approach, and available ob-
servations [9,24,32,33], using an ensemble of reanalysis datasets in hydrological modeling
is suggested to reduce the related uncertainty.

In addition to limited data, the complexity of catchments, including their size and
remoteness, can affect the choice of hydrological models for process representations
too [34-36]. The conceptual models have shown acceptable performance and have been
suggested to be used in climate change impact studies, specifically in data-scarce regions of
the Congo River Basin, due to their simplicity and lower number of variables compared to
the other types [33,37-42]. For instance, using GW-PITMAN, it is found that the streamflow
characteristics will change in the future, but the magnitude and sign of change are not con-
sistent over the basin [10,19,42,43]. Since the simulation of flow is sensitive to the structure
of hydrological models and different models may provide varying flow estimations, it is
recommended to use more than one conceptual model for impact assessment [44—48].
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The almost unexploited hydropower resource (~68 GW) of the KARB due to financial,
political, and infrastructural issues is considered as one of the prioritized components
of the sustainable development plan in Africa [49]. However, the high sensitivity of this
energy resource to alterations in the streamflow regime makes hydropower production
vulnerable to changing climatic conditions. Few studies have analyzed the performance of
the water resources system in the KARB in the future [50-53]. While the existing studies on
the Congo River Basin use a single hydrological model, e.g., [19,33,42], to the best of our
knowledge, a multi-model projection framework has been hindered for impact assessment
of the KARB.

Given the strategic significance of the KARB, understanding the impacts of climate
change on its water resources is vital. This study aims to assess the impact of climate
change on water availability in the Kasai River Basin (KARB; 897,500 kmz), one of the
key watersheds in the Congo River Basin, using an ensemble of state-of-the-art reanalysis
data, two conceptual hydrological models, and multi-model climate projections under
different future scenarios. Containing more than 25% of Congo’s freshwater resources with
an average annual discharge of 11,500 m3/s at the reaching point to the Congo River [49],
the KARB plays a strategic role in Central Africa’s economic growth, with great potential
in agriculture, hydropower, mining, and navigation [50].

The paper is structured as follows: Section 2 describes the KARB and its major water
resource challenges. Section 3 outlines the framework of the impact assessment, including
the datasets and hydrological models used. Section 4 presents the historical performance
of the hydrological models and projected flow conditions by the end of the century. The
conclusions are highlighted in Section 5.

2. Case Study

The Congo River Basin has an average annual discharge of 40,600 m?/s and covers
an area of about 3.7 x 10° km? [54], see Figure 1. It encompasses five sub-watersheds,
among which the Kasai River Basin is one of the largest watersheds [7]. Around 72.4% of
the KARB is located in Congo, and the remaining part (southwest) is in Angola [55]. The
long-term average annual temperature of the basin is about 24 °C [55], and rainfall varies
from 1431 to 1515 mm per year [7]. The Kasai River (KAR), with a length of 2153 km, is the
mainstream [51], originating from the Munyango headwaters in Angola [43]. The Kwango,
Kwilu, and Loange on the left bank of the KAR and Sankuru and Lulua on the right
bank are other key rivers in the KARB with an average flow of 2092, 1207, 427, 2500, and
502 m3/s, respectively [50]. These rivers confluence in Kutu-Moke and have an average
annual discharge of 8246 m3/s at the outlet [22], see Figure 1. The main hydrometric station
in the KARB is the Kutu-Moke, covering a drainage area of 750,000 km?, about 20% of
the Congo River Basin [43]. The basin’s mean annual rainfall, temperature, streamflow
discharge, and drainage area are presented in Table 1.

Table 1. Hydroclimatic characteristics of the KARB.

Climate Streamflow
Mean Average Average Basin
L. . Average .
. annual minimum maximum average . Drainage
Station L Lo Station annual flow P
precipitation  temperature temperature precipitation (m3/s) area (km®)
(mm) 0 S (mm)
Bandundu 1554 21.4 30.8
3 1456 Kutu-Moke 8070 750,000
Kiyaka 1649 20.0 29.3
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Containing 360 million cubic meters of the Congo River Basin’s water budget per
year, the KARB plays a key role in the water resource management of the region [49,56].
Currently, around 25% of the Democratic Republic of Congo’s population resides with
unequal distribution in the KARB. While most of the population still lives in rural areas,
urbanization has been considerable in recent decades [57]. Significant mining resources
such as gold, diamonds, and other minerals exist in this region. Nevertheless, shifting
agriculture is the primary source of income for most households, which highly depends on
water availability in the area. The Kasai River Basin is crucial for sustaining livelihoods,
particularly through rain-fed agriculture, which is the primary means of food production
in the region. Given the absence of large-scale irrigation systems or significant water
storage infrastructure, the natural flow of the Kasai River remains largely undisturbed.
This reliance on rainfall highlights the basin’s vulnerability to changes in water availability,
making it a critical factor for regional food security. A water crisis in this basin could have
devastating implications for agricultural productivity and food supplies.

Ecologically, the Kasai River Basin is a biodiversity hotspot, hosting rich flora and fauna.
It provides habitat for various animal and fish species, some of which are endangered,
underscoring the importance of conserving this unique ecosystem. The preservation
of these natural habitats is not only vital for biodiversity but also for maintaining the
ecological balance and supporting local communities that depend on these resources for
their livelihoods. [58]

The basin’s unaltered hydrological regime and ecological richness emphasize the need
for sustainable water management practices to protect its natural flow and biodiversity
against future threats. [57]

Despite the KARB’s potential for power production, agriculture, and rich natural
resources, many households have limited access to electricity, safe drinking water, and
health services due to the poorly developed infrastructure and political issues [59]. Several
rapids and waterfalls flowing into the deep valleys make the KAR and its tributaries
strategic for not only navigation purposes but also for hydropower generation, which can
promote the region’s energy supply. However, the only hydropower plant project in the
advanced planning stage is the Katende hydroelectric dam, with a 64 megawatt (MW)
planned capacity [57].

As previously noted, changes in climate have already affected Central Africa, including
the KARB. The Congo River has faced flow instability during the second half of the 20th
century, following a remarkable change by a sharp decline in the last decade [8,55,60,61]. In
the KARB, rainfall intensity has dropped by around 9% from 1940 to 1999, with the change
in annual rainfall from 1525 mm in 1920-1969 to 1388 mm during 1970-1990 [22]. Such
alterations in precipitation have affected the groundwater storage of the basin and have led
to reductions in streamflow discharge, e.g., from 8606 m?/s in 1948-1991 to 6943 m3/s in
1992-2012 at Kutu-Moke [7].
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Figure 1. The Kasai River Basin, sub-watershed of the Congo River Basin in Central Africa, and its
main tributaries. River networks and sub-basins are retrieved from Linke, Lehner [62].

Using the outputs of GCMs, an increase in between 2 and 6 °C in temperature is
projected in Central Africa in the 21st century [3,12,63]. Regarding the precipitation, the
projections diverge considerably [12,64,65], and the changes are not homogenous over the
basin. For instance, a decrease in precipitation in the south and a slight increase in the north
are estimated [19]. As a result, no changes in annual average precipitation over the whole of
Central Africa are projected [63]. However, for the KARB, the median of changes in annual
total precipitation is projected to increase by around 10% in the late 21st century (2071-2100)
under a high-emission scenario. Reductions in precipitation during the dry seasons, i.e.,
June-July-August and September—October-November, are estimated [63]. The projected
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rise in temperature and the decrease or no change in the region’s precipitation may lead to
prolonged and more frequent dry periods in the future [63]. Moreover, drought-prone areas
in the KARB, including savanna parts of the Katanga and the Kasai plateau, are expected
to experience seasonal water shortage in the near future [4].

Diverging changes in the streamflow regime in the KARB are estimated based on
the rainfall projections and utilized hydrological models [64,65]. For instance, using a
global hydrological model with a spatial resolution of 0.5°, more than half of the GCMs in
CMIP3 show a decrease in the average annual runoff by 2080 over the basin [66]. In another
study, a marginal decrease in average annual runoff in the south and a slight increase
(less than 10%) in other regions is projected using a macro-scale VIC hydrological model,
forced with bias-corrected outputs of three GCMs in CMIP3 [66]. Such changes in flow
make different sectors, including energy, food security, agriculture, the environment, and
natural resources vulnerable due to their low adaptive capacity [14]. In these studies, the
streamflow is simulated without considering routing through catchments, which may not
properly represent flow series at a daily scale. Using a SWAT model for the Congo River
Basin and considering an ensemble of GCMs, an increase in the mean seasonal runoff in
wet seasons (from December to May) and a reduction in runoff during the dry period in
the KARB (from June to November) but an overall increase in annual runoff of the whole
Congo River Basin are projected (Aloysius and Saiers) [19]. Nevertheless, there are some
limitations in the noted study, such as the calibration of the model using monthly data due
to the lack of observed daily streamflow. While in our study, the climate change impacts
are assessed utilizing high-resolution GCM projections, the focus is also on understanding
the importance of using different hydrological model structures and calibration, which
have not been carried out before for this case study to the best of our knowledge.

3. Materials and Methods
3.1. Framework for Climate Change Impact Assessment

Here, we applied a framework suited to the Central African basins to assess the impact
of climate change on the KARB, see Figure 2. As previously noted, for these data-scarce
regions, most studies suggest using an ensemble of reanalysis data for the calibration of
hydrologic models [21,23,28]. Therefore, in this study, a set of state-of-the-art reanalyses
along with recorded climate data are used as inputs to hydrologic models. Moreover, HBV
and GR4J hydrologic models are used to simulate natural streamflow, with the aim of
addressing the inherent uncertainty of the hydrological models and avoiding divergence
that may occur using a single model. The calibrated models using these data are forced
with the outputs of an ensemble of GCMs under different future scenarios to project water
availability by the end of the century. Accordingly, the changes in streamflow characteristics
affecting hydropower production are investigated. In the basin under study, there are no
existing dams or other water storage reservoirs and thus, these elements are not included in
the models. Without such infrastructure, the hydrology of the basin remains largely driven
by natural processes, such as precipitation and evaporation, without human-mediated
interventions to control or store water. Therefore, the models used in this study focus
on the natural hydrological response of the basin to climatic variables, ensuring that the
impact assessments and predictions are based on unmodified conditions. This approach
provides a clearer understanding of how climate change might affect the basin’s natural
water resources, without the confounding effects of human-made storage and regulation
structures.
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Figure 2. A framework to assess the climate change impacts on water availability in the KARB.

The historical and future climatic data used in this study are described in
Sections 3.2 and 3.3, respectively. Section 3.4 describes the employed hydrological models
and their calibration and validation procedures.

3.2. Station-Based and Reanalysis Datasets

The streamflow data in the outlet, Kutu-Moke station, is obtained from the Interna-
tional Commission for the Congo-Ubangi-Sangha Basin [22]. Regarding the climate data,
the recorded daily precipitation, as well as the minimum and maximum temperature for the
KARB, are obtained from the National Meteorological Agency of the Democratic Republic
of Congo. Table 1 shows the characteristics of these data. Moreover, the temperature and
precipitation data of 4 reanalyses, namely ERA5-land, CFSR, JRA55, and MERRA [23,67],
are considered in this study, see Table 2.

Table 2. Utilized reanalysis datasets, their temporal coverage, and spatial and temporal resolutions.

Available

Dataset Source Temporal Spatial . Temporfll Reference
Resolution Resolution
Coverage
Mufioz-
ERA5-land ECMWEF 1981-present 0.1° x 0.1° Daily Sabater, Dutra
[68]
Climate Forecast System o o . Saha, Moorthi
Reanalysis (CFSR) NCEP 1979—present 0.5° x 0.5 Daily [69]
Japan .
Japanese 55-year . . o o . Kobayashi, Ota
Reanalysis (JRA-55) Meteorological 1958—present 1.25° x1.25 Daily [70]
Agency
Modern-Era Retrospective Rienecker
analysis for Researchand =~ NASA GMAO 1979-2016 0.5° x 0.66° Daily !

Applications (MERRA)

Suarez [71]

The temporal variation in daily mean precipitation and temperature averaged over
the KARB, as well as seasonal cycles of climatic data for each reanalysis product and
observed data, are presented in Figure 3. Boxplots and lines contain daily and expected
daily temperature and precipitation values over a 30-year period (1981-2010), respectively.
Overall, it is evident that the range of reanalysis datasets is different from each other and
observed values, particularly considering precipitation. This can be due to divergence
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in the assimilation schemes, ground data used in assimilation, and/or utilized forecast
climate models, e.g., [32]. Considering the right panel, it is clear that over the Kasai
watershed, there are two high-precipitation periods during March—-April-May (MAM)
and September-October-November (SON). However, the magnitude of rainfall in these
wet seasons varies among the reanalysis; MERRA is the most inconsistent dataset, which
shows higher differences relative to other datasets. CFSR presents the wettest rainy season,
while the JRA-55 data shows the driest season among the reanalysis products. Considering
the dry season from June to August (JJA), all reanalyses capture a similar distribution
rather than the wet season. Figure 3 shows that all datasets are more consistent in seasonal
temperature variation than precipitation, yet the temperature variability in MERRA is more
than in others. Overall, the reanalysis provides reliable precipitation and temperature data
for the river flow simulation.

@ Daily observed

ERA5-land JRA-55

——————— Observed
CFSR —— MERRA

(a)

Precipitation (mm/day)

(b)

Temperature (°C)
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Figure 3. Daily precipitation and temperature values over a 30-year period based on the observed and
four reanalysis datasets (left panel) averaged over the KARB. The (right panel) shows the observed
daily (boxplots) as well as expected values (lines) in each month based on observed and reanalysis
datasets, which are averaged over the basin.

3.3. Climate Model Projections

In this study, the NASA Earth Exchange Global Daily Downscaled Projections dataset
is utilized, which includes data from 19 global climate models (GCMs) across two key
representative concentration pathways (RCPs), 4.5 and 8.5, corresponding to the interme-
diate mitigation and high-emission scenarios, respectively [72,73]. The data include the
maximum and minimum air temperature and precipitation with a spatial resolution of
0.25° from 1950 to 2100 for historical and future periods. These pathways are essential for
modeling future climate scenarios based on different levels of greenhouse gas emissions.
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The use of both RCP 4.5 and RCP 8.5 in this study allows for a comprehensive analysis
of potential future climates under different levels of human intervention. By considering
both scenarios, the study can compare the impacts of moderate mitigation efforts against a
scenario where no significant changes in emissions occur. This dual approach provides a
broader understanding of possible future climates and aids in developing robust strategies
for climate adaptation and mitigation.

The study examines these scenarios across three time horizons, near-term (2021-2040),
mid-term (2041-2070), and long-term (2071-2099), to assess how climate impacts may
evolve over time, offering valuable insights for planning and policy development.

Here, 19 GCM simulations during the historical and future periods are compared with
each other and reanalysis datasets in Figure 4. Overall, GCMs have a smaller variability
than the reanalysis datasets, except MERRA in the historical period, and GCMs have a
closer median to ERA5-land. Regarding the temperature, historical GCMs are similar to
ERAS5-land and JRA-55 in terms of variability, with an almost identical median (around
24.5 °C). In general, our analysis reveals that there is a definite increase in temperature
in the future ranging between 1.05 and 2.1 °C and 1.3 and 4.0 °C under RCPs 4.5 and 8.5,
respectively. These results are consistent with the findings of previous studies [3,12,63].
Regarding precipitation, a slight increase is expected in the long-term future. The median
of projections during the future horizons ranges between 4.33 and 4.42 mm/day and 4.33
and 4.53 mm/day under low- and high-emission scenarios, respectively. These quantiles
present around a 1% to 6% increase in the median of daily precipitation with respect to the
historical values.

1

=ik

1980-1991 2021-2040 2041-2070 2071-2099
2] ° o wn < n wn 0 wn n wn
s = 5 I & £ &£ § g 5 &g
© 2 = s & & & & & &
o
w

Figure 4. A comparison of (a) precipitation and (b) temperature in the future based on 19 climate
models under RCPs 4.5 and 8.5 (right) with respect to the historical values of GCMs and reanalyses
(left) in the KARB.
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3.4. Hydrological Models

As noted earlier, HBV-MTL and GR4J models were used to simulate daily streamflow
in the KARB due to their simplicity and accuracy [74]. HBV is widely used [75,76] in climate
change impact studies [33,38]. In particular, the model has shown considerable potential
for streamflow estimation in ungauged basins [77,78]. HBV-MTL, a recently modified HBV
model in [44], is used here. The main inputs to this model are daily precipitation, as well as
the maximum and minimum air temperature. The model consists of four main modules,
namely soil moisture, surface runoff, interflow, and baseflow reservoirs. The precipitation,
either rainfall or snowmelt, enters the soil moisture module. This module evaluates effective
rainfall contributing to surface runoff, or the water infiltrates the soil used by vegetation
through evapotranspiration. Evapotranspiration is estimated using the Hargreaves method
(Hargreaves & Samani, 1985) because of its simplicity and minimum data requirements
compared to other methods, especially in such a data-scarce region [79]. The remaining
water in the soil is stored in two conceptual reservoirs, the so-called intermediate and deep
soil layer, which gradually releases and forms the intermediate and base flow. Finally, the
flow at the watershed outlet is stimulated by the accumulation of direct runoff, intermediate
flow, and base flow routed through a triangle delay function. For more information about
the model structure and equations, see Sharifinejad and Hassanzadeh'’s study [44].

The GR4J is a lumped model which estimates runoff based on daily temperature,
precipitation, and potential evapotranspiration data. Unlike HBV, in GR4]J, the net precipi-
tation obtained by subtracting potential evapotranspiration from precipitation is divided
into two portions. The model consists of three modules, namely production storage, rout-
ing storage, and two unit hydrograph functions. First, a portion of net precipitation is
stored in the production storage, from which the water percolates gradually, dependent
on the soil moisture capacity. Meanwhile, some of the stored water used by vegetation
leads to evapotranspiration. The other portion of the net precipitation integrates with the
percolated water from production storage and contributes to the routing storage through
unit hydrographs. Indeed, the unit hydrographs in the model address the lag time between
precipitation and streamflow generation. In this stage, 10% of the existing water (runoff) is
directly routed to the outlet using a two-sided unit hydrograph, while the remaining 90%
is routed indirectly through groundwater exchange using a one-sided unit hydrograph.
More details about the model structure and equations can be found in Perrin and Michel’s
study [80].

The model parameterization includes a few steps. In brief, the data during the his-
torical period are divided into three parts for model warm-up, calibration, and validation.
The first year of data is used for warm-up to allow for model states to tune out based
on the initial conditions of the watershed [76,81]. Then, 66% and 34% of the remaining
data are used for model calibration and validation, respectively, based on the split-sample
test [44,82]. The two hydrological models are calibrated against observed streamflow using
an ensemble of climate datasets during the historical period, including station-based data
and four reanalyses, namely ERA5-land, CFSR, JRA55, and MERRA. Accordingly, the
models’ performance is evaluated based on the Kling-Gupta efficiency (KGE) measure [83],
and the value of parameters are obtained for each model. The KGE presents a more compre-
hensive comparison between the estimated and observed values using different statistical
criteria, namely the standard deviation, mean, and Pearson’s correlation coefficient, which
are shown as «, 3, and r in the equations below (Equations (1)—(3)). As shown in Equation
(4), these criteria are combined in the KGE in a more balanced way using the Euclidean
distance measure compared to other measures such as the Nash-Sutcliffe eficiency [84]. The
calibration and evaluation of the models are performed considering this measure at daily
and annual scales (Equation (5)). In Equations (1)—(3), ¢s and 0, are the standard deviations
of the simulated and observed flow, S and O are the mean simulated and observed flow,
and S and O are the simulated and observed flow, respectively.
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The Shuffled Complex Evolution algorithm (SCE-UA) is used to calibrate the hydro-
logical models [85,86]. In this method, the optimized parameter set is found based on a
combination of random [87] and deterministic approaches [88], clustering [89], and compet-
itive evolution [90]. The optimized parameter sets are found in a natural evolution process
through a global search. A population (parameter sets) is randomly sampled from the
feasible space and then partitioned into several complexes that will evolve independently
through the complex competitive evolution technique. To avoid reaching local optima, the
entire population is shuffled and the information of complexes is shared. These processes
are repeated, since the convergence criteria are satisfied. In this study, 50 populations were
selected randomly from the feasible space based on the parameter sets” range and were
divided into five complexes. The evolution and shuffling of the independent complexes
were repeated until the maximum iteration of 100. As a result, the best parameter sets
with the smallest value for the considered objective function (Equation (5)) were obtained.
This ensemble of parameter sets is called the “optimal parameter set”, leading into an
“optimal flow simulation”. Besides the use of global optimization in the calibration of
the models, to avoid the probable underestimation of the parametric uncertainty [91,92],
the generalized likelihood uncertainty estimation (GLUE) was used [93-95]. GLUE is a
statistical method employed in hydrological modeling for quantification of uncertainty
attributed to the model parameters. Hence, instead of having one optimal parameter set,
there will be a range of acceptable parameter sets based on the considered objective func-
tion. For this purpose, the initial parameter sets are selected randomly from the feasible
range of parameters using a uniform probability distribution. The KGE is used as the
statistical criterion to quantify the closeness of the simulated and observed flow and find
the acceptable parameter sets. Considering both daily and annual scales, the value of
the KGE should be larger than 0.5 to select the “acceptable parameter sets”. A total of
10,000 iterations was considered to generate the parameter sets. Using these “acceptable
parameter sets”, an ensemble of “acceptable streamflow” for each model was estimated.

4. Results
4.1. Performance of the Hydrological Models During the Historical Period

Based on the availability of daily streamflow and climate datasets, 1980-1991 is con-
sidered as the historical period for the streamflow simulation. The HBV and GR4J models
are calibrated using the observed and four reanalysis datasets. The performance of these
models in reproducing the observed streamflow is assessed using the KGE measure, see
Table S1 in the Supplementary Materials. The low KGE values, i.e., less than 0.4 and 0.2
for HBV and GR4J models, are not acceptable, which can be attributed to the low quality
of the observed station-based data, demystified in various studies [19,34]. Hence, these
models are not considered for impact assessment. However, the calibrated models using
the reanalysis datasets provide reasonable results. Figure 5 shows the daily and annual time
series of the observed and simulated flow using HBV (left) and GR4] (right) models fed
with the four reanalysis datasets during the calibration and validation periods, respectively.
Considering the simulations, both the optimal set and an ensemble of acceptable flow series
corresponding to their parameter conditions, noted in Section 3.4, are presented. Both
seasonality in discharge and the overall distribution of discharge (monthly hydrograph) are
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simulated well. Moreover, the KGE values above 0.5 for all eight configurations indicate
that these models perform better than the calibrated models using the observed data, which
is concluded by other researchers as well [30,31].
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Figure 5. Observed and simulated daily and annual flow during the historical period at the outlet
using four reanalysis datasets forced to HBV (left) and GR4J (right) models.

However, the performance of the models varies depending on the applied reanalysis
datasets for calibration, as well as the considered hydrological model [96,97]. Considering
both daily and annual time series, it seems that the calibrated models with ERA5-land
datasets perform better, in particular, in representing the peak flow timing and magnitude
and low flows. Conversely, the models calibrated with MERRA show a larger discrep-
ancy in estimating flow discharge. The impact of input data on flow simulation is more
evident at the annual scale. For instance, both HBV and GR4] models using the CFSR
dataset continuously underestimate the annual flow during the historical period, while
the calibrated models using JRA-55 estimate streamflow more accurately than with the
CFSR dataset. It is noteworthy to mention that the ERA5-based models more precisely
simulate annual flow by around half of the relative error than other datasets. Besides the
input data, it is clear that the structure of the hydrological models is critical in simulating
streamflow. For instance, using the MERRA dataset, the HBV model during the validation
period (1989-1991) underestimates annual flow, while the GR4] model overestimates it. In
addition, the GR4] model better reproduces the daily flow with a lower relative bias (0.05)
than HBV (0.1) and a higher correlation coefficient by 0.05 difference, given the ERA5-land
dataset. Considering the long-term annual hydrograph of the simulated and observed
flow (Figure 6), in the wet season (March-April-May), the HBV model calibrated with
ERAS simulates high flows more accurately than other models (with 2% bias respecting the
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observed ones), while GR4] with the same dataset (ERA5-land) shows a larger difference in
the simulated peak flow with observations demonstrating around a 7% bias. Meanwhile,
the largest bias in estimated flow in the wet season is related to the GR4] model calibrated
using the CFSR.
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Figure 6. Observed (dashed line) and simulated long-term annual hydrographs (solid line and
shaded areas) during the historical period at the outlet using different reanalysis datasets forced to
HBYV (left) and GR4J (right) models.

To better understand the differences between the models, the envelopes of simulated
flow considering all reanalyses using HBV and GR4] are shown in Figure 7 in the top and
bottom rows, respectively. Considering the ensemble of acceptable flow, the GR4] model
presents a wider range of values and overestimates daily flows more than the HBV model.
During the wet season, GR4]J estimates higher values for annual peak flow, e.g., greater than
15,000 m> /s, while the low flows are approximately the same for both models. It is evident
that the shape of the annual hydrograph obtained from the HBV model is more consistent
with the observed one, in particular, in the first quarter of the year. However, the difference
between the two models, HBV and GR4]J, is negligible (less than 5% difference considering
the mean annual hydrographs). Since the differences among the performance of these eight
configurations are not significant, all of them are used for the impact assessment.
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Figure 7. Comparison between the simulated (solid line and shaded areas) and observed (dashed line)
expected daily (left) and annual (right) hydrographs at the outlet during the historical period using
four reanalysis datasets in the calibration of hydrological models, HBV (top) and GR4] (bottom).

4.2. Calibration and Justification of HBV Model Parameters for the Kasai River Basin

While both the HBV and GR4] models are used in this research, the HBV model
presents greater complexity due to its multiple routines and more extensive set of parame-
ters, making it particularly adaptable to diverse hydrological conditions. This adaptability
is especially valuable in complex catchments like the Kasai River Basin, where varying
climatic and hydrological factors must be accurately represented.

The parameters of the HBV model must be carefully calibrated to reflect the specific
physical and hydrological characteristics of the catchment under study. This involves
adjusting parameters related to soil moisture and runoff processes to match observed
data and ensure that the model outputs are physically feasible and representative of the
real-world system.

Table 3 presents the calibrated parameter values for the HBV model applied to the
Kasai River Basin. These parameters include the degree-day coefficient, the potential evap-
otranspiration (ET) coefficient, soil moisture coefficients, outlet coefficients, the percolation
coefficient, and soil moisture capacity, among others.
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Table 3. Calibrated parameter values for the HBV model applied to the Kasai River Basin.
Parameter Optimized Value
Degree-day coefficient 2.28
Potential ET coefficient 0.91
Low soil moisture coefficient 0.20
Snow capacity to retain water 0.05
Topmost outlet’s coefficient 0.00
Intermediate outlet’s coefficient 0.01
Bottom outlet’s coefficient 0.01
Percolation coefficient 0.05
Topmost outlet’s trigger 48.70
Soil moisture capacity 496.90
Base of triangle delay function 1.16
Soil’s water absorption coefficient 1.06
Soil’s curve number 39.77
Frozen soil coefficient N/A
Soil frost temperature threshold N/A
Melting temperature threshold N/A
Snow correction factor N/A

In this section, the justifications for the physical feasibility of these calibrated parame-
ters will be provided. Each parameter will be discussed in terms of its role in the model,
its expected range based on the physical characteristics of the Kasai River Basin, and how
the calibrated values align with the observed data and hydrological theory. This thorough
calibration and validation process ensures that the model provides reliable simulations of
hydrological processes in the basin, contributing to accurate assessments of climate change
impacts and water resource management strategies.

A value of 2.28 for the degree-day coefficient is reasonable for areas with occasional
snow or ice presence, likely in elevated regions. This value reflects a moderate rate of
melting, which aligns with the infrequent frost or snow events in higher altitudes.

The potential evapotranspiration (ET) coefficient adjusts potential evapotranspira-
tion to better match observed climate conditions. In the Kasai Basin, characterized by a
tropical climate, high evapotranspiration rates are common. A coefficient of 0.91 indicates
slightly reduced ET compared to potential rates, possibly due to soil moisture limitations
or vegetation cover, making this value physically feasible.

The low soil moisture coefficient, which controls the storage capacity of the soil and
affects runoff and infiltration, is set at 0.20. This low value suggests that soils in the basin
have a limited capacity to retain water, leading to quick runoff. This is consistent with
the characteristics of lateritic or sandy soils commonly found in tropical regions, where
infiltration may be fast but retention capacity is low.

The topmost outlet’s coefficient governs the fast runoff from the upper zone. A
coefficient of 0.00 suggests negligible fast runoff, which could be due to the absence of steep
slopes or the dominance of infiltration over surface runoff in the basin. This is plausible for
a region with relatively flat terrain and dense vegetation cover.

The intermediate outlet’s coefficient controls slower runoff from intermediate soil
layers. A value of 0.01 indicates minimal interflow, which might be expected in a basin
where most water either infiltrates deeper or runs off slowly due to gentle slopes. This
value is physically feasible given the topography and soil structure in the Kasai Basin.

The bottom outlet’s coefficient represents the slow release of groundwater (baseflow).
This low value reflects a slow but steady contribution of groundwater to streamflow, typical
of large flat basins with significant groundwater storage, such as the Kasai Basin. It ensures
the model accounts for sustained baseflow during dry periods.

The percolation coefficient determines the rate at which water percolates from the
upper to lower soil layers. A moderate percolation rate of 0.05 is realistic in a tropical basin
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where soils have moderate permeability, balancing between rapid drainage in sandy soils
and slower percolation in more clay-rich areas.

A high topmost outlet’s trigger value of 48.70 indicates that significant soil moisture must
accumulate before rapid runoff occurs, which is plausible in a basin with deep soils and dense
vegetation that can absorb considerable water before contributing to surface runoff.

Soil moisture capacity, defining the maximum water storage capacity of the soil before
excess contributes to runoff, is set at 496.90. This high value suggests that soils in the Kasai
Basin have a substantial capacity to store water, which aligns with the deep well-structured
soils found in many parts of the basin. It allows the model to simulate prolonged dry
periods without immediate runoff.

The base of the triangle delay function represents the delay in runoff due to channel
storage and routing. A value of 1.16 is moderate and suggests that water movement
through the river network is relatively fast but not instantaneous. This reflects the balance
between quick surface runoff and slower groundwater contributions in the basin.

The soil’s water absorption coefficient controls the rate of the soil absorption of water,
influencing infiltration and runoff. A value slightly above 1.0 indicates efficient water
absorption by the soil, which is consistent with the dense vegetation and well-developed
soil profiles in the Kasai Basin. It ensures that the model realistically simulates infiltration
processes.

The soil’s curve number reflects the potential for runoff based on land use, soil type,
and moisture conditions. A curve number of 39.77 is low, indicating a low runoff potential,
which is expected in a region with extensive forest cover, permeable soils, and moderate
rainfall intensities. This ensures that the model does not overestimate surface runoff,
especially during light-to-moderate rainfall events.

Ultimately, the calibration parameters for the HBV model in the Kasai River Basin are
physically feasible and aligned with the basin’s climatic, hydrological, and topographical
characteristics. The careful calibration ensures that the model accurately simulates the
hydrological processes in this tropical basin, providing reliable results for water resource
management and climate impact studies.

4.3. Projected Streamflow Conditions Under Changing Climate

The outputs of 19 climate models under RCPs 4.5 and 8.5 are fed to these eight hydro-
logical models to estimate the flow in the KARB during the future horizons. The observed
and projected mean annual streamflow hydrographs at the basin’s outlet under RCP 8.5
using HBV and GR4] models calibrated with four reanalyses are presented in Figure 8. The
right panel in this figure shows all projected flows under these eight configurations. The
results for RCP4.5 are depicted in Figure S1 in the Supplementary Materials. Overall, the
models show changes in flow conditions; however, the estimated rate of change depends
on the considered modeling configuration. For instance, the rate of decrease is more con-
siderable based on the HBV than GR4] model. Indeed, the projected flow using GR4]J, an
ensemble of four configurations, presents no change in the near-term and mid-term future
and a slight increase in the long term under a high-emission scenario. Such divergence
between the results of these two models can be logical due to the noted differences in the
structure and performance of these models during the historical period.

Considering the impact of reanalysis, the models calibrated using ERA5-land, CFSR,
and JRA-55 show almost similar hydrographs. In contrast, MERRA-based models have
considerably different hydrographs in shape and high flow magnitudes showing an increase
in future high flows. The mean of projections based on all eight model configurations (right
panel) reveals a slight decline in streamflow volume with no change in peak flow timing
at the outlet of the KARB under RCP 8.5. Regarding RCP 4.5, one-week-early peak flow
is projected for the mean annual flow during all future horizons. This reduction in flow
might be due to a decrease in rainfall and an increase in the evapotranspiration caused by
temperature rise. These findings are consistent with previous studies of the Congo River
Basin [19,63,65,66]. For instance, Aloysius and Saiers [19] estimated prolonged periods of
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low flow and runoff decline in the southern headwater areas due to rainfall decrease in
comparison to their reference period of 1986-2005. They also found a runoff increase of
10.4% over the whole southwestern region under RCP 8.5 during 2046-2065.
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Figure 8. Observed (dashed line) versus projected ensemble (shaded area) and expected (solid line)
mean annual flow hydrographs at the basin’s outlet under RCP 8.5 using HBV (a) and GR4J (b)
models calibrated with four reanalyses, and all configurations (c) using the outputs of 19 GCMs are
also shown.

Such decreases in streamflow discharge can affect water resources management in the
KARB. Here, the changes in 90th (Q90), 50th (Q50), and 10th (Q10) percentiles of flow are
analyzed to gain a better understanding of future flow conditions based on individual and
ensemble model configurations. For this purpose, the observed (recorded) and simulated
annual flow duration curves (i.e., empirical cumulative probability distributions of flow
in each year) are derived for both historical and future periods. The long-term mean
annual quantiles for the observed flow are calculated by averaging these values over the
historical period. For the future period, the annual values are calculated under each of the
eight model configurations using the optimal and acceptable parameter sets, with 19 GCM
outputs under RCPs 4.5 and 8.5. The relative changes between these future annual quantiles
under RCPs 8.5 and 4.5 and the long-term historical values are presented in Figure 9 and
Figure S2 in the Supplementary Materials, respectively. The results are shown per model
configuration and as an ensemble of values per each hydrological model, followed by a
boxplot containing values for all configurations.

While an overall decrease in all three flow signatures is projected considering the
ensemble of all eight models, the magnitude and sign of change vary among configurations.
For instance, under RCP 8.5, high flow (Q90) is expected to decrease by 40% according to
HBV-ERAS and by 22% according to GR4J-ERAS5, whereas MERRA-based models estimate
an increase of 50% by HBV and 57% by GR4] for Q50. Indeed, the models calibrated with
MERRA datasets show completely different changes than the models calibrated with other
reanalysis datasets. This model overestimates the high flows during the historical period
as well. Figure 9 also shows that the GR4]-based models estimate a larger range of change
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in quantiles than the HBV ones. Moreover, although both models project a decline in Q10,
Q50, and Q90 in all future horizons, the percentage reduction based on HBV models is
more intense. For example, Q50 is projected to decrease on average by —23% based on
HBV models and —1% by GR4] models under RCP 8.5 by the late century. The results
based on all model configurations (black boxplot) reveal a decline of 9%, 18%, and 13% for
low, median, and high flow, respectively, under RCP 8.5. These ranges of reduction are
larger under RCP 4.5, i.e., —24% for Q10, —28% for Q50, and —25% for Q90, respectively
(see Figure S2 in the Supplementary Materials). This is mainly because of the higher rate of
increase in mean precipitation relative to the historical period under RCP 8.5 compared to
RCP 4.5 (see Figure 4a).
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Figure 9. Relative changes between the estimated annual streamflow quantiles by individual and
all model configurations fed by outputs of 19 GCMs under RCP 8.5 with respect to the long-term
average historical value.
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As previously noted, the values of high flows are particularly important for estimating
potential hydropower production in this region. Therefore, the trend in annual Q90 over
2021-2100 is analyzed, estimated using individual and ensemble model configurations,
given the acceptable and optimal parameter sets fed by 19 GCM outputs under RCPs 4.5
and 8.5 (see Figure 10). The long-term average annual Q90 of 12,030 m3/s during the
historical period is used as the benchmark (reference value). The projected trend in high
flow by the ensemble of models reveals a slight decline in hydropower potential. It is
evident that the estimated values and trends of Q90 in the future significantly differ among
model configurations. In particular, the MERRA-based model shows a notably different
trend than the others. Models calibrated with ERA5-land and JRA-55 estimate a decrease
in high flow over the entire century under both scenarios. Additionally, it is noteworthy
that the estimated Q90 values by GR4]J using CFSR show almost no change under RCP 4.5
and a slight increase under RCP 8.5 from the middle to the end of the century. In contrast,
the trendline for Q90 based on the HBV-CFSR model remains below the reference level
throughout the century under both emission scenarios. Indeed, the expected values of Q90
based on all models (right panels) remain below the reference level under RCP 4.5, whereas
they reach the long-term historical quantile by 2058 and slightly increase by the end of the
century under RCP 8.5.
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Figure 10. The ensemble (shaded area) and expected (solid line) values of annual Q90 in the future
under RCPs 4.5 and 8.5 based on calibrated HBV (blue) and GR4J (pink) models using four reanalysis

datasets (left) and all 8 model configurations (right). The dashed line shows the long-term annual
Q90 values during the historical period.

The Mann-Kendall trend test [98], a commonly used nonparametric method in climate
analysis, is employed to understand the trend and determine its significance. The p-values
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and trend slope of expected future annual Q90 calculated for individual and ensemble
configurations are presented in Table S2 in the Supplementary Materials. The significance
test results reveal an increasing trend in high flow based on the ensemble of all models
under both RCP 4.5 and 8.5, with significance levels of 0.05 and p-values of 4.5 x 10710
and 1.5 x 1078, respectively. Notably, the trend line slope under RCP 8.5 is double that
under RCP 4.5. These changes in streamflow conditions, particularly high flows, mean that
decisions around constructing reservoirs and hydroelectricity generation should account
for the impacts of climate change.

The gross hydropower potential for both present and future periods is estimated to
provide an overall indication of relative changes in the basin [99-101]. The amount of
hydropower generated from flow with the discharge of Q and head difference in H can be
estimated by P = pgQH#, where P is the power, p is the density of water, g is the gravity
acceleration, and ) is the overall efficiency of the turbine. The theoretical hydropower
production is estimated by considering the natural drop of the KARB mainstream for
the head, which is 1120 m [51]. The mean of annual high-flow Q90 obtained from the
ensemble of all eight model configurations in the future is used as Q, which is equal to
10,332 and 11,436 m3/s under RCPs 4.5 and 8.5, respectively. Accordingly, the relative
change in theoretical hydroelectric generation between future and historical periods is
calculated. Assuming an efficiency coefficient of 0.7 is reasonable, and the results reveal that
the theoretical potential of the basin will decrease by around 14% and 5% under RCP 4.5
and RCP 8.5, respectively, in the long-term future. Such changes in hydropower potential
should be considered in energy supply and development plans.

5. Summary and Conclusions

This study assesses the possible impacts of climate change on streamflow charac-
teristics and hydropower potential using a multi-model framework over the KARB, an
important watershed in the Congo River Basin, Central Africa. For this purpose, two
conceptual hydrological models, HBV and GR4J, which are calibrated using four reanalysis
products, are fed with 19 GCMs’ bias-corrected outputs under two emission scenarios,
RCPs 4.5 and 8.5. Results reveal that both hydrological models calibrated with different re-
analysis datasets can simulate the observed flow in the KARB with acceptable performance.
Considering both daily and annual time series, the calibrated models with ERA5-land
datasets perform better, particularly in representing the peak flow timing and magnitude
and low flows. Our simulations under climate change scenarios show that flow discharge
is likely to decrease with no change in peak timing and seasonality. However, the estimated
magnitude of change depends on the considered configuration, i.e., hydrological model
and the reanalysis dataset used for calibration and the future scenario. Overall, changes
in mean annual discharge ranging from —18% to +3% at the outlet of the basin in the
future is estimated in comparison to the observed values. Among model configurations,
MERRA-based models and GR4J-CFSR-based models show an increase in annual hydro-
graphs, while others are similar with a declining trend. Considering flow signatures, while
an overall decrease in all three quantiles (Q10, Q50, and Q90) is projected based on the
ensemble of all eight modeling configurations, the magnitude and sign of change vary
among configurations. Given the importance of high-flow Q90 in hydropower potential
analysis, our analysis reveals that Q90 will be decreased by 25% and 13% under RCPs 4.5
and 8.5, respectively, with respect to the long-term average historical value. Consequently,
the theoretical hydropower potential is expected to decline by 14% and 5% under low-
and high-emission scenarios, respectively. In addition, a trend analysis reveals that annual
power potential follows a significant increasing trend between 2021 and 2100 based on the
ensemble of all models with a p-value of 4.5 x 1071 and 1.5 x 10~ 8. Although the mean
annual flow’s magnitude is below the reference line (long-term average historical value)
during the future period, its trend is positive toward the end of the century. Moreover,
although the projections show a decline in annual high flow, these decreased rates are
not likely to create a major water supply issue for hydropower generation. Based on the
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ensemble of all models, the average decrease in low-flow Q10 is projected to be 24% and 9%
in the long-term future under RCP 4.5 and RCP 8.5, respectively. This decline in low flow
might affect navigation, which has already been threatened by climate change in the KARB,
reported by CICOS [102]. The changes in low and high flow can also have implications for
aquatic life, channel maintenance, and flooding. Hence, water managers should consider
these changes in policymaking and water allocations.

Our study is the first step toward a multi-model climate change impact assessment
of the Congo River Basin and has some limitations. In future research with the ongoing
field measurements that CICOS has planned within the KARB, one may apply hydrological
models with different catchment representations (both lumped and semi-distributed mod-
els) or include more models to estimate flow. Furthermore, in this study, the GCM outputs
based on the CMIP5 project are used. It is recommended to use other climate model outputs
that are recently released, i.e., CMIP6, to better highlight the probable future conditions
of the basin. Such analysis in the context of the applied framework can also be extended
to analyze the vulnerability of other catchments in the Congo River Basin to provide an
integrated impact assessment within the whole basin conditions. This integration can
provide policymakers with more comprehensive knowledge for water resources, energy,
agriculture, and ecosystem management. Notably, the flow projections of this study ac-
count for the changing climate and can be considered a part of an investigation of multiple
stressors on water resources. It is also suggested that other key aspects such as population
growth and rising water demand be considered in the development of adaptation policies.

In addition to the comprehensive findings presented in this study, it is important
to acknowledge the research limitations and sources of uncertainties that may affect the
results and their interpretation.

Firstly, the hydrological models used in this study, HBV and GR4], are conceptual
and have inherent simplifications in representing complex hydrological processes. The
calibration of these models was based on reanalysis datasets, which, while useful, may not
fully capture local hydrological dynamics or variations. The accuracy of these models is
also contingent upon the quality of the input data, particularly the bias-corrected outputs
from the 19 GCMs. Any inaccuracies or biases in these datasets can propagate through the
modeling process, leading to uncertainties in the projections.

Secondly, the study utilized GCM outputs from the CMIP5 project, which, although
robust, have been succeeded by more recent climate models under the CMIP6 project. The
use of CMIP6 models could potentially offer more refined and updated projections of future
climate conditions, potentially altering the impact assessments made in this study.

Additionally, the analysis does not account for other significant factors such as land use
changes, population growth, and increasing water demand, which could further influence
hydrological responses and water resource availability in the KARB. These factors are
critical for developing comprehensive adaptation strategies and should be integrated into
future research to provide a more holistic assessment.

Finally, this study provides critical insights into the potential impacts of climate
change on streamflow and hydropower potential in the Kasai River Basin (KARB), a vital
but understudied region. The results demonstrate significant shifts in flow regimes under
various climate scenarios, with potential implications for water resource management and
regional development.

Given the basin’s reliance on rain-fed agriculture and its limited water storage infras-
tructure, adaptive strategies are necessary to mitigate risks to food security and biodiversity.
These strategies include developing small-scale storage solutions, enhancing agricultural
water-use efficiency, and promoting sustainable land management practices. Additionally,
the basin’s ecological richness necessitates integrated approaches that balance development
goals with conservation priorities.

While the ensemble modeling approach provides robust projections, uncertainties
remain due to variability across individual models. Future research should incorporate
updated climate models, additional hydrological frameworks, and socio-economic fac-
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tors to refine projections further. These efforts will support more effective planning and
policymaking to address the challenges posed by climate variability in the KARB.
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